
Essay

Deciphering the mysteries of the neural
code
Haim Sompolinsky

Center for Brain Science, Harvard University, Cambridge, MA, USA. Edmond and Lily Safra Center for Brain Sciences, Hebrew
University, Jerusalem, Israel.

This essay is dedicated to the memory of my father David Sompolinsky. As a medical student in Veterinary
Medicine in Copenhagen, with the support of his professors and the Danish Resistance, David organised the
rescue of 700 Danish Jews in October 1943, helping them escape Nazi persecution and find safety in Sweden.

Brain theory, like any scientific theory, starts by posing high-level hypotheses and grand ideas. To make
progress, however, these ideas must be formalised as concrete mathematical models describing the operations
of networks of nerve cells and their synaptic interactions. These models can then be analysed using
mathematical and computational techniques. Ultimately, predictions from these calculations should be tested
against experimental data, a process that guides both new experiments and new theoretical work, advancing our
understanding of brain function.

What should a brain theory aim to explain? Many of the challenges of theoretical neuroscience may be
characterised as aiming to decipher the neural code. Whenever we perceive, think or act, large populations of
neurons fire in complex spatio-temporal patterns. The neural code is the mapping between brain activity on one
side, and cognition and behaviour on the other. Understanding the neural code involves comprehending the
mechanisms that underlie the relationship between neuronal activity patterns and brain function. Such a theory
not only illuminates normal brain function but also sheds light on the mechanisms underlying neurological,
developmental and psychiatric disorders.

The concept of neural code invites an analogy to the genetic code, the mapping between DNA sequences and
proteins. However, the neural code is vastly more complex, and deciphering it poses immense challenges.
Firstly, activity patterns dynamically unfold over time, rather than being static. Secondly, they are generated by
enormously complex anatomy and biochemistry. Lastly, they depend on an almost infinite number of variables
in the sensory environment and internal physiological signalling.

A detailed mapping of neuronal activity patterns is neither sufficient nor necessary for understanding brain
function. The sheer microscopic complexity of brain circuits would overwhelm understanding. Instead,
neuroscience theory constructs mathematical models of neuronal circuits that abstract away or ʻcoarse grainʼ
much of the underlying complexity, retaining only key aspects of the structure and biophysics (Figure 1). The
validity of these ʻsimplifiedʼ models is tested through systematic computer simulations of more detailed models
and comparisons with experimental data. As computational and experimental neuroscience advance, we gain a
better understanding of which ʻsimplificationsʼ are valid and which need revision, leading to more biologically
faithful models with improved predictive power.
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The study of local neuronal circuits has proven particularly productive for deciphering the principles linking
brain activity to cognition and behaviour [1]. These circuits consist of populations from hundreds to millions of
neurons and their synaptic interconnections, all assumed to ʻcodeʼ for the same set of features of the
environment. Theories of these circuits focus on the collective, system-level behaviour emerging from the
orchestrated activity of these neuronal populations, metaphorically seen as an orchestra without a conductor,
the missing ʻhomunculusʼ. These emergent collective computations are reminiscent of phases and phase
transitions in condensed matter and the spontaneous pattern formation in physical and biological systems [2].
Just as solidity emerges from the properties of a large collection of interacting atoms, cognition is an emergent
property of the activities of large neuronal populations [3].

Understanding neuronal circuits also informs brain disorders traditionally attributed to genetic and molecular
anomalies. Research shows that behavioural and cognitive dysfunctions often involve multiple molecular and
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genetic pathways within a single disease and, conversely, overlapping across diseases. Studying circuit-level
dysfunctions provides a crucial link between molecular mechanisms and disease symptoms and may guide new
therapeutic insights.

In the following, I will describe several milestones in theoretical neuroscience, demonstrating the unique power
of theory to delineate mechanisms underlying neuronal collective computations and the emergent neural code.
These examples are related to my research and do not amount to an exhaustive review of this broad and rich
field.

Associative memory storage and retrieval

Early physics-inspired theoretical neuroscience work investigated associative memory in neural circuits.
Pioneering physicist John Hopfield proposed a neural network model for associative memory, drawing a clear
analogy with magnetic systems in statistical mechanics [4]. In this model, the neural code of each memory is an
activity pattern distributed among the N neurons in the network. Memory is encoded by the Hebb plasticity rule
(ʻfire together, wire togetherʼ). Retrieval, triggered by a cuing signal, consists of the dynamic evolution of the
network state that ultimately converges to a persistent state (a ʻfixed point attractorʼ) that corresponds to one of
the encoded memories (Figure 2).

