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BACKGROUND
GC-GLOBULIN
The α-2-globulin Gc-globulin (other names: group-specific compo-
nent, vitamin D-binding protein) is a multifunctional protein [8-
10], and its main physiological importance is probably binding of
actin. Gc-globulin scavenges monomeric actin and together with
gelsolin constitutes the extracellular actin scavenger system [11].

Gc-globulin was first described in 1959 [12]. It is encoded for on
the long arm of chromosome 4 (4q11-13). The Gc-globulin gene has
been identified [13]: the protein consists of 458 amino acid residues
(and a 16 amino acid tail) and contains 14 disulfide bridges [9;14].
The molecular weight is approximately 56,000 Daltons, but the ex-
act weight depends on the amount of glycosylation.

The serum concentration of Gc-globulin in normal individuals is
approximately 300 to 500 mg/L (5.4 to 8.9 x 10-6M), thus constitut-
ing ca. 6 per cent of alpha-globulins [8]. Serum Gc-globulin concen-
tration is stable from full-term birth throughout life and is not re-
lated to age or gender [15-17]. It varies slightly with the phenotype
since people with phenotype Gc1-1 have higher concentrations than
people with phenotype Gc2-1 that again have higher Gc-globulin
concentrations than Gc2-2 [15;18-20]. Also, infants younger than 6
months of age have lower Gc-globulin levels in the summer than in
the winter, whereas there is no seasonal variation in adults [21].
There seems to be a diurnal rhytm with lowest levels observed at
night [22]. Gc-globulin levels may be altered in pathologic and
physiologic conditions, either with decreased levels (e.g., in liver dis-
ease or in sepsis) or with increased levels (e.g., in pregnancy).

Phylogenetically, Gc-globulin is believed to be an old protein, ap-
proximately 600 million years old [23]. It has been well conserved
throughout evolution and it is present in all vertebralian animals
studied. Five hundred million years ago, the ancestral Gc-globulin
gene split up, and Gc-globulin, albumin, alpha-fetoprotein, alpha-
albumin, and afamin developed, constituting the so-called albumin
gene superfamily [23-28]. No homozygote null Gc-globulin allele
has been detected in humans despite testing of many thousand se-
rum samples [29]. This could indicate that presence of Gc-globulin
is vital for the organism and that null Gc-globulin mutations might
be lethal [11]. However, this view has been been challenged by a
mouse knockout model (Gc-globulin -/-) that showed normal via-
bility and fertility of the animals [30].

Gc-globulin is a 3-domain protein [31]; domain I binds to vita-
min D metabolites whereas domain III contains the actin-binding
site with a very good structural fit to a large groove between actin
subdomain 1 and 3 [32]. The intermolecular contact between the 2
proteins is large (3400-3600 Å2) [32;33].

Gc-globulin kinetics has not been studied in great detail. Gc-glob-

ulin is synthesized almost solely in the liver [8], although minimal
Gc-globulin mRNA expression (in the rat) has also been docu-
mented in other tissues, including the kidney, yolc sac, and testis
suggesting a minimal extrahepatic synthesis [26]. In healthy human
volunteers the exchangeable pool of Gc-globulin was evaluated to be
3 gram [34]. The half-life of uncomplexed Gc-globulin is approxi-
mately 48 hours in man [34], 17 hours in the rabbit [35], and 10
hours in the rat [36]. Actin-complexed Gc-globulin has a much
shorter half-life, ~ 60 minutes in the rabbit [35] and 30 minutes in
the rat [36].

ACTIN
Actin is a major cellular protein component constituting up to 20 per
cent of the cell protein content and acting as cytoskeleton for hepato-
cytes and most other cells [37;38]. Actin filament rearrangement en-
ables certain cells to form pseudopods and allow »cell crawling«
[39;40], and actin and myosin filaments constitute the major part of
the contractile system in skeletal muscle [37;41]. Monomeric actin is
globular in form (G-actin) and the polymeric form of actin is caused
by assembly of many G-actin units to form linear filaments (F-actin),
up to 10 µm in length [42]. Under physiologic conditions, such as in
plasma or isotonic saline, G-actin will spontaneously form F-actin.

Actin in the circulation may influence hemostasis in several ways:
by inducing platelet aggregation [43;44], by acting as a plasmin in-
hibitor (45), or by interacting with the fibrinolytic system [46]. Fur-
ther, incorporation of actin filaments into fibrin clots changes clot
rheology by inhibiting strain-hardening, making the clot more brit-
tle than without incorporated actin [47;48]. Overall, intravascular
actin in plasma influences the organism towards increased throm-
bosis and decreased fibrinolysis.

THE EXTRACELLULAR ACTIN SCAVENGER SYSTEM 
Disruption of the integrity of the cell membrane will cause release of
actin to the extracellular space. This disruption may be part of nor-
mal cell turnover or may stem from cellular necrosis caused by path-
ologic conditions leading to cell necrosis [11]. Release of actin from
damaged or necrotic cells into the circulation may have severe side
effects for the organism [49]. In a very important study, Haddad et
al demontrated that infusion of high doses of G-actin in the rabbit
caused rapid and fatal formation of massive actin filament-contain-
ing thrombi in arterioles and capillaries of pulmonary veins and
there was also evidence of endothelial injury [49]. Thrombi forma-
tion was not observed when the same amount of G-actin was prein-
cubated with Gc-globulin. Further evidence for the deleterious ef-
fects of actin was demonstrated by Erukhimov et al showing that ac-
tin from necrotic cells could produce a direct injury to pulmonary
endothelial cells [50].

These and other observations lead to the suggestion of the pres-
ence in plasma of an extracellular actin scavenger system, consisting
of two plasma proteins: Gc-globulin and gelsolin [11;35;51;52]. Gel-
solin, synthesized in skeletal muscle [53], depolymerizes polymeric
actin, F-actin, by capping [54], annealing, and severing [42;55] the
protein at a 1:2 molar ratio [56], whereas Gc-globulin binds with
high affinity (Kd= 10-9 M) to monomeric actin at a 1:1 molar ratio,
thus forming a Gc-globulin:actin complex [57]. The complex is
cleared by parenchymal and endothelial cells [58] or Kupffer cells in
the liver [59] (Figure 1).

OTHER FUNCTIONS OF GC-GLOBULIN
Gc-globulin is a multifunctional protein (31). Its presumed physio-
logic functions are listed in Table 1.

Vitamin D-binding: Binding of vitamin D metabolites (primarily
25-OH vitamin D and 1,25-di-OH vitamin D) was the first de-
scribed function of Gc-globulin, hence, the synonym vitamin D-
binding protein (VDBP or DBP) [60;61]. Gc-globulin's sterol-bind-
ing (vitamin D-binding) site is located at the amino-terminal end of
the protein (domain I), as opposed to the actin-binding site at the



132 D A N I S H  M E D I C A L  B U L L E T I N  V O L . 5 5 N O . 3 / A U G U S T  2 0 0 8

carboxy-terminal end (domain III) [62]. Binding of sterols does not
affect the actin-binding property or capacity [62]. Vitamin D-bind-
ing occupies less than 5% of the normal sterol-binding capacity [8],
and Gc-globulin levels do not correlate with levels of vitamin D me-
tabolites [63].

Precursor for macrophage activating factor: In 1991, Yamamoto et al
described for the first time the role of Gc-globulin as a precursor of
macrophage activating factor (Gc-MAF). In a series of experiments
[64-66], this group described the conversion of Gc-globulin to
MAF; Gc-globulin is modified by the combined action of mem-
brane-bound β-galactosidase of B-lymphocytes and sialidase of T-
lymphocytes to form Gc-MAF [64]. Gc-MAF acts as a switch to turn
on macrophage activity at sites of infection and inflammation [67]
and may cause apoptosis of these macrophages when they are no
longer needed [68]. Some AIDS and cancer patients produce α-N-
acetylgalactosaminidase, an enzyme that deglycosylates Gc-globu-
lin, inhibiting the formation of Gc-MAF [69-71], and possibly con-
tributing to the immunosuppression observed in these patients.

