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INTRODUCTION                                                                                            
In humans skeletal muscle tissue accounts for about 40% of 
the total body mass and, in addition to being a crucial factor 
for locomotion, skeletal muscle represent a key element in 
maintaining metabolic function and as an energy reservoir in 
catabolic conditions. Thus, deteriorations in the contractile 
and metabolic properties of skeletal muscle have significant 
negative effects on human health and even short periods of 
muscle disuse rapidly leads to a number of negative 
consequences, such as skeletal muscle atrophy [260] 
reduced muscle strength [59, 114, 260] and a decline in 
basal metabolic rate [102] in otherwise healthy individuals.  

In parallel, the loss of muscle mass observed with ageing i.e. 
sarcopenia and the concomitant decline in muscle strength 
and power have extensive consequences for the elderly 
since associated with an impaired ability to perform tasks of 
daily living, along with an increased risk of disability and 
mortality [172, 199]. Moreover, periods of skeletal muscle 
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disuse due to a higher degree of comorbidity and 
hospitalisation per se results in a rapid and accelerated loss 
of skeletal muscle mass [118]. In fact, immobilisation due to 
major surgery and hospitalisation markedly increases the 
risk of deterioration in muscle function, often leading to 
onset of disability in frail elderly individuals [49, 135]. In 
addition, the recovery of losses in muscle mass and muscle 
strength is often very slow [203, 249, 259] and many elderly 
patients fail to regain the level of function that was present 
prior to hospital admission [49, 108, 217, 259]. Thus 
attempts to counteract the muscle atrophy associated with 
surgery and hospitalisation in the elderly seem highly 
relevant. We therefore set to investigate the mode and 
magnitude of muscle activity required to effectively 
counteract the decline in muscle mass and function 
associated with surgery and hospitalisation (Study I, II, IV 
and V). 

The observation that skeletal muscle disuse leads to 
substantial atrophy is far from new and the negative effects 
of unloading on skeletal muscle are relatively well described 
in young individuals [23, 24, 53, 106, 148]. In contrast, very 
little is known about how immobilisation and skeletal muscle 
disuse affects skeletal muscle size and function in old adults 
[59, 137, 251]. Thus, our present knowledge is primarily 
based on animal data where hind-limb suspension (HS) has 
been used as a model of muscle un-loading to investigate 
the underlying mechanisms associated with disuse muscle 
atrophy in aging [4, 12, 13, 30, 33, 34, 37, 60, 61,   253]. 
Although it is evident that aging leads to a multitude of 
changes in the neuromuscular system that are similar to 
those evoked by unloading [4, 253], the lack of research into 
the effect of unloading in elderly humans makes it difficult to 
ascertain what effects can be attributed to a decreased 
physical activity per se and which to the aging process, as 
such. An important question is therefore whether processes 
responsible for the loss of muscle mass due to acute or 
chronic disuse are similar to those underlying sarcopenia 
and additionally, whether skeletal muscle disuse leads to 
similar effects in old and young individuals. On this 
background, studies III and VI were carried out, in order to 
investigate the effects of skeletal muscle disuse in aged 
individuals, initially in individuals exposed to chronic disuse 
(Study III) while in Study VI, we intended to discriminate 
between the differential effects of a defined period of 
muscle disuse and aging per se.  

Moreover, based on previous animal data demonstrating an 
attenuated recovery response after immobilisation and 
injury in old compared to young muscle tissue [36, 44, 85, 
269] we investigated the ability of young and older 
individuals to recover muscle mass and mechanical muscle 
function after 14 days and 4 days of immobilisation, 
respectively (Study VI and IX).                                                                   
At the molecular level effective cellular communication is 
known to play an essential role in skeletal muscle plasticity 
and in adult skeletal muscle tissue the size of the muscle is, 
in essence, determined by the relative rates of protein 
synthesis and protein degradation [78]. Thus, skeletal 
muscle atrophy is a consequence of a reduction in muscle 
protein synthesis and/or an increase in protein degradation. 
However, despite the existence of several robust candidate 

pathways [211, 218], the molecular mechanisms responsible 
for the regulation of skeletal muscle atrophy and the 
subsequent restoration in skeletal muscle mass in response 
to exercise based rehabilitation are relatively unknown, 
particularly in humans. A better understanding of the 
pathways regulating myofibrillar protein synthesis and 
protein degradation in humans and their temporal 
relationship to changes in muscle function and lean mass is 
hence of considerable clinical importance and has far-
reaching implications to counteract muscle wasting during 
periods of skeletal muscle disuse. In animal models, loss of 
muscle mass with immobilisation or unloading has been 
shown primarily to occur through an accelerated degrada-
tion of myofibrillar proteins via the ubiquitin-proteasome 
path-way [29, 82]. Somewhat in contrast, studies in young 
human individuals have suggested that a decline in protein 
synthesis rather than accelerated protein breakdown is 
responsible for the atrophy related muscle loss [54, 76, 78]. 
With aging, loss of muscle has been associated with 
increased inflammation [38] and decreased anabolic 
signalling [50], increased apoptosis [62; 66], impaired 
myogenic responsiveness [43, 47, 85] as well as de-creased 
mitochondrial function [165]. Moreover, aging has been 
found to affect signalling pathways that regulate myogenic 
growth factors and myofibrillar protein turnover in skeletal 
muscle of rodents [13]. In order to investigate some of these 
cellular and molecular mechanisms suggested being 
responsible for the age-related changes in skeletal muscle 
with disuse and recovery, including the differential 
involvement and time course of such signalling pathways, 
Study VII and VIII was carried out. 

The present thesis provides an overview of the information 
gathered from Study I-IX and the current knowledge about 
the plasticity of aging muscle in relation to disuse and re-
training.  

MATERIAL AND METHODS                                                              
While relevant details related to Material and Methods are 
de-scribed below, more detailed information can be found in 
the respective articles. 

SUBJECTS                                                                                                              
The patient population recruited for Study I-V consisted of 
patients scheduled for a primary unilateral hip-replacement 
operation at Bispebjerg University Hospital, Copenhagen, 
Denmark from May 2000 to May 2002. Eligibility criteria 
included; age 60 years or older, unilateral primary hip 
replacement due to primary hip osteoarthritis in patients 
without cardiopulmonary, neurological or cognitive 
problems. In the two immobilisation studies (Study VI – IX) 
comparable groups of healthy young (20-30 years) and 
elderly (60-75 years) individuals were recruited. Prior to 
inclusion, all subjects were screened by a physician to 
exclude individuals with cardiovascular disease, diabetes, 
neural- or musculoskeletal diseases, inflammatory or 
pulmonary disorders or any known predisposition to deep 
venous thrombosis.  
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Study N= Age 
(years) 

Gender 
 

Body weight 
(kg) 

Height 
(cm) 

BMI 
(kg/m2) 

Retraining after Hip-replacement  
Study I,II,IV,V 
                     Conventional rehab 
                      NMES 
                      Resistance training 

 
 

12 
11 
13 

 
 

68 (62-78) 
69 (60-75) 
69 (60-86) 

 
 

5M/7W 
5M/6W 
7M/6W 

 

 
 

81.3 ± 5.8 
79.0 ± 4.2 
77.8 ± 4.5 

 
 

169.8 ± 2.1 
167.7 ± 2.8 
168.0 ± 2.0 

 
 

28.2 ± 1.7 
27.9 ± 0.9 
27.4 ± 1.4 

Chronic disuse  
Study III 
                      Men 
                      Women 
 

 
 

19 
20 

 
 

69 (60-79) 
70 (60-86) 

 
 

M 
W 

 
 

85.8 ± 3.6 
71.5 ± 3.6 

 
 

173 ± 2.0 
163 ± 1.0 

 
 

29 ± 1.0 
27 ± 1.0 

4 days immobilisation study 
Study VII, IX 
                      Young 
                      Old 
 

 
 

11 
11 

 
 

24.3 (21-30) 
67.2 (60-72) 

 
 

M 
M 

 
 

74.3 ± 2.4 
87.7 ± 3.0 

 
 

180.4 ± 2,7 
178.8 ± 1.7 

 
 

22.9 ± 0.5 
27.5 ± 0.6 

14 days immobilisation study 
Study VII, VIII 
                      Young 
                      Old 

 
 

11 
9 

 
 

24.4 (21-27) 
67.3 (61-74) 

 
 

M 
M 

 
 

72.2 ± 2.3 
84.8 ± 3.4 

 

 
 

181.4 ± 1.8 
178.7 ± 2.6 

 
 

22.1 ± 0.5 
26.3 ± 0.5 

Table 1.  Anthropometrical data of the study participants
 

IMMOBILISATION PROTOCOLS                                                                   
Two different immobilisation studies were conducted. In the 
first experiments (Study VI, VII & VIII), subjects had one 
lower limb immobilised for 14 days by unilateral whole-leg 
casting using a lightweight fibre cast applied from just above 
the malleoli to just below the groin. The cast was positioned 
in 30 degrees of knee joint flexion to circumvent walking 
ability of the casted limb and the subjects were carefully 
instructed to perform all ambulatory activities on crutches 
and abstain from ground contact as well as performing 
isometric contractions of quadriceps of the immobilised leg.  

In the following short-term study (Study VII & IX), subjects 
had a randomly assigned leg immobilised for 4 days using a 
knee brace (DonJoy, Orthopedics, Sunny Vista, CA, US) 
fixated at a knee  angle of 30 degrees (similar to the cast). 
Using a knee-brace instead of a whole-leg cast enabled us to 
obtain muscle biopsies during the immobilisation period 
without removing the brace. Both methods have previously 
been shown equally effective of inducing muscle atrophy in 
young individuals [53, 59, 106]. Similarly to the 14 days 
immobilisation intervention, subjects were provided with 
crutches during the immobilisation period.  

RE-TRAINING PROCEDURES                                                                        
Hip-replacement patients                                                                 
Patients were stratified by age and sex and randomly 
allocated to one of three groups: home-based standard 
rehabilitation (SR), SR plus unilateral lower-limb resistance 
training (RT), or SR plus unilateral neuromuscular electrical 
stimulation (ES). The RT and electrical stimulation (ES) 
groups performed the additional training or received ES on 
the operated leg, so the non-operated side could serve as a 
within-subject control. 

Home-Based Standard Rehabilitation                                                    
All three intervention groups were provided the same 
standard rehabilitation (SR) procedure for hip-replacement 
patients at Bispebjerg Hospital. The standard rehabilitation 
program consisted of 15 functional exercises with no use of 
external loads. The SR group was instructed to perform the 
exercises twice a day and attend weekly control sessions in 
the Physical Therapy department, during which an 
experienced physical therapist guided them through all the 
exercises to ensure they were performed correctly. Identical 
instructions were given to the two other treatment groups. 

Neuromuscular Electrical Stimulation                                                  
The ES group began the stimulation program on the 
operated leg the day after hip surgery. Patients were 
carefully instructed in the use of the stimulator and the 
placement of the electrodes. The stimulator was a pocket-
sized battery-operated unit (Elpha 2000, Biofina, Denmark) 
that delivered a constant biphasic current (0–60 mA). After 
careful preparation of the skin, two stimulation electrodes 
(Bio-Flex, 50 x 89 mm, Biofina A/S; Odense, Denmark) were 
placed over the quadriceps muscle belly 5 cm below the 
inguinal ligament and 5 cm above the patella. The pulse rate 
was 40 Hz, with a pulse width of 250 µs, and stimulation 
time of 10 s, followed by 20 s of rest [101]. The amplitude 
increased and decreased gradually during the first and last 2 
s. The intensity of the stimulation was adjusted according to 
patient tolerance, at maximal tolerable stimulus intensity. 
The total stimulation time was 1 h/d for 12 weeks, and all 
patients registered total stimulation time and intensity. After 
discharge from the hospital, the stimulator was used at 
home, and weekly controls were conducted. 