Working with Hebrew University colleagues Hanoch Gutfreund and the late Daniel Amit, we leveraged
sophisticated statistical physics methods to fully analyse the memory properties of the Hopfield model [5, 6]. Our
theory was one of the first rigorous, quantitative theories of collective computation in large neural networks.
The results of our theory are summarised in the phase diagram of Figure 2. Key parameters affecting the
memory functionality include the number of neurons, N, the number of encoded memories (each consisting of a
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pattern of activity of the N neurons), denoted P, the level of neuronal stochastic firing (referring to spontaneous
activity unrelated to the memory retrieval), denoted as T, and the mean strength of synaptic connections, w. The
diagram depicts three collective states (ʻphasesʼ). In the low T, low load region, the retrieval process successfully
constructs the target memory almost perfectly. In particular, at zero T, this occurs as long as the load per neuron
is smaller than a critical value ~0.14, known as the memory capacity. In the intermediate regime, the network
dynamics execute a retrieval process that culminates in a spurious memory (analogous to ʻconfabulationʼ).
Finally, in the high noise, high load regime, the network fails to execute a retrieval process altogether – the
stochastic dynamics of the network wander between states without converging on a particular fixed point.

The phase diagram of Figure 2 shows how the performance of the system scales with the number of neurons in
the memory networks. For instance, consider a degenerative disease that results in the death of half of the
neurons after the encoding of P memories. The information represented by the missing neurons is irretrievable.
However, because the memory retrieval is associative, the shrinking size may affect the quality of retrieval of the
information in the remaining neurons. Indeed, according to Figure 2, this occurs because both the load per
neuron and the normalised neuronal stochasticity are increasing following the degeneration. Interestingly, the
latter effect can be compensated for by increasing the overall strength of the synaptic connections [7]. These
examples demonstrate the richness of the predictions that can be drawn from a rigorous theory of computation
in a neural circuit. Our analysis also highlighted the deficiency of the model; primarily that it exhibits
catastrophic forgetting: when the load increases above the capacity, all memories, not only new (or old) ones,
are lost. Subsequent studies have studied mechanisms that allow for more graceful forgetting, including memory
rehearsal (e.g., during sleep) and memory consolidation [8]. Attractor networks have been extensively studied as
models of hippocampus-cortex memory systems [9-11].

The generative power of the brain: the ring attractor

The brain is not a passive device reacting to external stimuli. The active, generative power of the brain is evident
from phenomena like planning, prediction, exploration, imagery and creativity. The repertoire of neural codes
must therefore span intrinsically generated activity patterns that correspond to hypotheses about present or
future states of the world. What are the neural mechanisms underlying these abilities?

Physics studies the spontaneous emergence of macroscopic structures in nonlinear dynamic systems operating
under simple local rules. Examples include the shape of snowflakes, the patterns of clouds, the stripes in zebra
skin and the hexagonal shape of the honeycomb. These ideas inspire neural models of spontaneous generation
of spatial activity patterns in the brain and their relation to the neural code.

Accumulating information about the structure of cortical circuits revealed extensive connectivity between
neurons in the cortex, surpassing in magnitude the drive from the upstream sensory pathways. This puzzle led
me to hypothesise that recurrently connected cortical circuits generate a manifold of intrinsic activity patterns,
each coding for a potential value of an external variable. When an external input arrives, it selects the cortical
activity pattern most consistent with it. Through the intrinsic activity patterns and their modulation by stimuli,
cortical circuits generate predictions about the external world, which are revised and updated according to
incoming evidence from sensory signals [12].

I constructed a minimal neural circuit model that exhibits such capability. In this circuit, neurons are arranged
in a ring geometry, where the location of each neuron codes for its preferred angle, such as the angle of a visual
stimulus in sensory areas or the direction of movement of the animalʼs arm in motor areas. Neighbouring
neurons exert excitatory influence on each other, whereas distal neurons inhibit each other. I have shown that
this circuit exhibits a ring attractor, spontaneously forming persistent bumps of activity that can be located
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anywhere on the ring (Figure 3). The model predicts the conditions for this pattern formation and describes how
external stimuli interact with them, selecting or moving the bump from a present location to one which best fits
the input spatial profile [12]. Ring attractors were proposed for multiple functions including visual working
memory, voluntary movements and the head direction system where a neural circuit codes for the direction of
the animal's heading [13].

