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1. INTRODUCTION
Cardiovascular (CV) mortality is 10 to 20 times higher in patients on
dialysis than in the general population, and even mild kidney dysfunc-
tion is a risk factor of cardiovascular disease (CVD) [7-11]. Although
highly prevalent, the increased risk cannot be explained by the classical
CV risk factors1 alone [15, 16]. In addition, patients with advanced
chronic kidney disease (CKD)2 respond differently than the general
population to treatment for CVD. For example, statin treatment,
which is effective in the prevention of CVD in the general population,
did not show any effect on CVD in hemodialysis patients with diabetes
[18]. On the other hand, vitamin E treatment, which is without any
effect in the prevention of CVD in the general population, reduced
CVD in hemodialysis patients with preexisting CVD [19]. These ob-
servations suggest that CKD may mediate increased risk of CVD
through nonclassical CV risk factors and/or atypical pathophysiology. 

The overall purpose of this thesis work was to describe a new ani-
mal model of uremic vascular disease that could provide a tool to
identify molecular responses of the arterial wall to uremia, and also
help identify new approaches for treatment and prevention of CVD.

1.1 CLINICAL BACKGROUND
CVD in patients with CKD
In the United States Renal Data System Wave 2 study of 3941 pa-
tients initiating dialysis, the prevalence of coronary heart disease,
congestive heart failure, cerebrovascular disease, and peripheral vas-
cular disease was 32.4%, 24.9%, 10.2% and 16.9%, respectively [20].
Over a 2.2-year follow-up, the incidence of new acute coronary syn-
drome, congestive heart failure, stroke and peripheral vascular dis-
ease was 10.2%, 13.6%, 2.2% and 14%, respectively [20]. A total of
36.1% of patients died during this period [20]. Also in patients with
minor reductions of kidney function, the frequency of atheroscle-
rotic events and congestive heart failure was markedly increased as
compared to the general population [8, 9, 11]. 

CKD in patients with CVD 
In a cohort study of randomly selected US Medicare patients admit-
ted to hospital with myocardial infarction or heart failure, the
prevalence of CKD (creatinine clearance < 60 mL/min/1.73m2) was
very high, 60 and 52%, respectively [21]. Similar observations were
made in a heart-function clinic cohort study in Canada [22]. In pa-
tients with myocardial infarction or heart failure, CKD is associated
with increased risk of adverse outcomes [21-23].

Prevalence of moderate and severe CKD 
In a sample representative of the American population [24], the
prevalence of CKD stages 3 to 4 was 3.8%. If CKD stages 1 to 2 were
included, the prevalence was 9.4%. This is close to the overall CKD
prevalence of 10.2% found in a large population-based study in
Norway [25]. The incidence of end-stage renal disease (CKD stage
5) among individuals with CKD, however, was 3 times lower in Nor-
wegian than in white patients in the US. This large variation in end-
stage renal disease incidence rates may be related to a higher preva-
lence of obesity and diabetes in the US population, and to different
management of patients with existing CKD in European versus US
populations [25, 26]. 

Arterial disease
Atherosclerosis is the most frequent underlying cause of coronary
heart disease, cerebrovascular disease, and peripheral vascular dis-
ease. It is a focal inflammatory-fibroproliferative disease in the in-
tima of medium-sized and large arteries, predominantly due to de-
position of atherogenic lipoproteins [27-30]. In CKD, a high preva-
lence of atherosclerosis has been shown by histological examination
of arterial biopsies from young uremic patients [31, 32] and angio-
graphic studies of asymptomatic patients with CKD considered for
renal transplantation [33, 34]. Atherosclerotic disease contributes to
the premature stiffening of the conduit arteries seen in CKD [35,
36]; however, this condition is also due to acceleration of the ageing
process with fibrous intimal thickening and medial changes such as
reduction in elastin content and the number of smooth muscle cells,
increase of collagen content, and extensive calcification [35, 37, 38].
Aortic stiffening (as assessed by pulse wave velocity measurements)
progresses with decreasing glomerular filtration rate (GFR) [39-40],
and is even observed in pediatric dialysis patients [41]. Aortic pulse
wave velocity is associated with the presence of arterial calcifications
[42-45], which are common and progressive in young and adult pa-
tients with stage 5 CKD [46, 47]. Stiffness of the aorta is associated
with increased systolic blood pressure (BP) and pulse pressure,
thereby increasing left ventricular afterload and hypertrophy [36].
The lower diastolic blood pressure, which is another consequence of
arterial stiffening, decreases coronary perfusion pressure. In patients
with stage 5 CKD, aortic pulse wave velocity is a strong and inde-
pendent predictor of CV and all-cause mortality [48, 49].