Resistance exercise                                                                          
Resistance training was performed as unilateral progressive 
exercise for the operated lower limb. The post-operative 
training was initialized the first day after surgery and 
consisted of daily knee extension exercises (3 x 10 reps) in a 
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seated position with sandbags strapped around the ankle.  
As soon as possible (day 5-7 post surgery) training was 
performed by use of adjustable leg-press and knee-
extension machines (Techno gym International) three times 
per week. Following a brief 10 min warm-up on a stationary 
bicycle, knee-extension and leg-press exercises were 
performed. A trained physical therapist carefully supervised 
all training sessions. Training intensity was progressively 
increased in intensity from 20 RM (~50% of 1-RM) the first 
week, 15 RM (~65% of 1-RM) during week 2-4, 12 RM (~70% 
of 1-RM) during week 5-6 and 8 RM (~80% of 1-RM) the last 
six weeks. Training loads were carefully adjusted on a weekly 
basis, measured by a multiple-RM testing based on goal 
repetitions, to ensure that all patients exercised at the 
intended intensity.  

Re-training subsequent to immobilization                                              
The re-training protocol for the 2 weeks immobilisation 
protocol consisted of a 4 weeks supervised resistance 
exercise for the intervention leg that was fairly similar to the 
above program (cf. 5.3.1c) during week’s two to six. The 
program was previously shown to elicit increases in muscle 
size and maximal muscle strength in elderly individuals [68]. 
Training sessions were carried out three times per week and 
after a 10 min warm-up on a stationary bike, subjects 
performed knee extension, leg press, and knee flexion, with 
all the machines being adjustable (Technogym 
International). The subjects were instructed to use moderate 
(~1-2 s) and slow speed (~3-4s) in the concentric and 
eccentric contraction phases, respectively. Load intensity 
was 3-4 sets x 12 reps (at 15 repetition maximum (RM)) in 
week 1, followed by 5 sets x 10 reps (at 12 RM) in weeks 2 
and 3, and 4 sets x 10 reps (at 12 RM) in week 4. Training 
loads were determined and progressively adjusted on a 
weekly basis by use of 5-RM testing. 

Table 2. Overview of methods used in Study I-IX 

The 7 days re-training protocol following 4 days of 
immobilisation was designed in a similar way as the first 
week of the 4 week re-training period with a load intensity 
of 3-4 sets x 12 reps (at 15 RM) determined by use of 5-RM 
testing. 

FUNCTIONAL CAPACITY                                                                               
To evaluate changes in functional performance in the group 
of hip-replacement patients (Study I) a number of functional 
parameters were obtained that have previously been shown 
to correlate significantly with risk of physical disability, 
dependency and falls [52; 118]. Maximal gait speed over a 
10-meter course was measured to the nearest 0.1 s and 
stair-climbing performance was measured as the time to 
ascend 10 steps (height 20 cm). Both tests were started from 
a standing position and stopped when both feet were at the 
determined ending position. The ability to rise from a chair 
(Sit-to-stand test) was measured on a standardised chair, as 
the 5-repetition time to the nearest 0.1 s. Furthermore, 
maximum stair walking power per kg body mass (watt/kg) 
was calculated as the distance of vertical dis-placement of 
the body centre mass times g (9.81 m/s2), i.e. the change in 
potential energy, divided by the fastest time of stair ascent 
(Study III). Each subject performed three trials, and the stairs 
consisted of 10 steps each with a height of 16.5 cm leading 
to a total vertical displacement of 1.65 m.                                                                            
All three tests are highly validated showing high test-retest 
reliability and with strong relationships to muscle strength, 
frailty and mortality [88, 199, 200]. Moreover, the tests are 
easy to carry out, cheap and not very time-consuming. There 
are, however, also certain limitations of these tests. The 
most important being a relatively low sensitivity and an early 
ceiling effect, which makes them best suitable for frail 
populations.  

MECHANICAL MUSCLE FUNCTION                                                   
Isokinetic muscle strength                                                                       
To assess mechanical muscle function, isokinetic 
dynamometry [Kinetic Communicator, Chattecx, 
Chattanooga, TN, KinCom) was employed in Study I-III, V-VII 
and IX. Dynamic muscle strength was measured as the 
maximal voluntary isokinetic knee extensor moment [peak 
moment, Nm) during concentric quadriceps con-traction 
performed at slow (60°/s) and fast (180°/s) knee joint 
angular velocity. Maximal isometric quadriceps and 
hamstring muscle strength were assessed at a 60° knee joint 
angle (0° = full knee extension) and the trial with the highest 
maximal voluntary contraction moment (MVC) was selected 
for further analyses of rate of force development (RFD) and 
contractile impulse [3]. Individual settings of the seat, 
backrest, dynamometer head and lever arm length was 
registered, so identical positioning was ensured for each 
subject at all time-points. All measurements were performed 
on both thighs, and were preceded by a familiarisation trial 
conducted on a separate day. Verbal encouragement was 
given and visual feedback was provided as a real-time dis-
play of the force output [130]. Successive trials were 
performed until peak moment could not be improved any 
further [3], which typically included 7-9 attempts at each 
velocity. Reliability and validity of the KinCom dynamometer 
has been verified in detail by Farrell & Richards and is 
characterized by a high validity and reliability [69]. 

Study I II III IV V VI VII VIII IX 

Functional 
performance 

X  X       

Dynamometry X X X  X X X  X 

Interpolated 
twitch 

    X X    

Surface EMG  X   X     

CT Imaging X X   X     

MR Imaging      X    

Ultrasound 
Imaging 

  X   X    

Dexa Imaging      X    

Muscle biopsy 
analyses 

  X X   X X X 

Gene 
expression 
analyses 

   X   X X  

Western 
Blotting 
analyses 

      X  X 

Satellite cell 
analyses 

       X  
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Furthermore, strong test-retest robustness has previously 
been demonstrated for the use of isokinetic dynamometry 
to assess maximal strength of the knee extensors, knee 
flexors and plantar flexors in both young [235, 264] and old 
adult [109]. 

Interpolated twitch technique (ITT)                                                              
In Study V and VI maximal evoked muscle force was 
measured using a custom-made set-up [100] with the 
subjects seated in an upright position with a rigid back 
support and the hip and knee joint flexed at 90° [100]. A 
steel cuff was strapped around the lower leg, approximately 
2 cm above the medial malleoli and was connected via a 
rigid steel bar to a strain gauge load cell (Bofors KRG-4, 
Bofors, Sweden), which was connected to a linear 
instrumentation-amplifier (Gould 5900, Gould Inc. Valley 
View, OH USA).  

Resting muscle twitches                                                                            
Each test session was initiated by determination of the 
maximal twitch response in the resting muscle. Twitch 
contractions were evoked in the passive muscle using 
electrical stimulation consisting of single square wave pulses 
of 0.1 ms duration delivered by a direct current stimulator 
(Digitimer Electronics, model DS7). Stepwise increments in 
the current were delivered until no fur-ther increase in 
twitch amplitude was seen [98].  

Superimposed twitches                                                                               
To evaluate the ability to activate the quadriceps muscle, i.e. 
to assess the magnitude of central activation 
(neuromuscular activation), electrically evoked muscle 
doublet-twitches were super-imposed onto maximal 
voluntary muscle contraction [171, 239]. Contractions were 
evoked using doublet square-wave pulses of 0.1 ms duration 
and a minimum of two trials was performed with a 
requirement to reach within ≥95% of the peak MVC force 
measured in preceding trials. Supra-maximal doublet 
stimulation (100 ms pulse duration, 10 ms interpulse 
interval) was manually delivered 5 s before (non-potentiated 
resting doublet), at the highest attained force plateau 
(superimposed doublet), and 2 s after (potentiated resting 
doublet), with the latter response being used as the resting 
reference twitch. 

 MUSCLE SIZE AND ARCHITECTURE                                            
Computed tomography (CT)                                                   
Computed tomography (CT, Picker 5000, Ohio, US) was used 
to obtain anatomical cross-sectional area of the quadriceps 
muscle in the population of patients undergoing hip-
replacement surgery (Study I, II and V). A slice thickness 8 
mm was used and a scanning time of 5s with an image 
matrix of 512 x 512 pixels. Axial scans of the quadriceps 
muscle were obtained at the mid-point between the great 
trochanter and lateral joint line of the knee. A trained 
radiologist measured cross sectional areas using the Picker 
VOXEL-Q CT/MR Software Package for real-time Analysis 
after each scan was blinded for both subject and time point. 
Each scan was evaluated three times and the mean value 
was recorded as the result. The coefficient of variation 
between two consecutive measurements was < 2%.   

 Magnetic resonance imaging (MRI)                                           
In Study VI muscle cross sectional area and muscle volume of 
the quadriceps muscle was measured by use of axial 
Magnetic Resonance Imaging (MRI) [1]. Imaging was 
performed in a body array coil with the subject in a supine 
position with both limbs extended and relaxed. Prior to the 
first scan a localising scan centred mid femur was conducted 
to ensure the knee joint was included in the field (Field of 
View, FOV 48). The subsequent scan was centred just below 
the femur condyles to ensure the same scan position at all 
time-points. Dependent on the femur length of the subject 
7-8 T1-weighted transverse scans with a FOV 42 and matrix 
512 + 512 pixel matrix were obtained with a slice thick-ness 
of 10 mm and an inter-slice gap of 50 mm. After blinding of 
each scan the Anatomical Cross Sectional Area (ACSA) of 
each scan was measured three times using Web1000 
imaging soft-ware. The mean value of the three 
measurements was recorded as the result and the 
coefficient of variation between consecutive measurements 
was < 5 %. Subsequently, Quadriceps muscle volume (Qvol) 
was calculated by the summation of 6 successive ACSA 
values (scan 2-7), each multiplied by the sum of the slice 
thickness and inter-slice gap. Based on cadaver analysis, a 
high validity has been reported for the non-invasive 
assessment of human skeletal muscle CSA and volume by 
means of MRI [20, 175].  Furthermore, high test-retest 
reliability is reported for the repeated recording of 
transversal anatomical CSA of the human quadriceps muscle 
by means of MRI, demonstrating excellent test-retest 
reliability [205].  

Ultrasound (UL)                                                                                
To assess changes in muscle architecture measurements of 
muscle fibre pennation angle and muscle thickness 
ultrasonography was performed in Study III and VI. Sagittal 
ultrasound images of the quadriceps muscle were recorded 
with the using a Siemens real-time scanner with a 7.5 MHz 
linear array transducer. Images were obtained with the 
subject in a seated position (90 deg. flexion in the hip and 
knee joint) at 50 % of femur length over the mid-belly of VL 
muscle [1]. Vastus lateralis (VL) fibre pennation angle (qp) 
was measured as the angle between VL muscle fibre 
fascicles and the deep aponeurosis of the insertion, i.e. the 
fascia separating VL and the vastus intermedius muscle [104, 
208, 215]. Two images from each limb were obtained from 
all subjects. Each image was evaluated three times and the 
mean value was recorded as the average fibre pennation 
angle. The coefficient of variation between two consecutive 
measurements was < 5%. In order to obtain ultrasound 
images from an identical position at the thigh during 
longitudinal sessions, anatomical landmarks were carefully 
drawn on a transparent sheet. Moderate-to-excellent test-
retest reliability has been reported for the measurement of  
qp in the human quadriceps muscle in vivo [27, 198, 206] as 
well as in other lower limb muscles [10, 198]. 

 Dual-energy X-ray absorptiometry (DEXA)                                                 
In Study VI, Dual-energy X-ray absorptiometry (DEXA) (Lunar 
DPX, version 3.6Z software) was used to assess whole body 
composition and percent body fat.  Subjects were measured 
in supine position on the same time of the day on 
consecutive measurements. Good-to-excellent test-retest 
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reliability has been reported for the measurement of body 
composition, body fat and lean muscle mass in young and 
old women [161].  

NEURAL ACTIVATION                                                      
Electromyographic recordings (EMG)                                                      
In Study II and V surface EMG-recordings were carried out to 
measure neuromuscular activity in the quadriceps and 
hamstring muscles.  After careful preparation of the skin, 
pairs of surface electrodes (Medicotest Q-10-A, 20 mm inter 
electrode distance) were placed over the belly of vastus 
lateralis (VL), vastus medialis (VM) and rectus femoris (RF). 
All electrode positions were carefully measured for each 
subject to ensure identical recording sites throughout all 
tests. EMG and dynamometer strain-gauge signals were 
synchronously sampled with a 1000-Hz analogue-to-digital 
conversion rate using an external analogue-to-digital 
converter (dt 2801-A, Data Translation, Marlboro, MA). 
Subsequent, during later off-line analysis, EMG signals were 
digitally high-pass filtered with a fourth-order, zero-lag 
Butterworth filter with a 5-Hz cut-off frequency, followed by 
a moving root-mean-square filter with a time constant of 50 
ms. Maximum EMG amplitude of the RMS-filtered signal was 
identified for the entire contraction phase and to reflect 
neural adaptations in the early phase of contraction, 
integrated EMG (iEMG) and mean average voltage EMG 
(MAV=iEMG/integration time) were calculated in time 
intervals of 0-30 ms, 50 ms, 100 ms and 200 ms relative to 
the onset of EMG integration, which was initiated 70 ms 
before force onset to account for electromechanical delay 
[3]. The degree of antagonist co-contraction was calculated 
by dividing maximum antagonist hamstring EMG by 
maximum agonist hamstring EMG measured during maximal 
isometric knee flexion. For the quadriceps muscle acceptable 
reproducibility has been observed for the surface EMG 
recorded during static as well as dynamic contraction 
conditions, including isokinetic knee extension [176, 258]. 