Also, Gc-MAF has direct antiangiogenic effects on endothelial
cells [72;73] and an overexpression of Gc-globulin has been ob-
served in tumor-bearing breasts [74].

Co-chemotactic effect for C5a and C5a des Arg: Gc-globulin en-
hances the neutrophil chemotactic effect of C5a and C5a des Arg for
neutrophils and macrophages [75-78]. The mechanism seems to be
regulated by elastase from neutrophils [79] and is related to a direct
binding to C5a des Arg, since the Gc-globulin:C5a des Arg complex
increases the number of C5a des Arg molecules/unit on the poly-
morphonuclear leucocytes [80]. Gc-globulin’s C5a chemotactic co-
factor function is mediated by CD44 and annexin A2, both involved
in cell movement [81;82].

Natural killer cell enhancement: Anti-Gc-globulin antiserum in-
hibits the activity of natural killer (NK) cells on peripheral blood
lymphocytes in vitro [83;84]. This inhibitory effect is blocked by ad-

dition of purified Gc-globulin. Thus, Gc-globulin seems to be asso-
ciated with NK cytolysis in the post-binding cytolytic phase.

Binding of arachidonic acid and endotoxin: Under normal circum-
stances, 75-80% of serum arachidonic acid, parent molecule for the
cyclooxygenase pathway, is bound to Gc-globulin [85-87]. Addition
of Gc-globulin to protein preparations leads to a 40% decreased en-
dotoxin neutralizing activity [88]. 

Others: Surface-bound Gc-globulin has been observed in a
number of cells, including monocytes [89], B-lymphocytes [90;91]),
human placental trophoblasts, and neutrophils [92]. The Gc-globu-
lin is probably plasma-derived [93], and the physiologic importance
may be related to cell differentiation [94]; however, this issue is not
yet clarified. Other functions include the recent finding, that Gc-
MAF can stimulate osteoclast activity and bone resorption in an ex-
tracellular calcium-dependent way [95]. 

In conclusion, Gc-globulin is a multifunctional protein, mainly
associated with the nonspecific innate immune system, vitamin D-
binding, and actin-scavenging. The priority of these functions is not
yet clear. Further, to what extent each function influences the other
functions remains to be studied.

ANALYSIS OF GC-GLOBULIN
The following Gc-globulin definitions are useful when reading this
thesis:

Total Gc-globulin: the total concentration of Gc-globulin in serum.
Complex ratio: the percentage of total Gc-globulin complexed to

actin.
Free Gc-globulin: the concentration of Gc-globulin not complexed

to actin. Can be calculated as total Gc-globulin x (1 – complex ratio).
Bound Gc-globulin: the concentration of Gc-globulin complexed

to actin. Can be calculated as total Gc-globulin x complex ratio.
Several methods have been developed to measure serum Gc-glob-

ulin concentrations. In normal individuals, the mean and range for
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Figure 1. The presumed action of the extracellular actin scavenger system. Upon cell necrosis actin is released from the cell to the extracellular space 
in both polymeric and monomeric form. Gelsolin depolymerizes polymeric (filamentous) actin by capping, severing and annealing to form monomeric 
(globu lar) actin, which is next complexed to Gc-globulin. This complex is presumably taken up in hepatic Kupffer cells/the reticulo-endothelial system.
(Reprinted, with permission from K Bangert, Antibodyshop). 
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serum Gc-globulin did not differ very much among the methods
(Table 2). So far, only rocket immunoelectrophoresis [1;2;4;96], non-
SDS Western blot with polyacrylamide gel electrophoresis (PAGE)
[97-99], and crossed immunoelectrophoresis [100] allow for calcula-
tion of the actin complex ratio. Single radial immunodiffusion
[20;63;97;101;102], rocket immunoelectrophoresis [1;96;103; 104],
radioimmunoassays [105], and Western blot [106] are rather slow
and cumbersome techniques, mostly suited for scientific projects.

Furthermore, the accuracy of these techniques is not impressive. For
details regarding rocket immunoelectrophoresis, see Appendix. In
recent years, newer techniques including nephelometry [7;106;107],
turbidimetry [108], and ELISA [100;109] have been developed.
These methods are more accurate and are also much faster than »first
generation techniques«. Thus, they could be more useful in a clinical
setting. A new automated commercial ELISA method to determine
free Gc-globulin is currently under evaluation [110;111].

Influence of fresh frozen plasma infusions on Gc-globulin values:
fresh frozen plasma (FFP) contains plasma proteins in normal con-
centrations, and FFP infusions thus iatrogenically increase serum
Gc-globulin concentrations in patients with reduced levels. We
studied the duration of increased Gc-globulin values; pre-infusion
values resumed 4 - 6 hours after infusion of one to two units of FFP
[1]. High volume plasmapheresis, used in the treatment of severe
liver dysfunction [112;113], involving a plasma exchange of 8-12 lit-
ers of plasma (15% of bodyweight) caused increased serum Gc-
globulin values that lasted for approximately 24 hours [5;6].

ACETAMINOPHEN (PARACETAMOL) OVERDOSE
Acetaminophen is a very safe drug when ingestion does not exceed
the daily recommended maximum of 4 gram/day. However, aceta-
minophen is also a dose-dependent hepatotoxin and its therapeutic
index is very low. The typical pathological finding is centrilobular
(zone III) necrosis where up to 90 per cent of hepatocytes may be
necrotic [114-116]. Aminotransferase levels are usually very high
[114]. Hepatotoxicity is more likely to occur if the antidote N-ace-
tylcysteine (NAC) is instituted late after ingestion or if the patient is
a chronic alcoholic [117;118]. 

Development of hepatic encephalopathy (and therefore, by defi-
nition, acute liver failure (ALF)) is also related to delay to NAC
treatment [119] and is most likely to occur in patients with acciden-
tal overdose [120]. Acetaminophen overdose is the commonest
cause of ALF in Denmark [121], the United Kingdom [122], and
now also in the United States [123].

Experimental studies on acetaminophen-induced ALF have
shown the actin-scavenger system to be stressed, as evaluated by de-
creased Gc-globulin levels. Also, a very high proportion of Gc-glob-
ulin:actin complexes (i.e., a high complex ratio) was observed in an-
imals with severe liver damage [98;99].

So far, 5 clinical studies on Gc-globulin in acetaminophen over-
dose have been published (Table 3). Patients with ALF have been in-

Table 3. Gc-globulin in acetaminophen overdose, clinical studies.