Heart disease
CKD is also characterized by structural and functional changes of the
heart. Left ventricular hypertrophy (LVH) and diastolic dysfunction
(as assessed by echocardiography) develop in early kidney failure in
both children and adults [50-52]. Accordingly, LVH was present in
27% of patients with a creatinine clearance greater than 50 mL/min
[53], and in a Canadian cohort study of 433 patients starting renal re-
placement therapy [54], 74% had LVH, 36% had left ventricular dilata-
tion, and 15% had systolic dysfunction. LVH is a strong independent
prognostic indicator of CV death in CKD [54, 55]. In addition, several
studies have demonstrated a high prevalence of cardiac valve calcifica-
tion and valvular heart disease in patients with stage 5 CKD [56-58]. 

CV risk factors in CKD
Classical risk factors for CVD are highly prevalent in CKD popula-
tions, but cannot alone explain the increased risk of CVD [59-62].
Thus, CKD is also associated with a growing number of “novel” pu-

1) Hypertension, diabetes, hypercholesterolemia, obesity, smoking and 
 physical inactivity in addition to male gender, high age and a family his-
tory of CVD, e.g. [12-14].

2) Defined as either kidney damage or glomerular filtration rate (GFR) 
< 60 mL/min/1.73 m2 for ≥ 3 months. Kidney damage is defined as path-
ologic abnormalities or markers of damage, including abnormalities in 
blood or urine tests or imaging studies. Stage 1: Kidney damage with GFR 
≥ 90 (mL/min/1.73m2), stage 2: kidney damage with GFR 60-89, stage 3: 
GFR 30-59, stage 4: GFR 15-29, stage 5: GFR< 15 (or dialysis) [17].
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tative CV risk factors, including markers of oxidative stress and in-
flammation and abnormal calcium-phosphorus metabolism [59,
60, 62]. The role of these nonclassical risk factors remains, however,
to be fully elucidated. 

Classical risk factors
Hypertension
Hypertension is present in 60 to 90% of CKD patients, depending
on the degree of kidney dysfunction and the cause of kidney disease
[63, 64]. Hypertension is associated with increased risk of CVD in
patients with stage 3-4 CKD [55, 63], whereas several studies in pa-
tients with stage 5 CKD have shown a U-shaped relationship be-
tween systolic BP and death [65-67]. These observations may be due
to other comorbid conditions, e.g. lower BP seen in patients with
cardiac failure. Hence, a prospective Canadian cohort study showed
that high BP predicted LVH and development of de novo cardiac
failure and de novo ischemic heart disease in dialysis patients [65].
The hypothesis that BP lowering reduces CV events in patients with
CKD has not yet been tested in a randomized, placebo-controlled
trial (RCT). 

Diabetes
Diabetes is present in 20-50% of patients with CKD [8, 63]. Dia-
betes is related to a higher risk for CVD in all stages of CKD [8, 55,
63]. Moreover, insulin resistance is an independent predictor of CV
mortality in stage 5 CKD [68]. A recent study showed that insulin
resistance is present even in the earliest stages of CKD [69]. 