CELLULAR AND MOLECULAR ANALYSES                                                        
In Study III, IV and VII-IX muscle samples were obtained from 
the middle portion of m. vastus lateralis utilising the 
percutaneous needle biopsy technique of Bergström [25] in 
order to perform cellular and molecular analyses.  

Muscle fibre CSA and fibre type composition                                       
After dissecting the muscle samples of all visible blood, 
adipose and connective tissue, the muscle samples were 
oriented in embedding medium (Tissue Tec) frozen in 
isopentane cooled with liquid nitrogen and stored at -80° C. 
Subsequently serial transverse sections (10 mm) were cut in 
a cryotome at -20° C and stained for myofibrillar ATPase at 
pH 9.4 after both alkaline (pH 10.3) and acid (pH 4.3 and 4.6) 
pre-incubations [35]. All samples of each individual person 
were stained in the same batch to avoid inter-assay 
variation. Fibre type distribution (fibre number percentage, 
fibre area percentage) and fibre cross-sectional area for each 
of the three major fibre types (I, IIA, IIX) were analysed in a 
blinded fashion using computerized digital image analysis 
techniques. Since myofibre area is known to vary in a 
systematic way along the length and depth of the human VL 
muscle [152], all biopsies were obtained by the same 
investigator, and careful efforts were made to extract tissue 
from the same depth and with ~2 cm distance between each 

biopsy, which has been shown to be sufficient to avoid the 
influence of muscle damage from repeated biopsies [87]. 

Using comparable procedures, relatively high test-retest 
reliability has been reported for the assessment of fibre type 
composition (ICC of 0.88, 0.82, 0.56 for type I, IIa and IIx 
fibres) and fibre-type specific area (ICC of 0.74-0.82) [227]. 
Moreover, a 4-7% variation in fibre type composition has 
been reported between duplicate biopsy samplings, while 
the variation in fibre type distribution within a single biopsy 
was small (2-3%) when 200 fibres were analysed [28]. 
However, it should be recognized, that greater variations 
(12-19%) in fibre type composition and area have been 
reported with duplicate biopsy sampling procedures in the 
human VL muscle [95]. Yet, despite the needle biopsy 
sampling technique in the human VL muscle may show 
substantial with-in subject variability [152, 153], this remains 
the only known method for the evaluating of cellular 
morphology and phenotype composition in human skeletal 
muscle in vivo. 

Myogenic stem cells and myonuclei                                                             
In Study VIII myogenic stem cells, also referred to as satellite 
cells (SCs), were identified by using antibody staining of 
mononuclear cells located between the basal lamina and the 
sarcolemma, to mark SCs expressing Pax-7 [123, 159]. In 
contrast to the membrane localization of membrane-bound 
neural cell adhesion molecule (N-CAM/CD56), the paired-
box transcription factor Pax-7 is confined to the satellite cell 
nucleus [159], resulting in a lower density of Pax-7+ 
compared to the number of CD56+ cells typically observed in 
resting human skeletal muscle [159, 174], although fairly 
similar SC numbers also have been reported [156]. 

Gene expression analyses                                                                         
In Study IV, VII and VIII total RNA was isolated [125] in order 
to study the molecular regulation in muscle size during 
disuse and subsequent re-training. Total RNA (500 ng) was 
converted into cDNA in 20 μl using the OmniScript reverse 
transcriptase (Qi-agen, CA, USA) according to the 
manufacturer’s protocol. The mRNA expression of FoxO1, 
FoxO3, FoxO4, PGC-1α, PGC-1β, IL-6, MGF, IGF-1Ea, GAPDH 
and RPLP0 were analysed by quantitative real-time RT-PCR. 
The amplification was monitored real-time using the real-
time PCR analysis (MX3000P; Stratagene, CA, USA). The 
threshold cycle (Ct) values were related to a standard curve 
made with the cloned PCR products and specificity ensured 
by melting curves analysis and the quantities were 
normalized to RPLP0. Furthermore, TaqMan based 
quantitative real-time RT-PCR of MuRF-1, Atrogin-1, NF-κΒ, 
Bax, BCL2L1, p53, TNF-α, ATG4B, GABARAPL1, and RPLP0 
mRNA were performed in the ABI Prism 7900HT Sequence 
Detection System (Applied Biosys-tems) using ABI TaqMan 
Low Density Arrays (Applied Biosys-tems). Each sample was 
run in triplicates with 4 samples per card. Raw data were 
extracted and analysed using the SDS 2.1 software (Applied 
Biosystems), while qBasePlus (Biogazelle) was used to 
quality-check Ct-values, asses triplicates, exclude runs for 
difference among triplicates >0.5 Ct and finally to normalize 
data to RPLP0 using the 2-ΔΔCt method [157].  

Protein quantification                                                                                  
In Study VII and IX mRNA expression data were 
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supplemented by protein quantification using Western 
Blotting analysis. From each muscle biopsy 150 cryosections 
(10 µm) were homogenized in a micro vial containing 1 
silicium carbide crystal, 5 steel beads (2.3 mm) and 250 µl 
ice-cold homogenization buffer (Complete, Roche, Basel, 
Schwitzerland), using a FastPrep-24 (MP Biomedi-cals, Solon, 
OH, USA) homogenizer. Laemmli buffer was added and 
protein concentrations were determined with the EZQ Pro-
tein Quantitation Kit according to the manufacturer’s 
protocol (Molecular Probes, Eugene, OR, USA). After heating 
samples were separated by SDS-PAGE and gels were blotted 
(Trans-blot cell, Bio-Rad, 400 mA, 2 h) to polyvinylidene 
difluoride mem-branes (Amersham Hybond LFP, GE 
Healthcare, Buckingham-shire,UK). Total and 
phosphorylated protein pairs were detected simultaneously 
on the same membrane. Band intensities were quantified 
using densiometry analysis (ImageJ; National Institutes of 
Health, Bethesda, MD, USA).  

RESULTS AND DISCUSSION 

EFFECTS OF SKELETAL MUSCLE DISUSE                                           
Skeletal muscle mass and muscle strength are both known 
to decline in response to disuse, and the effects of inactivity 
on human skeletal muscle have been studied in a variety of 
different modes including bed-rest, unilateral lower limb 
suspension, immobilisation as well as actual and simulated 
microgravity [15, 33, 112] in order to gain knowledge about 
how muscle disuse affects the human locomotor system. 
Yet, the effect of ageing on human skeletal muscle disuse 
has not previously been giving much attention, although it 
seems important to enhance our understanding of disuse-
atrophy in bed-ridden patients and to shed light on its 
contribution to sarcopenia in older individuals.  

Based on such recent experiments, we here present and dis-
cuss data from three different human muscle disuse 
interventions to focus on the effects of ageing on skeletal 
muscle disuse-atrophy. At the outset, our population of 
elderly patients with hip-osteoarthritis was examined in 
order to enhance our knowledge about the effects of chronic 
muscle disuse on aging skeletal muscle (Study III). Further, in 
order to investigate potential age-related differences to 
human skeletal muscle disuse, we studied two well-defined 
periods of immobilisation in able-bodied elderly individuals, 
compared to young individuals with a comparable activity 
level (Study VI-VIII).  

The impact of chronic disuse on aged human skeletal 
muscle                                                                                                  
Chronic joint pain is a surprisingly frequent condition, which 
is estimated to affect more than 33% of individuals above 
the age of 45 years of age [70]. Furthermore, osteoarthritis 
(OA) has been shown to be the most common cause of 
inactivity and long-term disability in persons above the age 
of 65 years [70]. The impact of osteoarthritis on disability is 
therefore substantial and the risk of disability due to 
osteoarthritis is greater than any other medical condition in 
elderly persons [86]. Moreover, the presence of concurrent  

chronic conditions further increases the likelihood of 
subsequent disability [70]. Based on this knowledge, we 
stud-ied a mixed population of men and women with 

osteoarthritis of the hip on the waiting list for a hip-
replacement operation, to get deeper insights into how 
long-term (months to years) inactivity affects muscle  
function in elderly individuals (Study III). 

 Figure 1. Overall study scope and experimental methods                     

Skeletal muscle size and architecture                                            
Decreased loading in terms of immobilisation, bed-rest or 
spinal-cord injury is known to induce marked muscle atrophy 
in younger human individuals [53, 106, 110, 119, 147, 260]. 
Notably, the relative loss in muscle mass over time is not 
linear but tends to plateau over time, with the highest 
atrophy rate observed within the first 7-10 days [53, 184, 
242]. Even though chronic disuse due to joint pain may not  

be directly comparable to a standardised period of 
immobilisation, patients with chronic                                                     

 hip osteoarthritis in Study III showed a ~10% reduced 
anatomical quadriceps muscle cross sectional area (ACSA) on 
the affected side compared to the unaffected side (Study III). 
Additional contributing factors to the decrement in muscle 
strength with ageing comprise changes in structural 
components, such as increased intramuscular fat and 
connective tissue [154]. Therefore, in addition to ACSA, lean 
tissue cross-sectional area (LCSA) as well as inter- and 
intramuscular fat CSAs was measured using known CT 
density limits for fat and lean tissue to discriminate between 
contractile and non-contractile tissue within the muscle 
compartment area in Study V [229]. Both men and women 
showed an 8-10 % reduced lean quadriceps muscle CSA 
(LCSA) on the affected compared to the unaffected side 
(Study V), in line with findings by Rasch et al that observed 
marked atrophy in all muscles around the hip and knee in a 
similar group of patients [201]. These results were further 
underlined by our findings of a reduced myofibre area (type I 
and type IIA fibres) on the affected compared to the non-
affected side (Study IV).  

In addition to a reduction in muscle size, changes in muscle 
architecture also contribute to the decrease in muscle force 
production with aging and/or disuse [127; 183]. 
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Consequently, in sarcopenia as well as skeletal muscle 
disuse-atrophy, it has been demonstrated that muscle fibre 
fascicles have a reduced pennation angle compared to 
healthy young individuals [177, 185]. In agreement with 
these findings, muscle fibre pennation angles on the 
osteoarthritic side in Study III were significantly smaller (-
15%) compared to the healthy side, indicating that chronic 
disuse leads to significant changes not only in muscle size 
but also muscle architecture.  

Neuromuscular function                                                                  
Maximal contractile muscle strength and rapid force 
characteristics (RFD) are known to decrease with aging as 
well as in response to disuse [4, 253]. Notably, isokinetic 
strength has been demonstrated to be an important 
predictor of pain and disability in patients with gonarthrosis 
[160]. Somewhat surprising, maxi-mal isometric quadriceps 
strength (MVC) of the unaffected leg was similar to that of 
healthy age-matched subjects in our cohort of patients with 
unilateral hip-osteoarthritis, [68, 146, 240]. In contrast, MVC 
on the affected side was markedly reduced (~20 %), along 
with a decline in muscle quality reflected by decreased 
specific strength (MVC moment/CSA), underlining the severe 
consequences of chronic pain/disuse on mechanical muscle 
function (Study V). Notably, the clinical consequences of 
muscle strength asymmetry in the lower limbs are significant 
since a close relation to postural balance problems, 
decreased walking speed, as well as increased risk of falling 
has been shown [195, 196]. 