  Analysis Observation
Location N method period Characteristics and findings

Lee et al (97) London 47* PAGE  Daily samples,  All had HE. Admission Gc was 55 ± 13 mg/L in nonsurvivors and 82 ± 11 mg/L in survivors.
  Western unclear period Complex ratio was measured but not reported. Free Gc calculated
  blot      

Schiødt et al (1) Copen- 18 RIEP Every 3 hours,  No HE (n=10) HE (n=8)
hagen   up to 30 hours   
   after admission Admission Gc: 245 ± 82 mg/L  Admission Gc: 107 ± 39 mg/L
    Nadir Gc: 197 ± 72 mg/L  Nadir Gc: 84 ± 18 mg/L
    Admission complex ratio: 16 ± 23% Admission complex ratio: 29 ±%
    Peak complex ratio: 49 ± 13% Peak complex ratio: 70 ± 14%

Schiødt et al (2) Copen- 18 RIEP Admission All had HE. Gc: 174 ± 91 mg/L Complex ratio: 46 ± 31%
hagen

Schiødt et al (6) Copen- 84 RIEP Twice daily,   Non-HEPTOX (n=32) HEPTOX (n=37) HE (n=15)
hagen   entire hospi-   
   tal stay Nadir Gc: 310 ± 90 mg/L  Nadir Gc: 148 ± 67 mg/L Nadir Gc: 97 ± 50 mg/L
    Nadir free Gc: 262 ± 103 mg/L  Nadir free Gc: 86 ± 56 mg/L Nadir free Gc: 50 ± 32 mg/L
    Peak complex ratio: 18 ± 20% Peak complex ratio: 47 ± 18% Peak complex ratio: 57 ± 18%

Schiødt et al (7) U.S.A.  76 Nephe- Day 1 and 2 All had HE. Gc: 114 (range 34-307) mg/L
(multi-  lometry
center)

HE = hepatic encephalopathy. HEPTOX = ALT over 1,000 U/L but no HE. Gc = total Gc-globulin. Non-HEPTOX = ALT below 1,000 U/L and no HE. PAGE = 
polyacrylamide electrophoresis. RIEP = rocket immunoelectrophoresis. *) 39 of these patients had acetaminophen-induced ALF.

Table 1. Gc-globulin function s

Actin-scavenging
Vitamin D-binding
Endotoxin binding
Co-chemotactic effect for C5a
Natural killer cell activatio n
Precursor for macrophage activating factor
Others
 

Table 2. Methods for determining serum Gc-globulin and complex ratio. 
Normal levels. Data are given as mean or median ± SD (range).

Method Ref. Gc-globulin (mg/L) Complex ratio (%)

Single radial (97) 422 (315-523) N/A
immunodiffusion (101) 522 ± 62 (460–584) N/A
 (63) 340 ± 61 N/A
 (102) 294 ± 3 N/A
 (20) 292 ± 33 N/A

Rocket immuno- (96) 357 ± 132 (273–529) 32 ± 8 (20–44)
electrophoresis (103) 393 ± 65 N/A
 (104) 404 ± 124 N/A
 (1) 342 ± 61 (240-482) 13 ± 13 (0-27)
 (2) 365 ± 57 (265-390) 11 ± 12 (2-28)
 (4) 340 ± 35 (265-390) 13 ± 8 (2-28)

Radioimmunoassay (105) 347 ± 5 N/A

Western blot (106) 288 (138-427) N/A

Nephelometry (106) 292 (163–509)  N/A
 (107) 394 (320–460) N/A
 (7) (350-500) N/A

ELISA (109) 355 ± 99 (220–606) N/A
 (100)  305 (176-623) N/A

Turbidimetry (108) 256 ± 24 N/A

N/A = not available.
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cluded in all these studies. Only 2 studies have reported Gc-globulin
levels in patients without ALF [1;6]. These 2 studies have also de-
scribed the temporal profile of serum Gc-globulin in acetami-
nophen overdose. In study [1], patients were followed for approxi-
mately 24 hours after inclusion in the study. Levels were lower
among patients with hepatic encephalopathy than in those without.
Gc-globulin levels did not change much over that period of time
(Figure 2). In study [6], patients were followed over the entire hos-
pital stay and several important observations could be made. Pa-
tients were divided into 3 groups according to degree of liver injury:
1) no or minimal injury, 2) moderate injury with high aminotrans-
ferase levels but no ALF, and finally 3) patients with ALF. Total and
free Gc-globulin concentrations and complex ratio levels were unaf-
fected in group 1 (Figure 3  and Figure 4), in contrast to the de-
crease in plasma coagulation factor II, VII, X activities (Figure 5)
probably mediated by the anti-coagulant effect of the antidote NAC
[124;125]. In contrast, patients in group 2 displayed signs of affec-
tion of the actin scavenger system, since total and free Gc-globulin
levels fell to less than half of normal values, with nadir values occur-
ring ca. 3 days after acetaminophen ingestion at the same time
where complex ratio and aminotransferese levels peaked (Figures 3-
5). These changes were more accentuated in group 3 where nadir
and peak levels were even more abnormal. For groups 2 and 3 levels
gradually normalized hereafter even though they were not yet in the
normal range 7 days into overdose. 

In general, total Gc-globulin levels are decreased in all patients
with hepatotoxicity (Table 3). Patients with ALF have total Gc-glob-
ulin concentrations of approximately 100 mg/L which is less than
one third of normal values.

Bound Gc-globulin remained normal at all times for all 3 groups.
If one excludes the possibility of a methodology bias (the fact that
bound Gc-globulin is not measured directly but is a product of 2
measured variables) then this could indicate that bound Gc-globu-
lin concentration is narrowly regulated. I speculate that bound Gc-
globulin levels may regulate Gc-globulin:actin complex metabolism
even in the failing liver. However, the exact mechanism of the uptake
of Gc-globulin:actin complexes in the liver is largely unknown so
further studies should elucidate this.

To summarize, levels of Gc-globulin and actin complex ratio are
affected in patients with acetaminophen overdose if hepatotoxicity
is present, and patients with ALF have the most depressed serum
levels. The time profile shows a close correlation between peak com-
plex ratio and peak aminotransferase levels indicating that actin re-
leased from the necrotic hepatocytes contribute to the stress on the
actin scavenger system in acetaminophen overdose. 

ACUTE LIVER FAILURE (FULMINANT HEPATIC FAILURE) 
AND PROGNOSIS
It is safe to say that acute liver failure (ALF) is one of the most dra-
matic conditions in medicine. The failing liver leads by definition to
hepatic encephalopathy within a short time after initial symptoms
[126] and may also lead to a cascade of organ failures including re-
nal failure, circulatory collapse, and pulmonary dysfunction. Fur-
ther, severe infections, deep coagulopathy, and the risk of cerebral
edema, intracranial hypertension, and cerebral herniation adds to
the picture of an extreme disease entity. Not surprisingly, the mor-
tality rate in ALF has historically been very high, with survival being
the exception to the rule [127-130]. The increased use of intensive
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Figure 3. The temporal profile of total and free Gc-globulin in paraceta-
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care monitoring and therapy and the advent of liver transplantation
as a treatment option has improved prognosis considerably; how-
ever, mortality rates still remain at approximately 40 to 50%, even in
the most experienced centers [123;131;132]. Favorable etiologies in-
clude acetaminophen, hepatitis A, pregnancy, and shock liver where
the spontaneous survival rate (i.e., survival without liver transplan-
tation) is greater than 50% as compared to a lower than 25% spon-
taneous survival rate for all other etiologies [123;133;134].

Serum Gc-globulin in ALF was first studied by Lee & Galbraith’s
group. Their initial reports, including relatively few patients, docu-
mented dramatic changes in Gc-globulin levels and complex ratio
values [96;101;109], suggesting a severe reduction of Gc-globulin’s
actin-scavenging capacity. These studies were supported by similar
findings in animal models of acetaminophen-induced ALF where,
typically, total Gc-globulin levels were low and actin complex ratios
were high and the time of the extremes correlated with the peak of
aminotransferase levels [98;99].

So far, eleven clinical studies regarding Gc-globulin and ALF have
been published (Table 4). Eight studies [1;2;6;7;96;101;106;109]
have reported on total Gc-globulin levels. The results were very sim-
ilar among the studies; Gc-globulin concentrations were reduced to
between 25% and 49% of normal (Table 4). Free Gc-globulin levels
(reported in 5 studies) were even lower, between 12% and 26% of
normal, and complex ratios (reported in 5 studies) were elevated in
all papers. Thus, the stress on the actin scavenger system in ALF
seems very obvious.