Dyslipidemia
CKD is associated with dysregulation of several key enzymes and re-
ceptors involved in the metabolism of lipoproteins, particularly
those of high density lipoprotein (HDL) and triglyceride (TG)-rich
lipoproteins [70, 71]. Accordingly, uremic dyslipidemia is character-
ized by an increase in plasma TG and elevated plasma levels of very
low density lipoproteins (VLDL), intermediate-density lipoproteins
(IDL) and chylomicron remnants, reduced HDL cholesterol, and in-
creased lipoprotein(a) [70, 71]. Total and low density lipoprotein
(LDL)-cholesterol levels are usually normal or modestly increased
[70, 71]. Qualitative abnormalities in lipoproteins are common, in-
cluding increased proportions of small dense LDL, oxidized LDL
(OxLDL), and cholesterol-enriched TG-rich lipoproteins [70, 71].
Sources of variability in the severity of dyslipidemia include the
stage of CKD and the degree of proteinuria. Plasma total cholesterol
(and TG and apolipoprotein B), were predictors of increased CVD
in stages 3-4 CKD [63], but the relation between total cholesterol
and death is U-shaped in patients with stage 5 CKD [72]. A recent
study demonstrated, however, that among stage 5 CKD patients
without evidence of inflammation (defined by low serum albumin,
high interleucin(IL)-6, and high C-reactive protein (CRP) levels),
the expected relation between higher cholesterol and death was seen
[73]. In RCTs of statins, post hoc analyses of subgroups with im-
paired kidney function have suggested that statins are efficacious in
lowering CVD risk, at least in patients with mildly decreased GFR
(mean GFR 65 mL/min/1.73m2 [74] and 61 mL/min/1.73m2 [75]).
The randomized controlled atorvastatin 4D (Die Deutsche Diabetes
Dialyse) study including 1255 hemodialysis patients with type 2 dia-
betes, on the other hand, showed only a nonsignificant trend toward
an improved outcome with respect to the primary composite end
point (cardiac death, fatal stroke, nonfatal myocardial infarction,
nonfatal stroke) [18]. Two larger randomized trials using statins in
patients with CKD are ongoing (The Study of Heart and Renal Pro-
tection (SHARP) and The Study to Evaluate the Use of Rosuvastatin
in Subjects on Regular Hemodialysis: An Assessment of Survival and
Cardiovascular Events (AURORA)). There are no RCTs of fibrates
and nicotinic acid in patients with CKD. A post hoc subgroup an-
alysis of a RCT of gemfibrozil in men with established coronary ar-
tery disease, HDL cholesterol < 1 mmol/L and LDL cholesterol ≤ 3.6

mmol/L indicated that gemfibrozil may be effective for secondary
prevention of CV events in patients with estimated creatinine clear-
ance 30-75 mL/min [76]. Supplementation with n-3 polyunsatu-
rated fatty acids (PUFAs) had a favorable effect on lipoprotein pro-
file in patients with CKD [77]. A small RCT of n-3 PUFA did not
show any effect on the total number of CV events and all-cause
mortality in hemodialysis patients with established CVD [78]. How-
ever, treatment with n-3 PUFA for 2 years significantly reduced the
number of myocardial infarctions.

Obesity
Whereas obesity is an independent risk factor for CKD [79] and re-
lated to a higher risk for CVD in stage 3-4 CKD [63], a high body
mass index and a high body fat index are positively correlated with
survival in dialysis patients [79-81].

Smoking
Smoking is associated with increased CVD in all stages of CKD [20,
55, 63]. In dialysis patients smoking is associated with new-onset
congestive heart disease, peripheral vascular disease and death [20]. 

Physical inactivity
In the United States Cardiovascular Health Study, low physical activ-
ity (lowest quartile of reported energy expenditure) was a predictor
of CV mortality in patients with a mean GFR of 50 mL/min [55],
whereas in the United States Atherosclerosis Risk in Communities
study physical inactivity (less than 1 hour of sport activity per week)
was not associated with CVD in stage 3-4 CKD [63]. Exercise cap-
acity (peak oxygen uptake) was strongly predictive of survival in a
cohort of hemodialysis patients [82]. 