In general, women demonstrate lower muscle mass and 
maximal muscle strength than men throughout the adult life 
span, and therefore the risk of frailty is increased with 
ageing in women in particular [56]. Accordingly, women 
showed markedly lower MVC on both sides (~40%) 
compared to male subjects (Study IV). Notably, no difference 
between genders was detected when maximal muscle 
strength was normalised to lean cross sectional area 
(MVC/LCSA) (Study IV), in agreement with earlier 
investigations [155, 248, 255]. Importantly, however, specific 
strength on the affected side was reduced compared to the 
unaffected side in both genders of about 12-14%, in line 
with earlier results demonstrating a lower specific strength 
in sedentary elderly subjects compared to young individuals, 
whereas elderly subjects with a long-term history of strength 
or endurance training typically show similar specific strength 
compared to young individuals [134]. Furthermore, 
immobilisation leads to decreased specific force capacity in 
single muscle fibres of the quadriceps muscle after 
immobilisation in both young and old individuals [51, 113], 
indicating a deterioration in cellular muscle quality with 
skeletal muscle disuse. 

In parallel with the decrease in maximal contractile muscle 
strength, the ability to develop force rapidly (i.e. contractile 
RFD) is substantially reduced in healthy elderly compared to 
young individuals of both genders [46, 115, 247, 255], 
although not a universal finding [46, 247]. However, we 
found absolute contractile RFD significantly to be reduced on 
the affected side com-pared to the unaffected side in both 
men and women (Study III). Notably, the affected side 
remained reduced when RFD was normalized to CSA in both 
genders, supporting the finding of a decrease in muscle 

quality with prolonged disuse.                                               
Along with changes in mechanical muscle function, marked 
reductions in maximal EMG signal amplitude were observed 
during MVC testing on the affected side compared to the 
unaffected side in both genders (Study III), in agreement 
with earlier findings in young individuals after 4 weeks of 
unloading [21], suggesting that the decreases in contractile 
RFD on the affected limb at least partly was explained by 
changes in neuromuscular activation. In further support 
hereof, using interpolated twitch analysis we observed a 
significant muscle activation deficit on the affected 
compared to the non-affected side (Study III), in line with 
that observed by Stevens et al. after 7 weeks of cast immo-
bilization in young subjects [237]. 

In summary, the present data demonstrate that chronic 
muscle disuse in the elderly is associated with marked 
quantitative as well as qualitative neuromuscular 
impairments. More specifically, chronic muscle disuse leads 
to decreases in muscle strength, muscle size (ACSA, LCSA, 
and myofibre area of type I and IIA fibres), accompanied by 
impairments in muscle architecture (muscle fibre pennation 
angle), contractile properties (rapid muscle force 
characteristics) and neuromuscular activation (maximal EMG 
amplitudes). Furthermore, large side-to-side deficits were 
observed for specific strength (MVC/LCSA) and normalised 
RFD (RFD/CSA), indicating that a major part of the observed 
changes with disuse are explained by decreases in muscle 
quality.  

The effect of ageing on skeletal muscle disuse                                   
The plasticity in skeletal muscle mass homeostasis in 
response to decreased activity is fairly well described in 
young adults [8, 15, 22]. On the other hand, almost no 
attention has been given to the combined effects of ageing 
and skeletal muscle disuse, although muscle contractile 
function is known to be a crucial factor to maintain an 
independent lifestyle with ageing. Notably, the dete-
rioration of mechanical muscle function with aging seems to 
be a result of changes in both quantitative and qualitative 
factors [5, 64, 254]. Moreover, in addition to changes in 
intrinsic factors, the level of physical activity is known to 
modify the age-related loss in muscle size and function [2, 
134, 189, 199]. Hence, the fact that that our young and elder 
able-bodied participants reported comparable levels of 
activity in the two present immobilisation experiments 
(Study VI-IX) lead us to believe that the observed differences 
between young and old prior to the intervention were 
mainly attributable to the effect of aging per se.  

Changes in muscle size and muscle architecture                                  
Muscle disuse in terms of immobilisation and bed-rest is 
known to induce significant reductions in anatomical muscle 
cross sectional area, muscle fibre area and muscle fibre 
pennation angle in young individuals [55, 106, 119, 183]. 
Data from older human individuals are limited, but in the 
animal model the majority of studies, find a higher 
magnitude of muscle atrophy in young compared to old 
animals [13, 37, 40, 194] although not all agree [58, 231]. In 
agreement with earlier findings in young subjects, we found 
significant reductions in muscle size (anatomical muscle 
cross sectional area and quadriceps muscle volume) in young 
individuals after 2 weeks of immobilisation [54, 106, 119], 
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Study VI), and recently also demonstrated after 5 days of 
immobility [260]. However, in agreement with the majority 
of various animal models [13, 37, 40, 194], the atrophy 
response was significantly smaller in old compared to young 
individuals (Study VI). 

In contrast, a larger muscle atrophy response has been re-
ported in old compared to young adults, after 14 days of 
immobilisation of the human adductor pollicis muscle [251]. 
Part of the explanation may be due to the different muscle 
groups investigated, as smaller muscle groups have been 
suggested to respond differently to changes in loading [75]. 
Yet, a significantly larger muscle loss has also been observed 
after 10 days bed-rest in able-bodied older individuals [138]. 
In general, immobilisation and bed-rest induce similar 
atrophy responses of the lower limbs [8, 48] which makes 
the difference between the marked muscle loss (950 g lean 
lower limb mass) shown by Kortebein et al. [138] and the 
more moderate atrophy response observed in our study 
(Study VI) somewhat puzzling. The difference may, however, 
be explained by the observation of a negative nitrogen 
balance be-fore the intervention with a further decline 
during bed rest in the bed-ridden participants [138], since a 
negative nitrogen balance is known to aggravate the 
magnitude of skeletal muscle loss with immobilisation [188]. 

In addition, changes in muscle size were assessed by histo-
logical analyses of muscle fibre cross sectional area after 4 
and 14 days of immobility. Prior to the immobilisation 
interventions, myofibre CSA of type II fibres were smaller 
(~25-30%) in old compared to young muscle in both 
intervention studies, whereas no difference was observed in 
type I fibre CSA.  Notably, decreases in mean myofibre area 
of approximately 10% were detected in both age groups, 
despite the brief period of muscle disuse (4 days) (Study VII). 
However, no difference was observed between the decline 
in type 1 and type 2 fibres at the 4 day time-point (Study IX), 
despite that the decline in type 2 fibres was significantly 
larger than in type 1 fibres in both young and old following 
14 days of immobilisation [112]. Yet, in line with our whole 
mus-cle assessments, the decrease in muscle fibre CSA 
following 14 days of immobilisation was larger in young 
compared to older individuals ([112], Study VII) and 
consequently elderly individuals demonstrated less overall 
muscle loss with disuse than their young counterparts after 
14 days of immobility (Study VI & VII).  

Along with the reduction in muscle size, marked changes in 
muscle architecture were observed following 14 days of 
immobilisation (Study VI). Accordingly, more marked 
decreases in muscle fibre pennation angles of the VL 
fascicles were observed in young subjects compared to aged 
individuals (Study VI), underpinning the importance of 
muscle architecture to explain part of the discrepancy 
between the average relative decrease in muscle strength, 
which was about twice as large compared with the average 
relative decrease in muscle mass [1, 182, 215].  

Collectively our findings in Study VI, VII and IX, are in line 
with previous findings obtained using various animal models, 
indicating that skeletal muscle disuse leads to larger loss of 
muscle mass (quadriceps volume, anatomical CSA, muscle 
fibre CSA and muscle fibre pennation angles) in young 

compared to older individuals, at least with more prolonged 
immobilisation (14 days). Interestingly, however, the muscle 
atrophy response observed within the first 4 days of 
immobility did not seem to be affected by age, since similar 
reductions in myofibre area were observed in young and old 
muscle.  

Changes in neuromuscular function                                                          
It is evident, that ageing as well as muscle disuse bring about 
negative effects on the neuromuscular system, and although 
there are indications of differential effects of muscle disuse 
in young and old animals, data from human individuals are 
still limited.  

In Study VI and IX, various parameters of mechanical muscle 
function (dynamic & isometric knee extensor muscle 
strength, specific force (MVC/CSA) and contractile rate of 
force development (RFD)) were assessed prior to 
immobilisation. In agreement with previous data [1, 54, 59, 
106, 110, 119] marked reductions in contractile capacity 
were demonstrated following 4 days as well as 14 days of 
lower limb disuse, independently of age (Study VI & IX). 
Notably, the magnitude and time-course of changes were 
similar to earlier findings in young [17, 24, 54, 145] as well as 
old individuals [59, 139]. Of notice, maximal leg extension 
power and rapid muscle force capacity (RFD) have been 
shown to decline to a greater relative extent than maximal 
muscle strength with aging [133, 189, 232] and more 
importantly, has been advocated to be of greater 
importance than maximal muscle strength for the observed 
decline in functional status and the ability to counteract a 
fall [196, 233, 234]. Notably, our data demonstrated rapid 
force capacity (RFD, impulse) was affected to a greater 
extent in older individuals compared to young after 4 days 
and 14 days of disuse, especially during the very initial phase 
of muscle contraction (0–50 ms) (Study IX, [112]). In support 
hereof, maximal dynamic muscle strength during fast 
contractions (120°/s) has been shown to decline to a greater 
extent in old compared to young individuals following 7 days 
of immobilisation [59].  

In addition to mechanical muscle strength parameters, the 
magnitude of central activation (neuromuscular activation) 
[171, 239] and resting twitch characteristics were assessed 
in the present line of experiments. Indicating changes in 
intrinsic (“qualitative”) mechanical muscle function with 
ageing, older subjects demonstrated lower resting twitch 
peak torque and resting twitch RFD prior to intervention 
compared to young individuals, followed by comparable 
decreases in activation as a result of muscle disuse (Study 
VI). In contrast, both young and old adults showed similar 
levels of central activation prior to immobilisation, in line 
with previous findings [94, 131, 212] and further supporting 
the observation of comparable habitual activity levels 
between our two age-groups. However, following 
immobilisation (14 days) older individuals experienced a 
decline (Study VI), whereas young subjects in agreement 
with previous findings remained unaffected [53]. 
Collectively, these observations suggest that disuse may 
enhance the age-related gap in neuromuscular function, 
observed with natural ageing. 
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Taken together, our neuromuscular data demonstrate that 
young and aged men experience similar declines in muscle 
contractile function following a brief period of muscle 
unloading at isometric and slow velocities of muscle 
contraction, whereas at faster contraction speeds as well as 
in terms of rapid force characteristics (RFD and Impulse), 
older individuals may experience more marked declines than 
young. Moreover, the present findings points toward an age-
related difference in the susceptibility of central activation 
parameters to short-term disuse. 

Molecular regulation of muscle disuse-atrophy                            
Although, important insights have been made concerning 
the molecular and genetic bases of skeletal muscle atrophy 
and aging in cell culture and animal models, only little is 
known about the underlying molecular mechanisms of 
skeletal muscle atrophy with aging and disuse in humans. 
Certain controversy exists in the literature regarding 
whether muscle atrophy in human skeletal muscle is 
regulated primarily by increases in myofibrillar protein 
degradation or a decrease in protein synthesis (Figure 2). In 
sup-port of the latter, solid evidence in the murine model, 
has pointed at protein degradation as the driving factor for 
skeletal muscle atrophy, with the ubiquitin-dependant 
proteolytic system being rapidly activated [29, 82, 149] in 
relation to unloading and various disease states [29, 149, 
216]. In contrast, data from human in vivo studies have been 
less consistent [6, 45, 54, 119, 150]. Our data revealed a 1-2 
fold up-regulation in MuRF-1 and Atrogin-1 mRNA 
expression in both young and old muscle during the initial 
days of immobility (~2-4 days), supporting a role for the 
ubiquitin-proteasome pathway in the initiation of human 
skeletal muscle atrophy. The fact that we observed more 
modest changes compared to previous animal reports may 
reflect that more drastic and hence more systemic wasting 
models were used in these animal studies [29, 82, 149] 
compared to human immobilisation models. Notably, the 
present data revealed that the expression levels of both 
Atrogin-1 and MuRF-1 returned to basal levels after 14 days 
of immobility, indicating that in human skeletal muscle the 
ubiquitin-proteasome pathway may not be important to 
maintain a more chronic atrophy response but rather plays a 
role in the very initial atrophy response (~days). In support 
of this notion, a biphasic time-course has previously been 
shown to exist for the mRNA expression profiles of selected 
atrogenes in the rodent model [216], which may explain that 
early transcriptional changes have been overlooked in 
previous human studies, which mainly have studied later 
time points of disuse. A coordinated regulation of the 
ubiquitin-proteasome and the autophagy-lysosome 
pathways has been shown to exist in the murine model [164, 
218, 270], but somewhat surprisingly we did not observe any 
change in the mRNA expression profiles of ATG4, GABARAPL 
or FoxO3 (Study VII). However, we did see a trend towards 
an increase in LC3B II/I protein ratio selectively in young 
muscle after 1 and 4 days of immobility, indicating that the 
autophagic process (lipidation) was initiated at least in the 
young myofibres and thus, crosstalk between the ubiquitin-
proteasome and the autophagy-lysosome pathways may 
also exist in the human model. The limited activation of the 
autophagy pathway could indicate that cross-talk between 
ubiquitin-proteasome and autophagy-lysosome pathways 

mainly occurs in more systemic atrophy models, although 
species-specific differences between the rodent and human 
model have been suggested to exist as well [262]. 