Since the hepatic necrosis is so overwhelming in acetaminophen
hepatotoxicity one would a priori assume Gc-globulin levels in this
group to be lower than in the nonacetaminophen group. In fact, the

opposite is true, since patients with acetaminophen-induced ALF
have higher Gc-globulin concentrations than those patients with
nonacetaminophen-induced ALF [2;7]. This could be due to a bet-
ter prognosis in acetaminophen-induced ALF where the spontane-
ous survival chances are greater than 50% compared to a lower than
25% chance in nonacetaminophen-induced ALF [123;134]. In fact,
spontaneous survivors of acetaminophen etiology had the same Gc-
globulin levels as survivors of nonacetaminophen etiology in one
study [7] – whereas there was a significant difference in Gc-globulin
levels among nonsurvivors of the 2 groups. Another explanation for
the increased Gc-globulin levels in acetaminophen-induced ALF
may be that this disease is a »single-hit« disease where acetami-
nophen – or rather its highly reactive metabolite NAPQI – causes se-
vere hepatocellular damage [135;136]. However, further damage is
stopped once antidote treatment is instituted, in contrast to the con-
tinuous damage inflicted to the liver by for instance acute viral hep-
atitis B or by acute Wilson’s disease. 

Several prognostic models are available to determine outcome in
ALF, including the British King’s College Hospital criteria [137], the
French Clichy criteria [138], plasma coagulations factors [139], arte-
rial lactate [140], arterial ammonia [141], phosphate [142], and se-
rum levels of alpha-fetoprotein [143;144]. The King’s College Hos-
pital criteria are still the most commonly used, despite being almost
20 years old [137]. However, the predictive accuracy of a model
seems to decrease when applied on patients from other regions or
countries than where they originated [145-147]. 

Three studies have reported on Gc-globulin and prognosis in ALF
(Table 5), and the final results of an ongoing study from the USA are
pending [148]. Preceeding these studies, one paper reported the
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Figure 4. The temporal profile of complex ratio and bound Gc-globulin 
in paracetamol overdose. The same 3 groups as in Figure 3. Time denotes 
hours after intake of paracetamol (PCM).
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value of actin complex ratio in seven patients with ALF [101], and
found that nonsurvivors had higher complex ratio than survivors.
Two studies [2;7] described the prognostic value of total Gc-globu-
lin concentrations. In general, the prognostic value was better for
nonacetaminophen patients. The prognostic cutoff levels for total
Gc-globulin were quite similar in the 2 studies, 100 mg/L and 80
mg/L, respectively. In fact, in one study [7], there was no difference
in total Gc-globulin levels between survivors and nonsurvivors of
acetaminophen-induced ALF. For the nonacetaminophen groups,
the positive prognostic values were 79% and 85%, respectively,
whereas the negative predictive values were lower, 60% and 43%, re-
spectively (Table 5). One study [97] reported on the prognostic
value of free Gc-globulin and here the test seems to yield prognostic
information in acetaminophen patients also. The prognostic cutoff
level for free Gc-globulin was 34 mg/L and day 2 data seemed to give
better prognostic information than admission levels. In the above
mentioned abstract [148] the prognostic cutoff level was 40 mg/L
and thus very close to that reported in Lee et al’s study. Even though
the predictive accuracy of Gc-globulin was rather low, it was in the
same range as that of the King’s College Hospital criteria in all 3
studies, demonstrating the imprecision of all prognostic markers. 

The ideal prognostic marker is 100% accurate, with a perfect dis-
crimination between positives and negatives. Unfortunately, no
such marker exists. With the advent of acute liver transplantation as
a treatment option it is even more important to have accurate prog-
nostic markers, since we don’t want to transplant those patients who
would survive spontaneously. Conversely, we want to make an early
request for a liver donor in patients with a low likelihood of survival.
Most studies who described prognosis in ALF give data on sensitiv-
ity and specificity. A meta-analysis showed the sensitivity to be
lower than the specificity in most studies [149] meaning that it is
apparently easier to identify survivors than nonsurvivors. For the
clinician, however, these data are less useful since they are post fes-
tum. In that respect, positive and negative predictive values are more
important.

Liver transplantation has not made is easier to develop diagnostic
tests since the true (untransplanted) outcome is never known in pa-
tients who are transplanted. Of course, these patients could be ex-

cluded from analyses. On the other hand, almost one quarter of the
ALF patients are transplanted [123] so an unfair bias would be in-
troduced in the analysis if these patients were excluded. Most studies
have opted to include transplanted patients and consider them to-
gether with nonsurvivors [7;150], in contrast to the ‘spontaneous
survivors’ who do not undergo transplantation.

The prognosis of ALF has improved over time [151] and the stud-
ies listed in table 5 span over 4 decades, from the 1970’s and 1980’s
[2;97] to the 2000’s [7]. Therefore, it is interesting that the predictive
values (and sensitivity and specificity) are so relatively unchanged
over the years. The robustness of such prognostic tests could also ex-
plain why the King’s College Hospital criteria are still so widely used,
even though an attempt to improve the criteria with the inclusion of
arterial lactate has recently been suggested [140]. ALF is such a com-
plex disease, so it is not unexpected that a single prognostic test can-
not be perfectly accurate. Therefore, in the future, total and free Gc-
globulin levels should be tested with prognostic markers that display
other aspects of liver function, e.g. liver regeneration (alpha-feto
protein), hepatocyte necrosis (ferritin), or features of infections
(SIRS).

MULTIPLE ORGAN FAILURE IN ACUTE LIVER FAILURE
A failing liver is the initial event in ALF that, by definition, leads to
hepatic encephalopathy. However, other organs may also fail con-
tributing to the morbidity and mortality and making ALF such a
challenging condition [152-154]. Sepsis or evidence of the systemic
inflammatory response syndrome (SIRS) are probably of para-
mount importance for the development of multiple organ failure
(MOF) in ALF [155] and may also lead to worsening of hepatic en-
cephalopathy [156]. Patients with ALF often develop renal failure,
arterial hypotension, severe infections, and occasionally pulmonary
dysfunction [151]. However, the most feared complication in ALF is
the development of cerebral edema and intracranial hypertension
where cerebral incarceration is imminent [157;158]. Multiple organ
dysfunction (MOD) is perhaps a better term than MOF since MOD
describes a continuum of dysfunction whereas MOF is a dichoto-
mous evaluation with fewer nuances [159]. 

The pathogenesis of MOF in ALF is not nearly clarified. Cy-

Authors Year Description N T-Gc CR F-Gc

Lee et al (109)  . . . . . . . . . . . . . . . . . . . . .  1985 ALF 14 0.27 NA NA
Goldschmidt-Cl. et al (96)   . . . . . . . . . . .  1985 ALF 11 0.31 1.9 NA
Goldschmidt-Cl. et al (101)   . . . . . . . . . .  1988 ALF 7 0.38 ~5 NA
Schiødt et al (1)   . . . . . . . . . . . . . . . . . . .  1995 ACM OA/extreme 8 0.31/0.25 2.2/5.4 NA
Lee et al (97)  . . . . . . . . . . . . . . . . . . . . . .  1995 ALF (mainly ACM) 47 NA NA 0.17
Schiødt et al (2)   . . . . . . . . . . . . . . . . . . .  1996 ALF 94 0.35 3.2 0.26
Wians et al (106) . . . . . . . . . . . . . . . . . . .  1997 ALF 20 0.49 NA NA
Schiødt et al (6)   . . . . . . . . . . . . . . . . . . .  2001 ACM OA/extreme 15 0.29 4.4 0.17
Schiødt et al (7)   . . . . . . . . . . . . . . . . . . .  2005 ALF 182 0.26 NA NA
Antoniades et al (110)   . . . . . . . . . . . . . .  2005 ALF 53 NA NA 0.12
Schiødt et al (148)   . . . . . . . . . . . . . . . . .  2005 ALF 178 NA NA 0.25

ACM = acetaminophen. CR = actin complex ratio. F-Gc = free Gc-globulin. OA = on admission. T-Gc = 
Total Gc-globulin.