Nonclassical risk factors
Anemia
Anemia is associated with increased risk for CVD in all stages of
CKD [63, 83, 84]. Anemia increases the risk of LVH in mild to mod-
erate CKD [85], and the combination of both anemia and LVH
markedly increases the risk of adverse CV outcomes [84]. In dialysis
patients, anemia was associated with left ventricular dilatation, de-
velopment of de novo cardiac failure, and mortality [83]. RCTs have
not been able to demonstrate a positive effect of correction of an-
emia on LVH or CV outcome in CKD patients [86-91] .

Homocysteine
Plasma homocysteine levels and kidney function are inversely re-
lated [92]. Whether high plasma homocysteine levels contribute to
increased CV mortality in CKD patients remains controversial [93].
A recent study demonstrated that hyperhomocysteinemia may be a
strong risk factor for mortality in hemodialysis patients without evi-
dence of chronic inflammation-malnutrition (normal serum albu-
min and CRP) [94]. However, two RCTs of folic acid in predialy-
sis/dialysis patients showed a reduction of plasma homocysteine,
but no effect on CV outcomes [95, 96]. 

Calcium-phosphorus imbalance
Hyperphosphatemia and hyperparathyroidism are associated with
increased CV mortality [97]. The link between hyperparathyroidism
and hyperphosphatemia and CV complications likely are related to
arterial calcifications, since optimized treatment of calcium and
phosphate disturbances decreases arterial calcifications [98] and
mortality risk in hemodialysis patients [99]. Nevertheless, a recent
large multi-center, randomized, open-label trial (DCOR study)
[100] failed to show any beneficial effect of sevelamer over calcium-
based phosphate binders on overall mortality, cause-specific mortal-
ity or morbidity in hemodialysis patients. Current studies explore
the potential role of the reduced arterial expression of extracellular
calcium sensing receptor in patients with CKD stage 5 [101]. The
EVOLVE study is a global, double-blind, RCT evaluating the effect
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of cinacalcet (a calcimimetic drug) on mortality and CV events in
hemodialysis patients with secondary hyperparathyroidism [102]. 

Oxidative stress
Increased plasma and tissue levels of lipid, carbohydrate, and pro-
tein oxidation products are common in CKD patients [103, 104]. In
contrast to the negative outcome of RCTs of antioxidants in the
non-renal population at high CV risk [105] and of a post hoc sub-
group analysis in patients with mild-moderate CKD [106], two
small RCTs in hemodialysis patients showed a reduction in compos-
ite CVD end points, but not in total or CVD mortality, with vitamin
E 800 IU per day for 17 months and N-acetylcysteine 600 mg twice
daily for 14 months, respectively [19, 107]. 

Inflammation
Abnormal circulating levels of a variety of inflammatory factors [63,
108-110] are common in patients with CKD. Some of these (e.g.
CRP, IL-6, albumin, and fibrinogen) have been shown to be predic-
tors of CVD events or CVD mortality [55, 63, 109, 111, 112]. A
number of treatments have been shown to lower plasma CRP levels,
including statins, aspirin, and angiotensin converting enzyme
(ACE) inhibitors [113-115]. However, so far there is no evidence
that such therapeutic maneuvers improve survival in CKD patients.