In addition to being a central regulator of muscle protein 
synthesis and muscle hypertrophy the IGF-1/Akt signalling 
pathway has been proposed to be a potent suppressor of 
myofibrillar proteolysis and atrophy related ubiquitin ligases, 
respectively [30]. Importantly, our finding of an age-specific 
decrease in P-Akt protein content indicates that immobility 
leads to a rapid (2-4 days) as well as more sustained (14 
days) decrease in myofibril-lar protein synthesis exclusively 
in young muscle, which at least in part explains the 
observation of a larger muscle loss in young compared old 
individuals (Study VII). In support of this notion, a diminished 
phosphorylation of Akt pathway components has been 
reported following 48h of immobility in young human 
subjects [6]. In contrast, the present data point toward an up 
regulation of the muscle specific IGF1-pathway exclusively in 
old subjects (Study V), which in combination with a lack of 
change in the Akt pathway may explain the attenuated 
atrophy response in old muscle. However, our current 
knowledge regarding the age-related differences in the 
regulation of this pathway remain highly limited, and more 
studies clearly are needed to uncover the mechanisms 
underlying the apparent age-specific influence on disuse 
induced muscle loss that was observed in the present line of 
experiments.    

 

Figure 2. Schematic overview of selected molecular signalling pathways 
regulating skeletal muscle homeostasis (see further details in the text). 
Dashed lines indicate pathways that still have to be completely defined. 

Further, a marked down-regulation in genes involved in 
mitochondrial metabolism was observed (Study VII), 
consistent with recent human gene array studies [6, 45]. A 
rapid decrease in PGC-1α mRNA and PGC-1β mRNA gene 
expression was observed in young but not old muscle in the  
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most initial phase of immobilisation (1 day), where the 
response in old muscle was slightly slower (Study VII), 
although reaching statistical significance within the first 4 
days of immobilisation (Study VII). However, there was no 
difference between age groups at the 14 days’ time-point, in 
accordance with recent data from Gram et al. [84]. These 
findings support the hypothesis that down-regulation in 
PGC-1α and PGC-1β are important determinants for the 
initiation of human skeletal muscle atrophy, as also 
observed in rodents [219], although no indications of FoxO3-
dependant transcriptional changes were noted in the 
present study in contrast to previous animal data obtained 
using systemic muscle wasting [219, 220]. It can be 
speculated, that one reason for the slower and/or 
attenuated atrophy response to immobility in aged 
compared to young human muscle could be a consequence 
of the general decrease in oxidative metabolism observed 
with aging. However, recent findings from Gram et al 
elegantly have demonstrated that 14 days of inactivity and 
subsequent re-training alter mitochondrial biogenesis to a 
similar extend in young and elderly males [84].                        
Another topic of debate has been the role of the apoptotic 
pathway in human skeletal muscle atrophy and sarcopenia. 
Using animal models there are a significant amount of data 
indicating an important role for apoptosis in the 
development of muscle atrophy observed with aging [62, 
166, 167, 192, 193, 230], whereas human data have been 
more inconsistent [163, 238, 265]. In essence, our data 
showed a marked and rapid increase in the expression of 
apoptotic markers with immobilisation, with indications of a 
more pronounced response in old muscle cells (Study VII). 
Notably, despite that a general (i.e. non-specific) increase in 
TUNEL-positive nuclei was observed primarily in muscle 
biopsies from old individuals after immobilisation, specific 

myocellular TUNEL-positive myonuclei did not appear to 
increase in neither young nor old adults, in contrast to 
previous findings in the murine model [67]. Thus, in the 
present experiments an up-regulated number of TUNEL-
positive nuclei mainly were localized in the interstitiel space, 
indicating that intrinsic myofibre apoptosis may not play a 
key role for the mediation of human disuse. 

In summary, our data point toward a number of intracellular 
signalling pathways for both muscle atrophy and 
hypertrophy being activated in the very initial phase of 
immobility, in turn leading to a rapid initial atrophy response 
in both young and aged muscle, followed by a decaying 
atrophy response at later time-points. Notably, our data 
showed a parallel activation of the ubiquitin-proteasome 
pathway along with the IGF/Akt indicating that proteolyses 
may be an important component in the initiation of human 
disuse atrophy in both young and old muscle, whereas the 
myocellular regulation in protein synthesis and 
mitochondrial function seems more age-dependent. 
Although fundamental mechanistic questions still remain to 
be answered, our data indicate that the orchestrating of 
human skeletal muscle atrophy is age-dependent, with a 
number of cellular signalling pathways being modified 
interdependently of each other. 

RE-GROWTH OF HUMAN SKELETAL MUSCLE                                 
Human skeletal muscle is a highly plastic tissue, which is 
reflected in its rapid ability to adapt to changes in loading 
intensity, at least in young individuals [112, 260]. In contrast, 
the ability of skeletal muscle to repair and re-growth is 
known to diminish with aging [36, 44, 85, 269]. Yet, the 
mechanisms responsible for the diminished ability of aged 
skeletal muscle to re-growth are largely unknown and the 
cellular and molecular mechanisms that contribute to the 

Measured variable from signalling pathways Young Old 

Protein degradation 
 

Atrogin-1    
  
 
MuRF-1 

0-4 d imm 
0-14 d imm     
 
0-4 d imm 
0-14 d imm                                        

↑ 
↔ 

 
↑ 
↔ 

↑ 
↓ 
 
↑ 
↓ 

Protein synthesis 
 

IGF-1Ea                                             
 
 
MGF     

0-4 d imm 
0-14 d imm 
 
0-4 d imm                                                                    
0-14 d imm 

↔ 
↑ 

 
↔ 
↑ 

↑ 
↑ 
 
↑ 
↑ 

Apoptosis 
 

Bax   
 
 
P53                   
 
 
BCL2L1    

0-4 d imm 
0-14 d imm 
 
0-4 d imm                                                                    
0-14 d imm 
 
0-4 d imm 
0-14 d imm 

↑ 
↑ 

 
↑ 
↑ 

 
↔ 
↔ 

↑ 
↑ 
 
↑ 
↑ 
 

↔ 
↔ 

Autophagy 
 

GABARAPL       
                                                                     
 
ATG4B 
 
 
LC3B-I/II 

0-4 d imm 
0-14 d imm 
 
0-4 d imm 
0-14 d imm 
 
0-4 d imm 

↔ 
↔ 

 
↔ 
↑ 

 
↑ 

↔ 
↔ 

 
↔ 
↑ 
 

↔ 
Mitochondrial biogenesis  
 

PGC-1α          
 
 
PGC-1β            

0-4 d imm 
0-14 d imm 
 
0-4 d imm 
0-14 d imm 

↓ 
↓ 

 
↓ 
↔ 

↓ 
↓ 
 
↓ 
↔ 

Table 3. Skeletal muscle signalling responses during mmobilisation in young and old individuals 
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recovery in muscle mass after reduced mechanical loading 
are just beginning to become unravelled. However, as 
muscle atrophy not only compromises physical functioning 
but also is associated with increased frailty and mortality, it 
seems important to expand our understanding of the 
mechanisms involved in muscle re-growth to develop 
methods to maintain or improve muscle mass during or 
following periods of disuse. Thus, in order to expand our 
knowledge regarding the ability of aged human skeletal 
muscle to recover from longer or shorter periods of disuse, 
we investigated the capacity for muscle re-growth and 
restoration of mechanical muscle function in the three 
groups of patients/participants described above who 
underwent skeletal muscle disuse of various lengths (hip-
replacement patients, as well as two groups of healthy 
elderly and young individuals, respectively). 

Effects of re-training in elderly post-operative patients           
An infinite number of medical and surgical illness states lead 
to the development of hospital associated deconditioning 
[136]. Several common etiologic factors contribute to this 
effect, including the specific medical or surgical illness 
necessitating hospitalisation, the adverse effects of 
treatment (including surgical interventions), bed rest 
inactivity, as well as the detrimental effects of aging per see 
[14, 107, 138, 254]. 

Although much effort is done to minimize surgical interven-
tion, effects of major surgery are still associated with an in-
creased risk of morbidity, convalescence and disability [49, 
73, 126, 128]. Major surgery is furthermore known to elicit a 
catabolic stress response that leads to a reduced protein 
synthesis and a reduction of lean tissue mass [48, 129]. 
Consequently, a significant number of elderly patients 
experience a decline in functional performance after 
surgery, and more importantly a large proportion of these 
patients do not regain their functional level without specific 
intervention programs [162, 203, 221, 225, 226, 249, 259, 
261]. To minimize deconditioning and enhance recovery the 
concept of “fast-track surgery” has been introduced as a 
coordinated effort to combine uni-modal evidence-based 
principles of care into a multi-modal effort, which has 
evolved as a valid concept to improve post-operative 
outcome [128, 245]. Yet, loss of muscle mass is not 
completely counteracted by the implementation of “fast-
track regimes” [129] and growing evidence indicates that 
rehabilitation programmes have to be highly specific and of 
sufficient intensity to counteract decreases in muscle 
strength and muscle mass in postoperative elderly patients 
[103, 221, 240, 241, 250]. Notably, the use of resistance 
training is known to improve muscle strength and functional 
performance both when initiated in the early post-operative 
phase (weeks to months) [103] as well as in the late post-
operative phase (months to years) [221, 224, 250]. Yet, 
knowing that the detrimental effects on muscle tissue 
properties are most dramatic during the first weeks of 
immobilisation ([15, 48], Study VII) it seems rational to 
initiate specific training intervention as soon as possible 
after surgery. We therefore set out to investigate the effect 
of various rehabilitation regimes initiated in the very early 
postoperative phase (1-2 days post-surgery) in elderly 
individuals undergoing elective hip-replacement surgery 

[241, 244]. Based on the findings from earlier studies [221, 
224, 250] voluntary resistance training was compared to 
peripheral muscle stimulation (NMES) and conventional 
rehabilitation activities in order to evaluate the 
neuromuscular adaptations elicited by these three different 
exercise modalities (Study I-IV).  

Skeletal muscle size and architecture                                             
Despite resistance training is known to induce marked 
increases in anatomical muscle cross sectional area and 
muscle fibre area, in aged [90, 92, 179, 213, 248, 263] as well 
as in very old individuals [71, 142] the use of resistance 
training is still not widely used to rehabilitate elderly 
patients following major surgery. In fact, only few studies 
have tried to apply intensive strengthening exercises in the 
acute post-operative phase (Study I, II) [111, 116]. In the 
light hereof, one of the most important findings of Study I 
and II was the feasibility of applying resistance training and 
electrical stimulation in the acute post-operative phase (1 
day after surgery). Moreover, there was marked differences 
between the three different rehabilitation regimes 
investigated (resistance training, electrical muscle 
stimulation and functional exercises) on quadriceps muscle 
size and quadriceps muscle architecture. Despite successful 
surgical outcome and the use of early mobilisation strategies 
during hospitalisation, we observed a further decrease in 
CSA at five as well as twelve weeks post-surgery in the 
patients who received the conventional rehabilitation 
program based on functional exercises with no external 
loads applied. In contrast, 1 hour/day of neuromuscular 
electrical stimulation (NMES) of the quadriceps muscle, 
nearly counteracted a decline in muscle size (Study I & II), in 
accordance with previous results from young patients [16, 
77], and recently also in intensive care unit patients [63].  
Amplifying this effect, resistive exercises not only prevented 
the surgery associated muscle atrophy at five weeks, but 
further increased CSA after twelve weeks. As a result, a 
significant difference in treatment outcome was observed 
between the resistance-training group and the conventional 
rehabilitation group after 12 weeks of rehabilitation. Fur-
ther, muscle fibre area increased by 32% following 12 weeks 
of resistance training, and in line with previous studies in 
young [1] and old individuals [142] more marked gains were 
observed for the type IIa and IIx) fibres compared to the 
type I fibres (Study III). Consequently, side-to-side deficits in 
anatomical CSA and muscle fibre CSA (type 1 and type 2a) 
were fully eliminated after 12 weeks of resistance training, 
while still persistent following NMES and conventional 
rehabilitation (Study III). 