Table 4. Clinical studies on serum Gc-globulin 
in acute liver failure (ALF). Levels are given as 
ratios compared to normal values.

  Cutoff   PPV NPV Sensitivity Specificity
Study Location (mg/L) N Patients (%) (%) (%) (%)

Lee et al (97) London 34 47 Admission 68 68 59 76
(Free Gc)   27 Day 2 100 85 70 100

Schiødt et al (2) Copenhagen 100 59 N-ACM 79 60 73 68
(Total Gc)   18 ACM 100 53 30 100

Schiødt et al (7) US multi- 80 106 N-ACM 85 43 65 69
(Total Gc) center

N-ACM = nonacetaminophen etiology. NPV = negative predictive value of a test. PPV = positive 
predictive value of a test. Sensitivity = proportion of positives (here: nonsurvivors or transplanted 
patients) correctly identified by the test. Specificity = proportion of negatives (here: nonsurvivors or 
transplanted patients) correctly identified by the test. 

Table 5. Prognostic value of Gc-globulin in acute 
liver failure.
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tokines (e.g., IL-6, IL-1, and TNF), endotoxemia, or ischemia have
been suggested to be important variables [160]. Lack of Gc-globulin
could be one of the factors contributing to the development of MOF
in ALF, since this could lead to actin-induced thrombosis resulting
in tissue hypoxia, a frequent complication of ALF [161-163]. Sev-
enty-nine patients with ALF and peak hepatic encephalopathy grade
III/IV (a subset of the patients reported in study [2]) were studied
with respect to admission levels of Gc-globulin and the develop-
ment of organ failure [3]. The most common organ failure was pul-
monary failure, followed by renal failure, infection, cardiovascular
failure, and intracranial hypertension. Total and free Gc-globulin
levels were significantly lower in patients developing infection, car-
diovascular failure, or intracranial hypertension, whereas levels did
not differ among patients with or without pulmonary or renal fail-
ure (Figure 6).

Patients with Gc-globulin values in the first quintile (lowest 20%)
had almost 3 times as many organ failures as patients with values in
the fifth quintile (Figure 7). Sixty-five per cent of the patients devel-
oped MOF, defined as two or more organ failures (in addition to the
hepatic failure and the presence of hepatic encephalopathy). These
patients had lower total and free Gc-globulin than patients without
MOF.

Is lack of Gc-globulin pathogenetically involved in the develop-
ment of MOF? It seems highly unlikely that a single mediator should
be responsible for all the profound disturbances seen in ALF. Rather,
lack of Gc-globulin may be part of the explanation, together with
mediators such as TNF, IL-1, IL-6, nitric oxide, and important cells
like Kupffer cells, macrophages, endothelial cells, and the immuno-
logic system [160]. Reduced Gc-globulin levels may be suggested to
influence the course of illness in two ways: by the formation of (lo-
cal) ischemia caused by actin thrombi formation, or by increasing
the susceptibility to infection via a decrease in the non-specific im-
mune functions of Gc-globulin (table 1).Capillary obstruction may
be caused by cellular debris (actin, collagen) from the failing liver.
Bihari et al demonstrated tissue hypoxia to occur in patients with
grade III and IV ALF, evidenced by hyperlactatemia and metabolic
acidosis [161;162]. Microvascular disturbances are apparently the
main cause of tissue hypoxia, perhaps developing because of arterio-
venous shunting [162], reflected hemodynamically as reduced sys-
temic vascular resistance and decreased oxygen extraction ratio
[161]. However, lactic acidosis may also stem from accelerated glyc-

olysis [153]. It remains to be studied if actin-containing thrombi are
a pathologic feature of ALF.

In conclusion, it is not proven that lack of Gc-globulin/actin tox-
icity contributes to the development of MOF in ALF. However, even
in these extremely sick patients, Gc-globulin levels clearly reflect the

Figure 6. Admission total and 
free Gc-globulin concentra-
tions and relationship to 
develop ment of organ fail-
ures in patients with grade 
III and IV acute liver failure. 
Patients who developed car-
diovascular failre, intracranial 
hypertension, and infections 
had significantly lower Gc-
globulin levels compared to 
those who did not develop 
these complications. 
*) p < 0.01. **) p < 0.001.
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Figure 7. The relationship between admission levels of total and free 
serum Gc-globulin values and number of organ failures in patients with 
acute liver failure and hepatic coma grade III or IV (A and C). B and D: the 
quintiles of total and free Gc-globulin vs. number of organ failures. Spear-
man’s rank correlation coefficient was –0.42 (total Gc) and –0.46 (free Gc), 
P< 0.005 for both.
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risk of organ failures. Admission Gc-globulin concentrations can
therefore indicate if subsequent MOF develops.

GC-GLOBULIN KINETICS IN LIVER DISEASE
Gc-globulin is almost entirely synthesized in the liver although
smaller amounts of Gc-globulin mRNA are also expressed in the
kidney, the testis, and the abdominal fat in rats [26]. In normal indi-
viduals, Gc-globulin kinetics was studied by Kawakami et al using
injection of radio-labeled Gc-globulin (125I-labeled Gc) [34]. They
found that a three-pool model could best explain Gc-globulin kinet-
ics, pool 1 being plasma, pool 2 the extravascular, extracellular com-
partment, and pool 3 the intracellular compartment. The total ex-
changeable Gc-globulin was 2.89 gram and the production rate was
0.69-0.93 g/day with a mean of 0.80 g/day [34].

Protein turnover is generally decreased with advanced liver dis-
ease, most so in patients with hepatic coma where protein synthesis
is only one third to one half of that observed in normal individuals
[164]

Guha et al studied the regulation of Gc-globulin expression in
vitro in Hep3B hepatocytes and found that interleukin-6 and dex-
amethasone increased Gc mRNA and secreted protein by twofold
whereas TGFβ decreased it by fivefold [165]. IL-1 and TNF did not
affect Gc-globulin expression significantly. It is known that plasma
levels of IL-6 (along with IL-1 and TNF) are increased in acute liver
failure [166]. In an animal study, Gc-globulin mRNA expression in-
creased slightly after inflammation whereas partial hepatectomy
lead to a decrease in mRNA levels [167].

In study [5], Gc-globulin kinetics were studied in 22 patients with
acute and chronic liver disease, all undergoing liver vein catheteriza-
tion. Total and free Gc-globulin concentrations were lowest in pa-
tients with ALF, and patients with chronic liver disease had concen-
trations approximately 2-fold higher than in ALF (Figure 8), in
keeping with the results reported elsewhere in this thesis. No differ-
ence in Gc-globulin concentrations in the hepatic vein, the artery,
and the central vein was detected even though Gc-globulin is pre-
sumed to be almost entirely synthesized in the liver. This apparent
discrepancy can be rather easily explained by the inaccuracy of the
analytical method.