Renin angiotensin system (RAS)
Inappropriate activation of RAS is one of the striking characteristics
of kidney failure [116]. A post hoc subgroup analysis of a RCT of
ramipril (an ACE-inhibitor) in patients who had preexisting vascu-
lar disease or diabetes, suggested that ramipril reduced CVD risk in
patients with mild kidney failure, regardless of whether or not the
patients had a history of hypertension [117]. Among two ran-
domized trials in hemodialysis patients, one study showed no bene-
fit of fosinopril (another ACE-inhibitor) over placebo in reducing
the incidence of CVD events [118], whereas the other small open-
label study of candesartan (an angiotensin II type 1 receptor
blocker) found a reduction of CVD events and mortality [119].
Noteworthy, there was no difference in mean BP at follow-up be-
tween intervention and control groups. However, both studies were
underpowered to permit reliable conclusions.

Sympathetic nerve activity
Plasma norepinephrine is associated with mortality and CV out-
comes in patients with stage 5 CKD [120]. The stimulus for in-
creased activity of the sympathetic nerve system in CKD appears to
be mediated by an afferent signal arising in the failing kidneys [121].
Interestingly, RAS inhibition decreases the sympathetic hyperactiv-
ity in CKD [122, 123]. 

Nitric oxide synthase (NOS)-nitric oxide (NO) system 
and endothelial function
Endothelial damage may lead to a decreased production of NO3 or
an increased breakdown [124, 125]. Dysfunction of the endo-
thelium4 has been demonstrated in several conditions associated
with increased risk of CVD, e.g. dyslipidemia, diabetes, arterial
hypertension, smoking  [124, 125, 127], and CKD [128]. In CKD,
several factors may interfere with the NOS-NO system [128], e.g. in
patients with CKD stage 5 those with the highest plasma concentra-
tions of asymmetrical dimethylarginine (ADMA), an inhibitor of
NOS, show the highest risk of CV events [129]. 

1.2 RATIONALE FOR THE ANIMAL EXPERIMENTS 
The mechanisms for the increased CV risk associated with CKD is
incompletely understood. Investigation of the underlying molecular
mechanisms of CVD in humans with CKD is difficult, because CV
tissues cannot easily be sampled for testing in living humans. More-
over, the variability in genetic and life style factors, underlying kid-
ney diseases, co-morbidity, and therapeutic regimens among pa-
tients with CKD may complicate interpretation of human data. In
animal models, however, it is possible to control these sources of
variability, and to obtain CV tissue for gene and protein expression
analysis at defined time intervals after the induction of uremia. 

When the experimental work behind this thesis work was under-
taken, there was no established animal model of uremia which was
susceptible to the development of atherosclerosis. Also, at that time
it was controversial whether the increased atherosclerosis seen in
uremia was due alone to the high prevalence of classical CV risk fac-
tors, or whether factors associated with kidney dysfunction played a
major role. Moreover, limited data was available on the effect of
conventional and non-conventional therapy on CVD in uremia.
Thus, the overall purpose of this thesis work was to establish an ani-
mal model that could be used to study the pathogenesis and poten-
tial therapies in uremic atherosclerosis. 

Aims 
The specific major aims were:

1. To establish an experimental mouse model for studying the
pathogenesis of atherosclerosis in uremia.

2. To test whether uremia resulted in accelerated atherosclerosis in
this model. 

3. To examine whether the composition of uremic plaques differed
from classical atherosclerotic lesions.

4. To explore uremia-induced gene expression changes in the arte-
rial wall.

5. To test whether accelerated atherogenesis in uremia was associ-
ated with the development of an immune response against oxi-
dized LDL (OxLDL).

6. To examine whether a proatherogenic effect of uremia was pre-
ventable by blockade of the renin angiotensin system (RAS).

7. To examine whether a proatherogenic effect of uremia was pre-
ventable by blockade of the receptor for advanced glycation end
products (RAGE).

8. To examine the effects of uremia on heart structure and function
in the apolipoprotein E-deficient (apoE-/-) mouse model.

2. METHODS 
2.1 ANIMALS
Male apolipoprotein E-deficient (apoE-/-) mice were used in the
present studies (Taconic M&B Laboratory Animals and Services for
Research, Ry, Denmark). The mice were fed a standard mouse diet
containing: 22.5% protein, 5% fat, 48% carbohydrates, 0.9% cal-
cium, 0.7% phosphorus, and 600 IU/kg of vitamin D3 (Altromin
1314, Lage, Germany). 