In addition to the muscular changes relating to muscle fibre 
size, ageing also leads to marked alterations in muscle 
architecture that potentially contribute to the loss in muscle 
strength [185]. A reduction in muscle fibre pennation angle 
in old com-pared to young individuals has previously been 
observed, suggesting that a significant part of the decrease 
in muscle function with aging may be related to changes in 
muscle architecture [185]. Both in sarcopenia and disuse 
atrophy, muscle fibre fascicles seem to have a reduced 
pennation angle compared to healthy young individuals, 
likely due to decreased amounts of contractile tissue [177, 
183]. In agreement with these findings, muscle fibre 
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pennation angles on the osteoarthritic side were 
substantially reduced compared to the unaffected side 
(Study IV). However, after 12 weeks of RT there was a 
significant increase in VL muscle fibre pennation angle, 
comparable to the changes typically reported following 
resistance training in able-bodied young and old individuals 
after comparable periods of resistance training [1, 178]. In 
contrast, no improvements in muscle fibre pennation angle 
were observed for patients subjected to electrical stimula-
tion or functional exercises. 

Neuromuscular function and functional capacity                       
Alongside the above morphological adaptations, marked 
changes in mechanical muscle strength parameters and 
functional capacity were observed after 12 weeks of 
rehabilitation, however, the observed changes were highly 
dependent on the type of rehabilitation regime (Study I & II). 
Notably, marked increases was observed maximal muscle 
strength (dynamic and isometric) in response to 12 weeks of 
resistance training, despite patients being rather frail during 
the initial 4-6 weeks after surgery. Com-parable gains in 
maximal muscle strength have been demonstrated following 
resistance training in healthy elderly individuals [93, 151, 
207], as well as in frail elderly [26, 71, 99, 100].  In contrast, 
no gains in maximal muscle strength parameters could be 
observed with electrical stimulation (Study II), which is in 
agreement with earlier findings in young patients after ACL-
reconstruction and conventional rehabilitation [16], while 
also lacking to be demonstrated in studies evaluating the 
effect of physiotherapy exercises (with no external loads] 
after hip-surgery [226, 249]. Consequently, the muscle 
strength asymmetry observed in all patients prior to the 
operation was fully reversed following twelve weeks of 
resistance training, while not affected by electrical 
stimulation or conventional rehabilitation (Study I). This 
finding is potentially of high importance since asymmetry in 
lower limb muscle strength is related to fall prevalence in 
elderly adults [196, 234]. Moreover, the elimination of 
muscle asymmetry is noteworthy, since the non-operated 
side was equally strong compared to that of able-bodied 
age-matched individuals [68], resulting in a normalisation of 
neuromuscular performance after only 12 weeks of 
resistance training in patients subjected to many years of 
chronic disuse and subsequent hip-replacement surgery. Of 
note, is also the fact that no training related complications 
were observed in any of the three intervention groups, 
despite all three training regimes were commenced in the 
very early post-operative phase (1-2 days after surgery). 

The ability to develop force rapidly (i.e., demonstrating high 
contractile RFD) is an important performance characteristic, 
especially in older people, contributing to several tasks of 
daily life such as climbing stairs, walking, and attempting to 
avoid a fall [19, 72]. However, significant increases in RFD 
and elevated neuromuscular (EMG) activity have been 
demonstrated in healthy elderly individuals following 3-6 
months of resistance training with special focus on 
increasing muscle power [89, 91]. In order to avoid 
postoperative injuries while still ensuring a sufficiently high 
loading intensity to induce measurable gains in muscle size 
[57, 71] and neuromuscular performance characteristics, as 
previously demonstrated in young individuals [3] we used a 

progressively adjusted exercise program known to be 
effective of inducing adaptive muscular changes in able-
bodied elderly individuals [68]. To our best knowledge, 
potential changes in RFD characteristics have not previously 
been evaluated after NMES or conventional rehabilitation. 

In accordance with earlier findings in young individuals [3, 
93, 141], resistance training lead to marked increases in 
rapid force production, in the very initial phase (30–50 ms) 
as well as the later part (100–200 ms) of the isometric force-
time curve, with similar gains in contractile impulse. Notably, 
the increase in RFD was still present after normalising for 
muscle size (RFD/CSA), indicating qualitative changes in 
muscle contraction characteristics may have occurred, such 
as increased maximal motor unit firing frequency [252] 
and/or changes in myosin heavy chain isoform composition 
toward an increase in type II fibre area percentage [1]. The 
importance of these positive adaptations in rapid muscle 
force characteristics are underlined by the fact, that a 
positive correlation was observed between the increase in 
maximal gait speed and the increase in absolute RFD 
following 12 weeks of resistance training, which was even 
stronger when related to normalized RFD (RFD/CSA) in the 
very initial phase of muscle contraction (0– 30 ms). In 
contrast, no relationship could be observed between the 
change in maximal walking speed and changes in maximal 
muscle strength characteristics and/or muscle size (Study II).                                                                                                    
Apart from gains in muscle size and neuromuscular charac-
teristics, resistance training and NMES produced marked 
increases in functional performance parameters (walking 
speed, chair rise performance and stair climbing), although 
most present following resistance training (Study I). The 
enhancement in horizontal walking speed was particularly 
noticeable, since maximal and habitual walking speed are 
powerful predictors of future disability and dependency [88, 
236]. Moreover, it is thoughtful that despite all resistance 
training exercise were performed unilaterally the marked 
changes in unilateral muscle strength and muscle size were 
translated (nearly 1:1) into increases in functional tasks that 
comprise two-legged coordinated movement. This finding 
underlines the importance of specifically focusing on 
reducing observable deficits (muscle size and strength) 
between sides before both legs are trained simultaneously. 
Another puzzling finding was the observed increase in 
functional performance with NMES that, although being 
more modest than the changes observed with resistance 
training, clearly were superior to those achieved by 
conventional rehabilitation (Study I). However, de-spite 
there was no measurable gains in neither neuromuscular 
function nor muscle size with NMES,  a majority of the 
decline observed in the assessed parameters at 5 weeks 
post-operatively with conventional rehabilitation was largely 
prevented with NMES (Study I), underlining the importance 
of focused intervention to counteract the decline in muscle 
mass and function during hospitalisation.                                                   
In summary, the marked increases in neuromuscular perfor-
mance observed with resistance training were translated 
into significant gains in activities of daily life (ADL) function, 
manifested by increased walking speed, enhanced ability to 
rise from a chair and improved stair climbing performance 
(Study I-II). In contrast, despite producing no increases in 
neuromuscular performance characteristics (dynamic and 
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isometric MVC, RFD, EMG and contractile impulse) NMES led 
to moderate albeit statistically significant gains in functional 
performance, while conventional rehabilitation did not 
result in any increases in neuromuscular or functional 
performance (Study I & II).  

The effect of post-operative re-training on the IGF-1 pathway      
The IGF-I pathway is known to be an important stimulator of 
anabolic signalling and one of the key factors responsible for 
increasing rate of protein synthesis in skeletal muscle [7]. 
How-ever, based on the findings that senescent muscle in 
the animal model demonstrates an attenuated recovery 
response after immobilisation and injury [36, 44, 85, 269], it 
has been hypothesized that sarcopenia may in part be due 
to a failure to generate IGF-I isoforms necessary to initiate 
the remodelling of muscle by stimulating satellite cell 
activation and proliferation [80]. In order to describe the 
potential interaction between changes in muscle 
morphology and IGF-I splice variants in elderly frail patients, 
changes in muscle fibre area and mRNA expression levels of 
IGF-IEa and the mechano sensitive IGF isoform IGF-IEc (MGF) 
were assessed in our group of hip replacement patients prior 
to surgery and subsequent to our three intervention regimes 
(Study IV). In human exercise studies, the expression of IGF-I 
mRNA has been found to increase acutely after a single bout 
of resistance exercise [18], although no total agreement 
exists [97, 197]. However, more consistent increases in IGF-I 
have been demonstrated at both the mRNA level [96, 144, 
190] and the protein level [228] following prolonged periods 
of resistance training.                                                                              
The activation of myogenic stem cells (satellite cells) and 
their donation of new nuclei to the exercised myofibres 
seem required for hypertrophied fibres to maintain an 
optimal DNA to protein ratio [121]. Since MGF is suggested 
to play an important role in the activation of satellite cells 
[268], the possibility exists that IGF isoforms are involved in 
the promotion of muscle growth and repair during the 
process of reloading subsequent to periods of disuse. Known 
to be involved in muscle repair [81] it  does not seem 
surprising that MGF mRNA levels were elevated in all three 
intervention groups compared to the non-operated-side at 
48 h post-surgery (Study IV). However, in contrast to NMES 
and conventional rehabilitation, MGF mRNA expression 
levels did not decrease in the RT group, which could support 
the hypothesis that MGF could be involved in both muscle 
repair (1-2 days post-surgery) as well as in the robust 
hypertrophy response observed with resistance training (5 
weeks and 12 weeks). Moreover, increases in absolute levels 
of IGF-IEa mRNA and MGF mRNA were only observed in 
response to resistance training intervention, with no 
changes detected following NMES or conventional 
rehabilitation (Study IV).                                                          
Importantly, albeit the response may be attenuated in old 
human muscle as well as in old muscles of various animals, 
older muscles appear capable of up-regulating the 
expression of both IGF-IEa and MGF mRNAs in response to a 
period of prolonged resistance training even after surgery 
and/or immobilisation.                                                                   
Collectively, Study I-V, demonstrates that elderly patients 
who undergo elective hip-replacement surgery achieve 
significant muscular, neuronal and functional benefits from 
intensive physical training initiated in the very early the 

postoperative phase. Specifically, resistance training more 
effectively increased muscle morphology (size and 
architecture), neuromuscular characteristics (muscle 
strength, RFD, impulse, EMG, central activation) and 
functional performance (walking speed, chair rise and stair 
climbing) compared to NMES or conventional rehabilitation. 

The effect of aging on skeletal muscle re-growth                                     
It is well known that the ability to produce muscle re-growth 
after injury and immobilisation is impaired in animal 
senescent muscle [44, 85, 269]. In human individuals 
however, it still re-mains largely unknown, which factors and 
mechanisms promote or hinder the recovery of muscle mass 
following short or longer periods of disuse. Based on the 
findings of an impaired ability for muscle re-growth in animal 
models and our findings of an age-specific regulation and 
time-course of skeletal muscle disuse-atrophy, we 
hypothesized that a similar age-specific regulation might 
exist in response to human skeletal muscle recovery after 
disuse atrophy. In the light of a steadily increasing aging 
population leading to an increasing number of persons 
recovering from shorter or longer periods of muscle disuse, 
it seems rational to expand our current understanding of the 
mechanisms involved in human muscle re-growth in order to 
facilitate the development of approaches to maintain and 
regain muscle mass during periods of skeletal muscle disuse. 
We therefore assessed the effect of recovery following 4 
days and 14 days of immobilisation, respectively. To 
optimize the conditions for complete muscle recovery, 
supervised resistance training was applied in both age 
groups. Following the 4 days disuse intervention participants 
were admitted to a 7 days recovery regime (Study IX), 
whereas participants exposed to 14 days disuse intervention 
were re-trained for 4 weeks (Study VIII).  