Most patients with hepatic encephalopathy also underwent high
volume plasmapheresis (exchange of 8-10 liters of plasma), a treat-
ment option that may improve survival in some patients with ALF
serving as a bridge to urgent liver transplantation [113;168]. An esti-
mate of Gc-globulin production and halflife could be made in these
patients assuming a single compartment model and a volume of dis-
tribution (Vd) of 6 litres (Figure 9). The Gc-globulin production
rate was 4.1 ± 1.3 mg/min – 7-fold higher than the production rate
reported in healthy adults in the literature [34]. This surprising ob-
servation indicates a high priority for Gc-globulin in the necrotic
liver – as opposed to the conditions after partial hepatectomy [167]
– and protection against actin toxicity seems like an obvious expla-
nation for this high priority, since actin release from necrotic hepa-
tocytes is so abundant. Also, Gc-globulin’s immune functions may
be needed in ALF and acute on chronic liver disease, both condi-
tions being characterized by a high proportion of infections
[151;169]. Still, Gc-globulin concentrations were low despite the
Gc-globulin production increase, and this was due to a shorter than
normal halflife of Gc-globulin [5]. The Gc-globulin:actin complex
has a much shorter halflife than uncomplexed Gc-globulin [36;59]
and the observed decrease in Gc-globulin’s halflife is possibly due to
increased actin complexing. However, Gc-globulin could also have
been consumed as part of its function as a precursor of macrophage
activating factor [170;171] or activation of killer cells [83]. A possi-
ble bias in our study [5] was the fact that we compared our results in
liver patients with normal subjects reported in the literature rather
than performing the same measurements in normal subjects. How-
ever, the results were so striking that it is very unlikely that this
would have changed the conclusions of the study.

Bound Gc-globulin was constant and within normal range in all
patients and also before and after high volume plasmapheresis, in
keeping with the results reported in [6]. We speculate that uptake
and degradation of the Gc-globulin:actin complexes are regulated
by bound Gc-globulin concentrations, even in situations of severe
liver damage, by a receptor mechanism (Figure 9). The complexes
are taken up in sinusoidal endothelial cells or Kupffer cells [58;59]
and these cell lines may not suffer as much as hepatocytes during
liver injury [172;173] which could mean that the proposed regula-
tory mechanism is still intact in ALF and severe chronic liver disease.
However, proof for this hypothesis is lacking. Also, this hypothesis
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K2: rate constant for Gc-globulin clearance. Vd: volume of distribution of 
Gc-globulin. 
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may be challenged by the finding of very low (<5%) actin complex
ratio levels in one study using crossed immunoelectrophoresis
[100] rather than rocket immunoelectrophoresis. This is also what
should be expected since the halflife of the Gc-globulin:actin com-
plex is so much shorter than that of uncomplexed Gc-globulin
[34;36] – unless of course the proposed hypothesis is correct. Fur-
ther studies using several methods of analysis in the same serum
samples should elucidate these points.

CHRONIC LIVER DISEASE AND LIVER TRANSPLANTA-
TION
Chronic liver disease may arise from a number of etiologies. How-
ever, once cirrhosis develops symptomatology and clinical find-
ings are very similar among the patients with the risk of decom-
pensation in the form of variceal bleeding, ascites, hepatorenal
syndrome, or hepatic encephalopathy. 

Gc-globulin levels in chronic liver disease without cirrhosis
have been reported in 5 studies (Table 6) [16;96;104;105;109]. Se-
rum Gc-globulin was normal in 2 of those studies and below nor-
mal in the remaining 3; in 2 of them levels were one half of nor-
mal. The complex ratio was only measured in one study where
Goldschmidt-Clermont et al found complex ratio levels to be above
normal [96].

Nine studies have reported on Gc-globulin levels in cirrhotic
patients (Table 6) [4;5;20;63;103;105;160;174;175] and three of
those reported on patients with end-stage liver disease/decompen-
sated cirrhosis [4;5;175]. Total Gc-globulin concentrations were
reduced in all studies, to between 45% and 92% of normal levels
in compensated cirrhosis and to between 33% and 69% in decom-
pensated cirrhosis. Complex ratio was measured in 2 studies [4;5]
and was found to be increased in one of those studies [5]. Free Gc-
globulin levels were reported in two studies [4;5] and were below
normal range in both of them, in parallel with total Gc-globulin
concentrations (Table 6). 

Liver transplantation is required for some patients with decom-
pensated cirrhosis [176]. After liver transplantation, Gc-globulin
genotype seems to convert to that of the donor [177]. Gc-globulin
and complex ratio in patients with end-stage liver disease before and
after liver transplantation were reported in one study [4]. A minor-
ity of the patients had normal Gc-globulin levels before transplanta-
tion. In this group Gc-globulin levels remained normal after trans-
plantation (Figure 11). The majority of the patients had subnormal
Gc-globulin levels before transplantation. In this group Gc-globulin
levels gradually increased in most patients after transplantation
(Figure 11). This course parallelled that of the increase of the pro-
thrombin index but was in contrast to the continuous decrease in al-
bumin levels (Figure 12). So even though albumin and Gc-globulin

are phylogenetically closely related they are regulated very differ-
ently in the first 2 weeks after liver transplantation, in keeping with
the differences in the cytokine regulation of Gc-globulin and albu-
min synthesis observed in isolated hepatocytes [165]. These findings
are in contrast to an animal study where albumin synthesis was
found to be normal already 2 hours after liver transplantation [178]
and to a study where albumin synthesis was reported to be normal
13 months post-transplantation in humans [179].

In conclusion, Gc-globulin levels are moderately decreased in
chronic liver disease, most so in patients with cirrhosis and espe-

Authors  Year Cirrhosis Patients N T-Gc CR F-Gc

Barragry et al (16) . . . . . . . . . .  1978 No CLD (PBC, ALD, CAH) 45 0.78 NA NA
Bikle et al (104)  . . . . . . . . . . . .  1984 No ALD 25 0.47 NA NA
Lee et al (109)  . . . . . . . . . . . . .  1985 No CLD (PBC, ALD, CAH) 49 ~1 NA NA
Goldschmidt-Cl. et al (96) . . . .  1985 No CAH 7 0.52 1.6 NA
Diamond et al (105)  . . . . . . . .  1989 No CLD 54 1.06 NA NA
Bouillon et al (63)  . . . . . . . . . .  1977 Yes Cirrhosis 16 0.80 NA NA
Brown et al (20)   . . . . . . . . . . .  1979 Yes Cirrhosis 37 0.77 NA NA
Walsh et al (103)  . . . . . . . . . . .  1982 Yes Cirrhosis 4 0.65 NA NA
Constans et al (19)   . . . . . . . . .  1983 Yes Alcoholic cirrhosis 17 0.62 NA NA
Bouillon et al (174)  . . . . . . . . .  1984 Yes Cirrhosis 32 0.92 NA NA
Masuda et al (175). . . . . . . . . .  1989 Yes Cirrhosis 8 0.67 NA NA
    Decompensated cirrhosis 14 0.33 NA NA
Diamond et al (105)  . . . . . . . .  1989 Yes Cirrhosis 53 0.88 NA NA
Schiødt et al (4) . . . . . . . . . . . .  1999 Yes ESLD 17 0.69 1.1 0.67
Schiødt et al (5) . . . . . . . . . . . .  2001 Yes Cirrhosis 8 0.45 1.9 0.35
    Cirrhosis with HE 4 0.39 2.4 0.32

ALD = alcoholic liver disease. CAH = chronic active hepatitis. CLD = chronic liver disease. CR = complex 
ratio. ESLD = end-stage liver disease. F-Gc = free Gc-globulin. HE = hepatic encephalopathy. PBC = pri-
mary biliary cirrhosis. T-Gc = total Gc-globulin.

Table 6. Clinical studies on serum Gc-globulin in 
chronic liver disease. Levels are given as ratios 
compared to normal values. 