2.2 EXPERIMENTAL KIDNEY FAILURE 
– SURGICAL PROCEDURES
Kidney failure was induced in anesthetized apoE-/- mice by surgical
5/6 nephrectomy. After a modification of the initial procedures [1],
kidney failure was induced by a 2-step procedure as described [2].
Briefly, the upper and lower poles of the right kidney were resected
leaving an intact kidney segment. Two weeks later the left kidney
was removed after ligation of the renal blood vessels and the ureter.
The peri-operative mortality was 10-40% [1-5].

2.3 BLOOD PRESSURE
Systolic BP was measured with a tail-cuff system (BP 2000; Visitech
Systems, USA) that uses a photoelectric sensor to detect the blood

3) NO functions as an endogenous anti-atherogenic molecule by promoting 
arterial vasodilatation, inhibiting proliferation of vascular smooth muscle 
cells, attenuating platelet adhesion and aggregation, and inhibiting leuco-
cyte-endothelial interaction, e.g. [124, 125]. 

4) Arterial endothelial function can be assessed by measuring vasodilatation 
after stimulation of NO release by acetylcholine infusion, or by increasing 
flow and shear stress (e.g. by inflation followed by deflation of a proximal 
upper arm cuff) [126].
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flow in the tail [130]. This method gives results similar to those ob-
tained with an intraarterial method [130]. The variability in the BP
measurement was ~6% [1, 4].

2.4 ANALYSIS OF AORTIC ATHEROSCLEROSIS
Atherosclerosis was assessed in three different ways. For en face
examination of the total aortic intimal surface [131], total aortic
area and plaque area were determined by computer-assisted image
analysis (Multi-Analyst/PC version 1.1., Bio-Rad Laboratories,
USA). The inter-observer and intra-observer variability were 8.9%
and 5.3%, respectively [5]. For quantification of aortic lipid accu-
mulation, aortic lipids were extracted. The total aortic cholesterol
content was quantified with an enzymatic method [132]. Further, li-
pid composition of aortas was quantified with thin layer chromatog-
raphy (TLC) [133-135]. Coefficients of variation of the TLC assay
were 11-14% [133]. For histological examination, five cross sections
taken at defined intervals from the levels of the aortic valves and up-
ward were examined [136]. The sections were stained and plaque ar-
eas were measured (in µm2) with computer-assisted image analysis
equipment. Aortic root plaque area was expressed as the mean
plaque area of the five sections. 

2.5 ECHOCARDIOGRAPHY
The mice were anesthetized before transthoracic echocardiography
with a Vivid Five Instrument (GE Ultrasound, Denmark) and a 10-
MHz transducer head. To examine cardiac function during cardiac
stress, measurements were repeated after an intraperitoneal injec-
tion of dobutamine (1.0 µg/g body weight). Echocardiography and
data analyses were performed by an experienced examiner (E.B.) in
a blinded fashion. The intra-observer variability of measurements
was 5% (Bollano E, Sahlgrenska Academy, Goteborg University,
Sweden (Doctoral Thesis), 2001).

2.6 RNA ANALYSIS
Total RNA was isolated from aortas (or heart tissue) with TRIzol re-
agent after homogenization, as described [2-6]. RNA purity and
concentration were determined by absorbance measurements at 260
nm and 280 nm. RNA integrity was ensured by analysis of the
28S/18S ribosomal RNA ratio. 

Real-time polymerase chain reaction (PCR) in a Light Cycler was
used to quantify gene transcripts. The specificity of the PCRs was con-
firmed by DNA sequencing. MessengerRNA quantifications were
done twice (or more) in separate runs. The inter-assay coefficients of
variations for gene transcript quantifications were 10-14% [4]. To ac-
count for differences in cDNA preparation and cDNA amplification
efficiency, all mRNA expression data were normalized with the
mRNA expression of the house keeping gene in the same sample.