Direct experimental evidence of the ring attractor has emerged in recent years. In a beautiful set of experiments,
neuroscientists imaged the activity of neurons in the fly ʻcompassʼ system and visualised bumps of activity
moving around a ring of neurons, constantly aligning their position with visual or self-motion cues. Bumps
appear spontaneously in the dark and during sleep [14]. Remarkably, the synaptic connections between the
neurons were fully mapped at the nanoscale and were found to exhibit the same shape of synaptic connections
predicted by the ring model [15]. Similar ring networks were recently observed in the head direction system of
fish [16]. Experimental evidence of ring attractors was also found in the rodent head direction system [17],
although connectivity information is still lacking.

A recent discovery in the entorhinal cortex found a brain region in which neurons code the position of the
animal in the environment not by single bumps of activity but by multiple bumps arranged in a beautiful
hexagonal lattice [18]. Such a regular pattern is an archetypal example of pattern formation. However, the
original observations of these patterns were limited to the response field of single ʻgrid cellsʼ, leaving open the
intriguing question of what the underlying circuit mechanism is. Theoretical work proposed that underlying the
grid system is a neural circuit with an architecture characterised by two angles, a toroid, extending the ring
architecture in the ring network. This network exhibits a ʻtoroidal attractorʼ where persistent activity bumps can
be anywhere on the surface of the torus, with their location updated by self-motion or sensory cues. Indeed,
recent experiments showed evidence of the existence of a toroidal manifold that persists even in the dark or
during sleep (Figure 4) [19]. Direct evidence for the underlying connectivity awaits the mapping of the synaptic
wiring of this system.
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Overall, the experiments in the navigational system have been a remarkably fruitful testing ground for neural
circuit theories. In this case, these theories link the collective neuronal activity patterns to the emergent neural
code underlying the ongoing location and heading of animals, which is an essential ingredient of spatial
navigation function. The remarkable experimental validation of key theoretical predictions demonstrates the
pivotal role of theoretical neuroscience in unravelling brain computational principles through abstractions of
the underlying microscopic complexity  and by engaging in a fruitful dialogue with experimental studies of the
brain.

Stability and stochasticity of brain dynamics: excitation-inhibition balance

Not all neuronal dynamics are characterised by regular, structured patterns coding for actual or predicted
variables such as external stimuli or the position of the animal. It has long been empirically established that
structured neuronal patterns are superimposed on a background of irregular activity, indicating that even in the
absence of cognitive processes, the brain is not silent but exhibits spontaneous irregular activity. Furthermore,
when engaged in cognitive functions, the induced activity patterns are embedded in a background of irregular
neuronal firing. The origins and functions of these irregular activity patterns have remained elusive. Early
theoretical work failed to account for this ʻneural noiseʼ, as the dynamics of the proposed circuit models
invariably exhibited regular deterministic activity, so the noise had to be injected ad-hoc into the network model,
as was done with respect to neural noise in Figure 2 above.

The resolution to this enigma emerged when my then-postdoc the late Carl van Vreeswijk and I explored neural
circuit models with synaptic connections that were substantially stronger than those assumed in previous
models. Surprisingly, we discovered that networks with strong excitatory and inhibitory synaptic currents
exhibit intrinsically generated irregular patterns akin to chaotic dynamics observed in physical systems. Our
theoretical analysis revealed that the crucial mechanism is competition between strong, opposing forces –
excitatory and inhibitory – within the circuit. For such neuronal circuits to stabilise, these opposing forces must
dynamically balance themselves, allowing the network to operate in a healthy dynamic range, a state known as
excitation-inhibition balance (Figure 5) [20, 21].
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The mechanism of excitation-inhibition balance elucidates many aspects of cortical activity, including the
observation that increases in neuronal firing are often accompanied by increases in both excitatory and
inhibitory drives. Furthermore, the theory highlights the functional benefits of maintaining an active balance.
Neural networks that remain quiescent at rest require a considerable delay to activate in response to a stimulus.
In contrast, neurons in an active balanced state are often close to their firing threshold and can thus respond to
stimuli or changes in conditions with very short reaction time. Can E-I balanced networks with their fast
responses accommodate the slow dynamics of attractor networks?  Interesting ongoing research is studying
neural circuit models which combine E-I balance with attractor dynamics [22, 23].