=  Gc-globulin =  Actin

Normal Hepatocyte necrosis
Parenchyma

Total Gc: normal
Free Gc: normal
Complex ratio: normal
Bound Gc: normal

Total Gc: very low
Free Gc: very low
Complex ratio: high
Bound Gc: normal

Lumen Parenchyma Lumen

Figure 10. A schematic view of the hypothesized results of hepatic necrosis 
on Gc-globulin and actin complex ratio. Total and free Gc-globulin con-
centrations decrease significantly following hepatocyte necrosis, whereas 
bound (actin-complexed Gc-globulin) remains constant and normal due to 
a proposed regulatory mechanism in endothelial cells that is intact even in 
liver failure.   
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cially in decompensated cirrhosis. Future studies should elucidate if
this decrease is caused by a fall in Gc-globulin production or an in-
creased Gc-globulin clearance – or both. Gc-globulin concentra-
tions normalize in most patients within the first 2 weeks following
liver transplantation, in contrast to albumin concentrations, indi-
cating a higher priority for Gc-globulin.

OTHER ASPECTS OF THE EXTRACELLULAR ACTIN-SCAVEN-
GER SYSTEM IN DISEASE
Serum Gc-globulin levels have been studied in other conditions
than liver diseases (Table 7). 

The degree of reduction of Gc-globulin levels in disease seems to
correlate with both the amount of necrosis and the cytokine re-
sponse (systemic inflammatory response syndrome, SIRS), since the
lowest levels have been observed in septic shock [180], a condition
characterized by widespread necrosis and hyperactivation of SIRS
[192-194]. Moderate reductions of serum Gc-globulin have been
observed in multiple trauma [163;185-187], in which SIRS is less ac-
tivated than in septic shock [194]. The decrease in Gc-globulin con-
centrations in trauma can been observed as early as 45 minutes after
injury [185] and Gc-globulin levels have prognostic value also in
this condition [186]. The reduced levels in nephrotic syndrome are
caused by urinary loss of Gc-globulin [184].

Interestingly, pregnancy (especially late pregnancy) seems to in-
duce an increased synthesis of Gc-globulin [16;63;96;100;103;104],
possibly due to increased estrogen levels, as estrogen therapy causes
increased Gc-globulin levels [16]. For unknown reasons short bowel
syndrome patients also have increased serum Gc-globulin values,
(Schiødt et al, data not published).

The other protein of the extracellular actin scavenger system, gel-
solin, has been studied in a number of diseases (Table 8).

All the diseases mentioned in Table 8 – except cancer – involve
acute cellular necrosis. Serum levels of gelsolin seem to correlate
with the degree of disease severity and the lowest levels have been
observed in ALF. It is not known if the reduction of serum gelsolin
concentrations is related solely to an increased consumption of gel-
solin due to actin scavenging or maybe also to decreased gelsolin
production.

Thus, in diseases and conditions involving tissue necrosis or tissue
injury the two components of the extracellular actin scavenger sys-
tem, Gc-globulin and gelsolin, are invariably affected and serum lev-
els of the 2 proteins are reduced, most so in patients with ALF or
septic shock. It remains to be studied if this reduction may be patho-
genetically involved in the diseases. One very recent study (208) sug-
gests so, since infusion of recombinant gelsolin to endotoximic mice
improved survival significantly. 

PERSPECTIVES:
The papers described in this thesis confirm that the actin scavenger
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Figure 11. Total (A, B) and free (C, D) serum Gc-globulin levels immediately 
before liver transplantation (day 0) and on day 2-14 post-transplantation. 
Group N: had normal total Gc-globulin before transplantation (A, C). 
Group S: had subnormal total Gc-globulin before transplantation (B, D). 
Dotted lines represent normal range (nl).
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Figure 12. Mean values of biochemical markers immediately before liver 
transplantation and on day 2-14 post-transplantation. Dotted lines rep-
resent normal range (mean ± 2 SD) (nl). *) P< 0.05 between groups. ALT: 
alanine aminotransferase. Alk. phosph: alkaline phosphatase. PT index: 
protrombin index (activity of coagulation factors II, VII; and X).
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system is significantly affected in liver disease. Serum levels of Gc-
globulin are often markedly reduced and the reduction correlates
with the severity and the acuity of the disease, since Gc-globulin
concentrations were lowest among patients with ALF, a condition
characterized by massive hepatic necrosis. This supports that Gc-
globulin is consumed upon tissue necrosis with concomitant actin
release. Gc-globulin levels could also be reduced if Gc-globulin were
used in its known nonspecific immune functions. This seems very
probable since liver diseases are characterized by a high proportion
of infections. Future research should try to elucidate Gc-globulin’s
role in infected liver patients in more detail. 

Admission serum Gc-globulin was demonstrated to be of equal
value as the King’s College Hospital criteria in determining outcome
in ALF. The advent of rapid methods of analysis (e.g., immuno-
nephelometry and ELISA techniques) suggests that measurement of
serum Gc-globulin could have value for the clinicians taking care of
patients with ALF, acetaminophen intoxication, or acute on chronic
liver disease. Also, there are a number of severe hepatic conditions
with a high mortality where the role of Gc-globulin has not been
studied yet, e.g., alcoholic hepatitis or spontaneous bacterial perito-
nitis.

The key question is really if Gc-globulin – or lack of Gc-globulin –
is in any way related to the pathogenesis of severe liver failure. Sup-
port for this hypothesis can be found in the observation that even in
patients with the deepest grades of hepatic encephalopathy admis-
sion Gc-globulin levels had a highly significant predictive value for
the later development of organ failure and MOF. Thus, lack of Gc-
globulin (or gelsolin) could lead to enhanced tissue necrosis due to
either local or systemic actin thrombi formation and to a greater risk
of infections, increasing the risk of organ failure and hence death. If
this was true, then Gc-globulin substitution should prove valuable.
In fact, Gc-globulin has been purified in large scale from plasma
Cohn fraction IV (209) and phase I trials on Gc-globulin infusion
are currently being planned. Hopefully, a Gc-globulin substitution
trial in liver disease patients can be performed within a few years.

APPENDIX
ROCKET IMMUNOELECTROPHORESIS OF 
SERUM GC-GLOBULIN 
 Serum levels of Gc-globulin was measured by rocket immunoelec-
trophoresis in 6 of the 7 studies used in this thesis [1-6]. Therefore,
the appendix describes this method in detail.

Blood samples were collected from either a cubital vein, a central
vein (usually the superior caval vein, via a central venous line), or a
peripheral artery (the radial artery). Blood samples were placed at
room temperature for one and a half hour to allow clot-retraction,
hereafter refrigerated at +4°C for at maximum of 3 days, usually for
less than 24 hours. The serum was separated at 3,000 RPM and
stored at -20°C until analysis. We studied the stability of Gc-globu-
lin in serum samples, stored at -20°C for up to 15 years in 21 pa-
tients admitted to this Department between 1978 and 1980 with no
sign or biochemical evidence of liver disease or other disease. These
patients were typically admitted for evaluation of potential intoxica-
tion or Gilbert's syndrome. Gc-globulin levels in this group did not
differ from normal individuals [2].