Skeletal muscle size and muscle architecture                              
Reloading of disuse-induced skeletal muscle atrophy, by 
means of resistive types of exercise, is known to fully restore 
muscle mass through hypertrophy in young human 
individuals [22, 32, 106, 110, 119], however, only few data 
exists on the changes in skeletal muscle size following brief 
periods (less than a week) of unload-ing followed by active 
exercise-based recovery (Study IX). Thus, our somewhat 
limited assessments of changes in muscle size and 
architecture following 7 days of recovery subsequent to 4 
days of disuse (Study IX) reflected that we did not expect 
major changes following such a brief intervention period. 
Yet, 4 days of unloading induced substantial atrophy in both 
type I and type II myofibres of young and old individuals 
alike (Study VII & IX), which was reversed to pre-disuse 
values in both age-groups following 7 days of recovery, 
except for type I myofibre area in old individuals that 
remained suppressed compared to pre-levels (Study IX). 

In comparison, despite a larger atrophy response following 
14 days of immobilisation young individuals demonstrated a 
greater increase in quadriceps muscle size (Qvol, ACSA and 
PCSA) in response to 4 weeks of retraining leading to a full 
restoration in muscle mass. In contrast, despite a smaller 
atrophy response, old individuals did not fully recover 
quadriceps muscle size after retraining. A similar pattern was 
observed for the changes in muscle architecture, with a 
more modest decrease in muscle fibre pennation angle seen 
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in old compared to young with no full reversal in old 
participants despite 4 weeks of intensive re-training (Study 
VI). This finding was further supported by our analyses of 
muscle fibre cross sectional area which showed robust 
increases in type I and II myofibre area in young subjects 
during the recovery phase, whereas aged individuals showed 
no changes in neither type I nor type II myofibre area, 
leading to an overall difference in the recovery response to 
re-training between young and old (Study VIII). Notably 
however, apart from reflecting a significant age-related 
difference to re-loading, the observed differences between 
young and old adults may also reflect that a limited period of 
re-training was used in the present experiments, as 
substantially longer intervention periods have demon-
strated significant gains in quadriceps size ([31], Study I-II), 
muscle architecture (Study III) and muscle fibre area (Study 
III) in older individuals recovering from muscle disuse and/or 
surgery.                                                                                               

Altogether, the present data indicate that despite intensive 
rehabilitation efforts aging is accompanied by an impaired 
ability to recover from short-term disuse muscle atrophy, 
and consequently old individuals may need a longer time to 
recover from periods of disuse compared to young 
individuals. 

Neuromuscular function                                                                
Parameters of mechanical muscle output (contractile 
capacity) and neuromuscular function are both strong 
predictors of general functional capacity, quality of life, and 
risk of mortality in aged individuals [39, 186, 267], which 
underlines the importance of gaining more insight to the 
time-course and potential age-related differences in the 
recovery of neuromuscular function in human individuals 
following periods of disuse. In young adults, mechanical 
muscle function (isometric and dynamic MVC) has been 
demonstrated to be fully reversed following 3-6 weeks of re-
sistance training subsequent to 2 weeks of unloading / 
immobilisation [32, 106, 119, 145] in agreement with the 
present findings (Study VI, [112]). Moreover, it is noteworthy 
that decreases in dynamic muscle strength observed 
following 4 weeks of unload-ing in young individuals were 
fully reversed after 7 weeks, despite no training intervention 
[22]. However, almost no previous stud-ies have focused on 
disuse lasting less than 1 week, and the subsequent recovery 
phase. Based on the present experiments, 7 days recovery 
(subsequent to 4 days immobilisation) appeared effective of 
restoring knee extensor mechanical muscle function in 
young subjects, while in contrast maximal muscle strength 
characteristics remained suppressed in our old subjects 
(Study IX). Similar trends were observed for rapid force 
capacity (RFD, impulse) at the very initial phase of 
contraction (0–50 ms) that tended to remain reduced 
relative to baseline levels after 4 weeks of re-training 
subsequent to 14 days of disuse [112]. The observed 
impairment in restoring lower limb mechanical muscle 
function following short-term disuse in old adults may in 
part reside from alterations in qualitative muscle factors, as 
contractile rate of force development tended to remain 
reduced in old individuals following 7 days of recovery 
(Study IX), as well as following 4 weeks of re-training [112], 
whereas maximal isometric strength capacity recovered to a 

more full extent. Yet, our older individuals were able to 
reverse the deficit in central activation with 4 weeks of 
resistance training (following 14 days of immobility), 
whereas young individuals reached values above the 
baseline activation level (Study VI).                                                      
In summary, the findings of the present data suggest that 
the magnitude and time-course of changes in mechanical 
muscle function during the recovery phase following short-
term disuse are compromised in old compared to young 
individuals.  

Myogenic stem cells                                                                          
The regulation in muscle growth and maintenance of muscle 
mass is known to be influenced by a unique population of 
muscle resident stem cells referred to as myogenic 
progenitor cells or satellite cells (SCs) [168]. Satellite cells 
represent a heterogeneous population of adult muscle stem 
cells that are normally quiescent and were identified more 
than 50 years ago as nuclei located in a niche between the 
sarcolemma and the basement membrane of the muscle 
fibre, and known to play a key role in the maintenance, 
growth and repair of myofibres [105, 168, 180, 181].  

In humans, the pool of SCs seems to be maintained into the 
sixth-to-seventh decade of life [190, 214], with a decline in 
con-tent and activation capabilities with progressive ageing 
[122, 256] leading to a reduced muscle regeneration 
capacity in response to myofibre injury and disuse [41, 42]. 
However, despite the group of aged individuals in the 
present experiments our old participants (~67 years) 
demonstrated impaired SC proliferation capacity compared 
to young individuals (~24 years), indicating that the SC 
response to re-loading and exercise might be attenuated. 
Interestingly, age-related differences in SC proliferative 
capacity were detectable in the acute (+ 3 days) as well as 
the prolonged (+ 4 weeks) phase of re-training, in line with 
reports by Dreyer et al. [65] who reported a greater increase 
in SC content in young compared to aged human skeletal 
muscle within 24h following 92 eccentric contractions [65].  

The importance of SC number in relation to muscle size has 
previously been reported by Petrella et al [191] that found a 
positive association between SC number at baseline and 
gains in muscle fibre area after 16 weeks of resistance 
training in young and older human individuals [191], 
suggesting that the individual myogenic potential may at 
least partially be pre-determined by the availability of 
satellite cells prior to training. Expanding those observations, 
we observed for the first time in human individuals a 
positive relationship exists between SC number and mean 
fibre area (MFA) following disuse-atrophy (2 weeks) as well 
as moderate-to-strong associations the magnitude of muscle 
hypertrophy and gains in SC number in response to exercise-
based reloading (4 weeks) (Study VIII).                                    As 
aging is associated with a preferential reduction in muscle 
fibre type II size it may be speculated that SC content would 
decrease more in type II fibres compared to type I fibres. In 
young human individuals SC content is similar between type 
I and II muscle fibres [124, 256]. In contrast, age-related type 
II muscle fibre atrophy is accompanied by a type II muscle 
fibre specific reduction in SC content [256, 257]. 
Interestingly, in the present line of experiments positive 
associations were observed between the number of Pax7+ 
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cells and the size of both type I and II fibres, respectively. In 
further support of the importance of SC proliferation for 
muscle re-growth, a relationship was observed between the 
relative change in MFA and total number of Pax7+ cells, as 
well as the relative change in fibre type I area and the 
change in number of type I associated Pax7+ cells 
subsequent to 4 weeks of re-training (Study VIII). However, 
although muscle regenerative capacity appears to decline at 
a more advanced age reflected by a decline in SC number 
and/or activation [74, 209, 223], a re-duced SC pool does not 
abolish the myogenic potential for adaptive muscle 
hypertrophy if the intervention period is sufficiently long 
(≥12 weeks), even at old age [158, 223].                                                  
In summary, our data demonstrated substantial age-specific 
differences in the re-growth capacity of human skeletal 
muscle following immobility-induced muscle atrophy. 
Specifically, aged individuals showed a reduced 
responsiveness to the re-loading exercise paradigm, 
reflected by reduced gains in myofibre area that were 
accompanied by an attenuated capacity for SC proliferation. 

Molecular regulation of skeletal muscle re-growth               
The reduced capacity of aging skeletal muscle to recover 
after disuse indicates that molecular signalling pathways 
regulating muscle hypertrophy/re-growth are altered at 
increasing age and/or that negative regulators of muscle 
mass become progressively more active with aging. We 
therefore set out to profile a range of positive and negative 
growth factors associated with local skeletal muscle milieu 
that are known to stimulate the proliferation of SCs [83]. 
Among those factors, Insulin-like growth factor (IGF-1Ea) 
and mechano-growth factor (MGF) mRNA expression levels 
and protein content have been shown to correlate with the 
increase in whole muscle DNA content in response to 
compensatory muscle overloading [9]. Further, MyoD and 
myogenin mRNA expression levels were also assessed in the 
present experiments since these factors are part of the 
family of myogenic regulatory factors (Myf5, MyoD, Mrf4 
and myogenin) that play a key factor in the myogenic 
specification and differentiation of SCs in mature skeletal 
muscle [79, 187]. MyoD is primarily related to SC activation 
and proliferation, whereas myogenin reflects the phase of 
terminal myoblast differentiation [143, 187]. Among the 
multiple growth factors associated with the local skeletal 
muscle milieu that stimulate the proliferation of SCs, 
hepatocyte-growth factor (HGF) is considered one of the 
most important parameters [83]. Together with its trans-
membrane receptor (c-met) HGF is a vital link in the cascade 
of signalling events that lead to activation of skeletal muscle 
SCs when myofibres are exposed to strain or injury [266]. 
Furthermore, a number of studies have identified various 
fibroblast growth factors (FGFs) and their receptors (FGFRs) 
to be key regulators of both senescence and self-renewal 
capacity in a variety of stem cell types [222]. Among those, 
fibroblast growth factor 2 (FGF2) and its receptor FGFR1 are 
known to stimulate SC proliferation [11, 173]. In addition to 
these factors, we also assessed the expression levels of 
myostatin mRNA, a member of the transforming growth 
factor-β family, which exerts a strong negative regulation on 
skeletal muscle mass [170] partly by inducing a sustained 
satellite cell quiescence [120, 169].                                               
Together, our experiments showed age-independent differ-

ences in the time-course of IGF-1Ea and MGF regulation, 
respectively, with an acute and sustained up-regulation of 
MGF mRNA expression in response re-training, whereas IGF-
1Ea expression was up-regulated only in the later phase of 
re-loading (Study VIII). Notably, changes in myofibre area 
were positively related to the corresponding changes in IGF-
1Ea and MGF expression levels after 4 weeks of resistance 
training, strongly suggesting an essential role of these IGF 
isoforms for the induction of human muscle hypertrophy 
with training/re-loading. Moreover, MyoD and myogenin 
demonstrated markedly up-regulated expression levels with 
immobilisation in both age groups, whereas the sub-sequent 
recovery phase led to acute and sustained decreases in both 
MyoD and myogenin mRNA in young as well as aged skele-
tal muscle. While elevated mRNA expression levels of 
myogenic regulatory factors have been reported following 
prolonged (months) resistance exercise in both young and 
older adults [132, 140, 202], only a modest up-regulation in 
myogenin expression was observed following 4 weeks of 
resistance training in the present experiments (Study VIII), 
which may indicate that short-term (days-weeks) re-training 
after disuse-atrophy generate a different molecular 
signalling stimuli compared to that evoked by more 
prolonged exercise intervention.                                               
Moreover, marked increases in HGF mRNA expression were 
observed in response to immobilisation as well as early and 
sustained re-training (+3d and +4wks) in line with the overall 
increase in SCs at these time-points (Study VIII). However, 
de-spite the age-dependent differences in SC proliferation 
no age-specific difference was found in the expression 
profiles of HGF. These seemingly conflicting observations 
may be due to a somewhat low number of subjects 
examined and/or could be caused by the relative large 
variation seen especially in the elderly sub-jects. Further, 
there was no significant change in the expression levels of 
FGF2 at any time-points, indicating that FGF may be of minor 
importance for SC proliferation in human skeletal muscle 
irrespectively of age. 