Subsequent numerous computational and experimental studies have demonstrated that the balance between
excitation and inhibition is a fundamental principle of brain dynamics and architecture. Complementary
mechanisms for maintaining a robust E-I balance have been discovered including synaptic plasticity, adaptation
and homeostatics [24-26]. Importantly, the theory predicts that deviations in the strength of excitatory and
inhibitory connections beyond a certain range can destabilise the system, leading to either unstable bursts of
activity akin to epileptic seizures due to unchecked excitation, or to excessively suppressed activity
overwhelmed by strong inhibition, thereby shedding light on the mechanisms underlying circuit dysfunctions
observed in neurological and psychiatric disorders [27-29].

Bridging neuroscience and artificial intelligence: neural manifolds of categories

Theoretical and experimental neuroscience research over the past decades has deepened our understanding of
how neuronal dynamics translate into computation, primarily within local neural circuits. To understand
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complex cognitive functions, we must investigate larger-scale networks, spanning multiple brain regions.
However, in the past, large-scale (or ʻdeepʼ) neural network models failed to exhibit cognitive capabilities close
to animal and human performance.

The past decade has marked a significant turning point. Advances in digital databases and compute power have
led to the construction of brain-inspired deep neural networks with unparalleled abilities, some at par or
surpassing human cognitive performances, ushering in the artificial intelligence (AI) revolution. Overall, these
networks operate on the same principles as those adopted in computational neuroscience. They rely on
distributed computations with emergent behaviours that are the product of many massively interconnected
simple units and learn from experience-dependent plasticity rather than from some top-down encoded rules or
hard-wired knowledge. Interestingly, many artificial networks mirror brain-like functions such as long-term and
working memory, attention, context dependence and reinforcement learning. Some generative AI models are
powerful extensions of the manifolds of spontaneous, persistent patterns generated in the attractor models of
computational neuroscience, described above.

The new artificial deep networks provide powerful models for the emergence of complex cognitive functions in
large-scale brain circuits. This development is ushering in a new era of an extremely fruitful dialogue between
AI and neuroscience.

An example of progress along this line from my recent research is the study of neural mechanisms underlying
the representation of categories. While the input to the brain has the form of a continuous stream of analog
sensory stimuli, humans and animals dissect the world into discrete categories, such as objects, words and
concepts. Focusing on the visual cortex, it has been noted that even at the top stage, the inferior temporal (IT)
cortex, neurons are selective not only to object identity in their input images, but also to such variables as
location, orientation and size, which do not change the object identity. Interestingly, the same holds for the top
layers of artificial deep networks trained on millions of images for object recognition tasks. This led to the
hypothesis that the neural code of object identity is not an invariant response to object identity, but consists of
manifolds of states, all corresponding to neural population responses to the variety of stimuli associated with the
object. These manifolds are intertwined with each other (ʻentangledʼ) in early stages of visual processing, but
become well separated (ʻdisentangledʼ) in the final stages [30].

In recent work from my group [31-32], we formulated theoretically driven geometric measures of the object
manifolds and derived the quantitative relation between these measures and the ability to recognise objects in an
image and to rapidly learn to recognise novel objects. Surprisingly, both the visual cortex and the artificial deep
network exhibit very similar manifold geometries, as demonstrated in Figure 5. This approach is now being
extended to more complex tasks such as visual reasoning and language processing.

Concluding remarks

Two major developments are transforming the landscape of brain theory. One is the AI revolution, mentioned
above. Another transformative development is the accumulation of massive amounts of high-quality data about
brain structure and dynamics as well as animal behaviour (the evolution of ʻBig Dataʼ in neuroscience, neurology
and neuroethology). For instance, the number of neurons that can be simultaneously recorded in the mouse has
reached ∼ 1 million (about 1 percent of the whole brain) with calcium imaging techniques [33], and ∼ 10,000
with electrophysiology techniques [34]. Advances on the structural side include the complete mapping of all
synaptic connections in the fly brain (the fly ʻconnectomeʼ), exhaustive mapping of cell types in the mammalian
retina, large-scale recordings from neurons in freely moving mice, and powerful data acquisition and algorithms
for accurate estimates of body posture and limb movements. Large brain observatories are established to
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aggregate molecular, structural and activity data of the nervous system, providing open access to researchers
and opportunities for remote design of new experiments [35].

The availability of big data, the advances in sophisticated neural network mechanistic models, the emergence of
new tools and new ideas from AI research, and contemporary brain research are poised to generate new
breakthroughs into the complex neuronal machinery underlying cognitive functions and behaviours, shedding
further layers away from the mysteries of the neural code.
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