We adapted the Gc-globulin analysis from Goldschmidt-Clermont
et al [96] to provide an accurate rocket immunoelectrophoresis
method for determining both serum Gc-globulin and the percent-
age of Gc-globulin complexed to G-actin (i.e., complex ratio). The
principle of rocket immunoelectrophoresis is precipitation of anti-
body and antigen in an antibody containing agarose gel, over which
an electrical field is being applied [210]. We applied 30 mL of 1 per
cent w/v agarose (Agarose Litex HSA, Bie & Berntsen) gel (56°C)
containing 300 µL polyclonal anti-human Gc-globulin (DAKO,
Glostrup, Denmark) on a 200 × 100 mm glass plate to form a uni-
form 1 mm agarose layer on the plate. Twenty-six small wells were
punched after setting of the gel. Five µL of a sample were added in
each well. The glass plates were placed in the electrophoresis box
and connected to the two trunks, filled with TRIS-Veronal buffer
(0.02 M, pH 8.6), via five layers of filter paper wicks (Frisenette,
Ebeltoft, Denmark). Separated by filter paper wicks, three agarose
containing glass plates were placed on top of each other in each
electrophoresis box. A glass plate was placed on the upper wicks to
avoid water condensation on the surface of the gel. Normally, six
agarose gels were used per day in the laboratory. An LKB power
supply type 3371 C generated the sufficient field strenght, 10 mV/4
cm, and the water-cooled electrophoresis ran overnight at a temper-
ature of 14 °C. To remove non-precipitated proteins following
electrophoresis, the gels were pressed (45 minutes), washed in
destilled water for 10 minutes, pressed again (45 minutes), and hot
air-dried, using a hair-drier, until only a very thin »gel-film«
remained on the glass plate. The films were stained in a Coomassie
Brilliant Blue R-250 (Sigma B-0149) solution (Coomassie Brilliant
Blue 5 g; ethanol 96%, 450 mL; glacial acetic acid, 100 mL; distilled
water, 450 mL) for 15 minutes and destained in the destaning
solution (same ingredients as above, except for Coomassie) for 10
minutes. 

The height of the rockets, as measured from the top of the well to
the tip of the rocket, is proportional to the amount of antigen in the
well.

The electrophoretic mobility of the Gc-globulin:G-actin complex
has been shown to be greater than that of Gc-globulin alone
[96;211]. Therefore, two sets of known concentrations of Gc-globu-
lin (human Gc-globulin, SIGMA CHEMICALS CO, USA, code: G-
6889) were applied on each gel: one with Gc-globulin alone, and
one with Gc-globulin and saturating amounts of actin (porcine ac-
tin, SIGMA CHEMICALS CO, USA, code: A-0541). Five different
Gc-globulin concentrations were used for each standard curve:
1/6.75, 1/11, 1/18, 1/30, and 1/50. The samples were diluted 1:2 (one
part sample, 2 parts isotonic saline or actin solution) before applica-
tion in the wells. The gels contained two sets of standards and 4 pa-
tient samples (each with and without actin added, both in dupli-
cate). The two standard curves were plotted in a double logarithmic

Table 7. Serum Gc-globulin in non-hepatic diseases.

 Serum
Condition (ref.)  Gc-globulin

Septic shock (180;181)   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ↓↓
Prematurity (182;183) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ↓
Nephrotic syndrome (184)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ↓
Multiple trauma (163;185-187)   . . . . . . . . . . . . . . . . . . . . . . . . . ↓
Post-operatively (herniorrhaphy) (188-190)  . . . . . . . . . . . . . . . ↓
Ischemic heart disease (Hanash et al, data not published)   . . . ↓
Gastrointestinal diseases (191)   . . . . . . . . . . . . . . . . . . . . . . . . . =

Pregnancy (16;63;96;100;103;104)
 First trimester   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
 Second trimester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (↑)
 Third trimester   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ↑

Estrogen therapy (16;63)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ↑
Vitamin D deficiency (16)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ↑
Short bowel syndrome (Schiødt et Jeppesen, data not 
published)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ↑
 

Table 8. Serum gelsolin in various diseases.

 
Condition (ref.)  Serum gelsolin

Acute liver failure (51;195-197) . . . . . . . . . . . . . . . . . . . . . .  ↓↓
Malaria attack (198;199)   . . . . . . . . . . . . . . . . . . . . . . . . . . .  ↓
Trauma (200;201)   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ↓
Cancer (202-204) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ↓
Acute lung injury (205)   . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ↓
Pneumatic syndrome (206)   . . . . . . . . . . . . . . . . . . . . . . . . .  ↓
Rhabdomyolysis (207)   . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ↓
Septic shock (197) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ↓
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diagram. The total Gc-globulin concentration in a sample was cal-
culated by plotting the natural logarithm (ln) versus the rocket
height of the sample with added actin in the diagram and using the
upper standard curve. A perpendicular line from this point on the
Standard + actin curve was drawn. Next, the ln (rocket height of the
sample with no added actin) was plotted in the diagram, and the
junction between this value and the perpendicular of the Gc-globu-
lin + actin was noted. The complex ratio was calculated as the ratio
y/(y + x). A semiautomated computer program (in the software pro-
gram ®Lotus 1-2-3 version 2.3 for DOS) was constructed to calcu-
late serum Gc-globulin and complex ratio. The two standard curves
were calculated using linear regression analysis. Table 9 shows the
results of fifty consecutive standard curves. Both standard curves
had mean and median R2 values over 0.99, highest for the standard
curve with actin. The slope of the curve was steeper for the lower
standard curve, in accordance with the original description (96).
Standard error for the slope was in the 2 to 5 per cent range for both
curves, whereas standard errors of Y was 4 % and 8 %, respectively.
Repeated analyses of a given sample yielded a 6 % difference of the
calculated serum Gc-globulin value (coefficient of variance), and a
little higher difference for the calculated complex ratio.

SUMMARY
ENGLISH
This Doctoral thesis is based on 7 previously published papers and
reports on the role of the actin-scavenger Gc-globulin in acute and
chronic liver diseases. Gc-globulin is synthesized in the liver and is a
multifunctional protein; however, its main physiologic function is
presumably actin binding and actin scavenging. Actin is a major cel-
lular protein released during cell necrosis that may cause fatal for-
mation of actin-containing thrombi in the circulation if the actin
scavenging capacity of Gc-globulin is exceeded. 

In my studies, I found serum Gc-globulin levels to be reduced in
liver disease, most so in patients with acute liver failure (ALF). In pa-
tients admitted with acetaminophen (paracetamol) overdose, Gc-
globulin concentrations were lower in patients with hepatic encepha-
lopathy than in those without and the levels nadired at approxi-
mately 60-72 hours after acetaminophen ingestion, corresponding
with the peak in aminotransferese levels (and thus, hepatic necrosis).

In patients with ALF, admission Gc-globulin was significantly
lower in 47 nonsurvivors than in 30 survivors, 26% and 46% of nor-
mal, respectively (P< 0.001). The predictive value of outcome using
a Gc-globulin cutoff level of 100 mg/L equaled that of the interna-
tionally accepted King’s College Hospital criteria. The prognostic
value of Gc-globulin was confirmed in a separate study including
106 patients from the United States with nonacetaminophen-in-
duced ALF now using an automated nephelometric assay whereas
the prognostic value seemed less obvious for acetaminophen-in-
duced ALF.

Multiple organ failure (MOF) is a frequent complication of ALF.
In ALF patients with deep coma (hepatic encephalopathy grade III
or IV) Gc-globulin levels correlated inversely with the number of
failing organs. Levels were lower in patients who later developed
MOF than in those who did not.

Surprisingly, kinetic studies in patients with ALF and acute on

chronic liver disease showed Gc-globulin production to be 7-fold in-
creased in these conditions. Despite this increase Gc-globulin levels
were severely reduced and the reduction must therefore be due to a
highly increased consumption of Gc-globulin - probably because of
hepatocyte necrosis and removal from the circulation of Gc-globu-
lin:actin complexes or because of its role in immune-related functions.

Patients with chronic liver disease had reduced Gc-globulin levels,
but the reduction was less pronounced than in ALF. After liver
transplantation, Gc-globulin concentrations normalized within 2
weeks, in contrast to the continuous decrease in albumin levels sug-
gesting a very different regulation of these 2 phylogenetically related
proteins. 

It remains to be studied if lack of Gc-globulin contributes to the
pathogenesis of patients with ALF or chronic liver disease. Future
studies should focus on the potential value of Gc-globulin substitu-
tion in these patients.

Abbreviations used: ALF: acute liver failure. ELISA: enzyme linked
immunosorbent assay. MOF. Multiple organ failure. 
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