Notably, we observed an age-specific influence on the 
pattern of myostatin regulation, with a larger increase seen 
in response to immobilisation followed by a smaller 
reduction with re-loading in our aged individuals (Study VIII). 
In turn, these observations may partly explain the impaired 
ability of SC proliferation and myofibre re-growth observed 
with re-training in aged skeletal muscle (Study VIII). In line 
with these findings, myostatin mRNA expression has 
previously been shown to increase following dis-use in 
young individuals, where the elevation in myostatin ex-
pression was related to the magnitude of myofibre atrophy 
[204]. Notably, our data revealed that the change in 
myostatin expression within the first days of re-loading (+3d) 
was negatively related to the change in Pax7+ cells, 
underlining the negative effect of myostatin on SC 
proliferation [120, 169].                                                          
Collectively, our data demonstrate that important age-
specific differences exist for the capacity of myofibrillar re-
growth of human skeletal muscle following immobility-
induced muscle atrophy. Specifically, aged individuals 
seemed to respond less sensitively to the re-loading 
program, as reflected by significantly smaller gains in 
myofibre area, in parallel with a smaller increase in SC 
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number despite that no age-related differences were 
observed in local growth factors known to promote skeletal 
muscle hypertrophy and satellite cell proliferation (IGF-Ea, 
MGF, MyoD, myogenin, HGF). This attenuated 
responsiveness of old adults to the re-loading stimulus may 
partly be explained by a reduced sensitivity to the above 
growth factors since basal MRF mRNA expression appears to 
be generally up-regulated in senescent muscle [97, 132, 140, 
202]. In addition, the present experiments also indicate that 
myostatin may play an important role for the impaired re-
growth response of aged human skeletal muscle, as the 
regulation in myostatin mRNA expression was influenced by 
age, with old adults demonstrating greater increases with 
immobilisation followed by a less degree of down-regulation 
in response to subsequent re-loading. Notably, an 
association between the down-regulation in myostatin 
mRNA expression and SC proliferation was observed in the 
acute phase of re-loading, indicating a strong influence of 
myostatin signalling on the myogenic potential of human 
skeletal muscle in vivo. 

MAJOR CONCLUSIONS                                                                                      
In summary, chronic muscle disuse in the elderly was 
associated with marked quantitative as well as qualitative 
neuromuscular impairments. More specifically, decreases 
were observed in muscle strength, quadriceps muscle size 
and myofibre area, muscle architecture, contractile 
properties and neuromuscular activation. Furthermore, 
substantial side-to-side differences in specific strength 
(MVC/LCSA) and normalised rapid muscle force capacity 
(RFD/CSA) were observed, indicating that a significant part 
of the observed changes in mechanical muscle function with 
disuse were explained by impairments in muscle quality.  

Importantly, within the first 4 days of immobility the ob-
served atrophy responses did not seem affected by age, as 
manifested by comparable reductions in myofibre area in 
young and old individuals. However, in line with previous 
observations using various animal models, we observed a 
larger loss in muscle mass in young compared to older 
individuals after more prolonged immobilisation (14 days). 
Conversely, old individuals were more negatively affected 
with respect to neural function and rapid force 
characteristics than their young counterparts.                                 
Moreover, we showed that the initiation and regulation of 
human skeletal muscle atrophy with short-term disuse is 
age-dependant. Based on the present experiments it can be 
concluded that a multitude of signalling pathways related to 
both muscle atrophy and protein synthesis are activated in 
the initial phase of disuse, which in turn lead to a rapid initial 
atrophy response (~1-4 days) in both young and old 
individuals followed by a gradually attenuated atrophy 
response at later time-points (~2 weeks). Notably, during the 
first 1-2 days of immobility a parallel activation of the 
ubiquitin-proteasome pathway and the IGF1/Akt pathway 
seem to occur along with a deactivation of PGC-1α and PGC-
1β, suggesting that cellular proteolysis plays an important 
role in the initiation of human disuse atrophy in both young 
and old muscle, whereas the concurrent regulation in 
protein synthesis signalling and proteolysis inhibition 
appears to affect young adults more pronouncedly 
compared to older adults. Gaining a better understanding of 

the ability of human skeletal muscle to recover from disuse-
induced atrophy has important implications for the 
development and implementation of effective counter-
measures against physical frailty in the increasing population 
of elderly. Importantly therefore, the present experiments 
demonstrate that resistance training is highly effective of 
increasing maximal muscle strength and neuromuscular 
function in elderly post-operative patientImportantly, these 
increases in mechanical muscle function were accompanied 
by gains in muscle size, architecture and in the expression of 
IGF-I mRNA splice variants, resembling that typically seen in 
young healthy individuals when exposed to resistance 
training. In contrast, these positive adaptations could not be 
achieved with the use of neuromuscular electrical 
stimulation or conventional rehabilitation efforts alone. 
Collectively, these findings strongly underline the 
importance of implementing resistive exercises in future 
rehabilitation programs for elderly individuals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, comparing young and old able-bodied 
individuals, we observed that the magnitude and time-
course of changes in mechanical muscle function during the 
recovery phase following short-term disuse were 
compromised in old compared to young individuals. 
Likewise, aged individuals demonstrated an impaired 
response to re-loading reflected by attenuated gains in 
myofibre area, in parallel with smaller increases in satellite 
cell number despite no age-related differences were 
observed in factors known to promote skeletal muscle 
hypertrophy and SC proliferation (IGF-Ea, MGF, MyoD, 
myogenin, HGF). Moreover, an age-specific regulation in 
myostatin mRNA expression was observed, characterized by 
an amplified increase in aging skeletal muscle with 
immobilisation that was followed by less down-regulation 
during the subsequent phase of re-loading. In combination 
with an association observed between the changes in 
myostatin expression and satellite cell proliferation in the 
acute phase of re-loading, these data indicates that 

Figure 3. Schematic figure of muscle atrophy rates as well as changes in protein 
synthesis and protein degradation in response to 4 and 14 days of 
immobilisation in young (full line) and old individuals (dotted line), 
respectively. The schematic changes in protein synthesis and protein 
degradation rates are based on our gene expression data (Study VII). 
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myostatin play an important role in the impaired ability of 
aged human skeletal muscle to recover from immobility-
induced muscle atrophy.  

PERSPECTIVES                                                                                                  
The present line of experiments revealed that the adaptive 
plasticity in skeletal muscle mass and central nervous system 
function associated with unloading and subsequent re-
mobilisation, differ between young and older individuals 
(Study VI-IX). Notably, this influence of aging on muscle mass 
homeostasis is well documented in various animal models 
[36, 44, 85, 269]. However, in human research there has 
been a tendency to overlook the importance of investigating 
the very early phase of disuse/unloading (1-5 days) where 
the atrophy response is most strongly manifested and 
important information regarding the regulation of human 
disuse atrophy has therefore been left unnoticed. Yet, our 
findings (Study VII) as well as others [6, 54, 243, 246] show 
evidence of an early rise in atrogenes during human disuse 
with time-course patterns similar to what have previously 
been demonstrated in the murine model [216]. Collectively, 
these findings indicate that the regulation of human muscle 
disuse is more complex and not merely driven by a decrease 
in myofibrillar protein synthesis, as previously suggested [78, 
210].  

Despite, many links still remain to be elucidated in the 
puzzle of human muscle plasticity, the observation that the 
initiation and regulation of human skeletal muscle atrophy is 
age depend-ant may be important for the identification of 
biomarkers and future therapeutic intervention paradigms, 
which can be used to counteract human skeletal muscle 
atrophy in relation to aging and disuse. 

Moreover, our finding that aging is accompanied by an im-
paired ability to recover from disuse muscle atrophy despite 
intensive re-training efforts, and, consequently, need a 
longer time to recover from periods of disuse may also 
explain the somewhat disappointing results from shorter 
rehabilitation studies [117]. Importantly, however, the 
findings from study I-V clearly demonstrate, in line with 
previous data [5, 71, 142] that elderly skeletal muscles 
respond very well to prolonged intensive resistance training. 
Consequently, this intervention modality should be more 
clearly recognized as one of the key tools in the 
rehabilitation of elderly individuals, including very old and 
frail patients. The findings from Study I-V showed that 
resistance training can be successfully initiated during a 
hospital stay, including the acute post-operative phase and 
in the initial days after discharge in order to counteract the 
decline in muscle function and loss of muscle mass normally 
associated with hospitalisation in elderly patients [136]. 
Additionally, the observation from Study II & IV that rapid 
muscle force capacity (RFD) and neuromuscular function 
remain trainable in elderly recovering from surgery has im-
portant implications for the design of future rehabilitation 
programs, especially when considering the importance of 
rapid muscle force capacity on postural balance control, 
maximal walking speed and other tasks of daily living [5]. 

SUMMARY                                                                                        
In order to study the influence of disuse and aging on 
skeletal muscle homeostasis, different human models were 

employed.  Effects of chronic disuse were investigated in 
elderly patients suffering from uni-lateral hip-osteoarthritis, 
whereas the effect of short-term disuse (4 and 14 days of 
unilateral lower limb immobilisation) was assessed in 
healthy young and old individuals.  

In summary, chronic muscle disuse in the elderly was associ-
ated with marked quantitative as well as qualitative 
neuromuscular impairments. More specifically, decreases 
were observed in muscle strength, quadriceps muscle size 
and myofibre area, muscle architecture, contractile 
properties and neuromuscular activation. Furthermore, 
substantial side-to-side differences in specific strength 
(MVC/LCSA) and normalised rapid muscle force capacity 
(RFD/CSA) were observed, indicating that a significant part 
of the observed changes in mechanical muscle function with 
disuse were explained by impairments in muscle quality.  

Importantly, within the first 4 days of immobility the ob-
served atrophy responses did not seem affected by age, as 
manifested by comparable reductions in myofibre area in 
young and old individuals. However, in line with previous 
observations using various animal models, we observed a 
larger loss in muscle mass in young compared to older 
individuals after more prolonged immobilisation (14 days). 
Conversely, old individuals were more negatively affected 
with respect to neural function and rapid force 
characteristics than their young counterparts.  

Moreover, we showed that the initiation and regulation of 
human skeletal muscle atrophy with short-term disuse is 
age-dependant. Based on the present experiments it can be 
concluded that a multitude of signalling pathways related to 
both muscle atrophy and protein synthesis are activated in 
the initial phase of disuse, which in turn lead to a rapid initial 
atrophy response (~1-4 days) in both young and old 
individuals followed by a gradually attenuated atrophy 
response at later time-points (~2 weeks). Notably, during the 
first 1-2 days of immobility a parallel activation of the 
ubiquitin-proteasome pathway and the IGF-1/Akt pathway 
seem to occur along with a deactivation of PGC-1α and PGC-
1β, suggesting that cellular proteolysis plays an important 
role in the initiation of human disuse atrophy in both young 
and old muscle, whereas the concurrent regulation in 
protein synthesis signalling and proteolysis inhibition 
appears to affect young adults more pronouncedly 
compared to older adults.  

Gaining a better understanding of the ability of human skele-
tal muscle to recover from disuse-induced atrophy has 
important implications for the development and 
implementation of effective countermeasures against 
physical frailty in the increasing population of elderly. 
Importantly therefore, the present experiments 
demonstrate that resistance training is highly effective of 
increasing maximal muscle strength and neuromuscular 
function in elderly post-operative patients. Importantly, 
these increases in mechanical muscle function were 
accompanied by gains in muscle size, architecture and in the 
expression of IGF-I mRNA splice variants, resembling that 
typically seen in young healthy individuals when exposed to 
resistance training. In contrast, these positive adaptations 
could not be achieved with the use of neuromuscular 
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electrical stimulation or conventional rehabilitation efforts 
alone. Collectively, these findings strongly underline the im-
portance of implementing resistive exercises in future 
rehabilitation programs for elderly individuals. 

In addition, comparing young and old able-bodied 
individuals, we observed that the magnitude and time-
course of changes in mechanical muscle function during the 
recovery phase following short-term disuse were 
compromised in old compared to young individuals. 
Likewise, aged individuals demonstrated an impaired 
response to re-loading reflected by attenuated gains in 
myofibre area, in parallel with smaller increases in satellite 
cell number despite no age-related differences were 
observed in factors known to promote skeletal muscle 
hypertrophy and myogenic stem cell proliferation (IGF-Ea, 
MGF, MyoD, myogenin, HGF). Moreover, an age-specific 
regulation in myostatin mRNA expression was observed, 
characterized by an amplified increase in aging skeletal 
muscle with immobilisation that was followed by less down-
regulation during the subsequent phase of re-loading. In 
combination with an association observed between the 
changes in myostatin expression and satellite cell 
proliferation in the acute phase of re-loading, these data 
indicates that myostatin play an important role in the 
impaired ability of aged human skeletal muscle to recover 
from immobility-induced muscle atrophy.   
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