For mRNA micro-array analysis, aortic cRNA from uremic and
control aortas were hybridized to high-density oligonucleotide micro-
arrays containing approximately 12,000 probe sets (6,000 expressed
sequence tags and 6,000 characterized genes) (Affymetrix mouse ge-
nome U74Av2 array). Three chips (each hybridized with a pool of
cRNA made with RNA from 3 mouse aortas) were used to study the
global gene expression in each of the study groups. The image files
(cel files) were analyzed with the dChip software (www.dchip.org)
[137]. Probe sets that were significantly differentially expressed by
showing at least 1.5 fold change, an absolute change in expression of
≥ 50 units with P < 0.05 on a two-sample Student’s t-test were se-
lected. The lists of differentially expressed transcripts were annotated
based on Gene Ontology terms using the NetAffx Analysis Center
(www.affymetrix.com/index/analysis/index. affx) [138]. 

2.7 BIOCHEMISTRY
Plasma creatinine, urea, total calcium, and phosphate were meas-
ured with automatic analyzers [1-6]. Plasma total cholesterol and
triglyceride levels were assayed manually with enzymatic kits [133],
or plasma cholesterol was measured with an automatic analyzer [4].

For assessing plasma lipoproteins, pooled plasma samples (200 µl)
were subjected to fast-phase liquid chromatography [139]. Plasma
homocysteine was analyzed with a fluorescence polarization immu-
noassay (Abbott Axsym System, Axis-Shield, Oslo, Norway). 

Plasma concentrations of soluble (s) portions of intercellular ad-
hesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1
(VCAM-1) were measured with monoclonal antibody-based sand-
wich ELISA kits (R&D Systems Europe, Abingdon, Oxon, UK). The
intra-assay coefficients of variation were < 5% for both ELISA assays
[2, 4, 5]. Plasma ACE activity was measured after centrifugation of
the plasma samples at 20.000 × g with a kit (Trinity Biotech Sigma
Clinical Chemistry, Bray, Ireland). The intra-assay coefficient of
variation was < 5% [4]. Titers of antibodies against OxLDL were de-
termined by chemiluminescent enzyme immunoassays, as described
[140]. Plasma levels of oxidized phospholipid (EO6) epitopes
present on apolipoprotein B-100 (apoB-100) [4] or in total plasma
[5] were measured by a chemiluminescent ELISA [141, 142] using a
biotinylated mouse antibody EO6, which specifically recognizes the
phosphorylcholine moiety of oxidized phospholipids. 

3. RESULTS AND DISCUSSION
3.1 A MOUSE MODEL OF UREMIC ATHEROSCLEROSIS
None of the common laboratory animals spontaneously develop
mature atherosclerotic lesions. Accordingly, previous studies of ar-
terial disease in rats and rabbits rendered uremic by partial nephrec-
tomy failed to show intimal accumulation of foam cells and lipids
[143, 144]. 

Since these early studies were undertaken, however, gene manipu-
lation techniques have made it possible to alter genes involved in
lipid metabolism. The hyperlipidemic apolipoprotein E-deficient
(apoE-/-) and LDL receptor-deficient (LDLR-/-) mouse models
were developed in 1992-93 [145-148]. Apolipoprotein E (apoE)
serves as a ligand for the LDL and chylomicron-remnant receptors
and plays an important role in the hepatic clearance of lipoprotein
particles from the plasma [149]. ApoE-/- mice show elevated plasma
cholesterol levels (approximately five times normal5) as a result of
accumulation of chylomicron and VLDL remnant lipoproteins [147,
148]. Atherosclerotic lesions similar to those found in humans de-
velop in the aortas of these mice, even when fed a chow diet [147,
148, 150, 151]. Foam cell lesions begin to appear at 10-15 weeks of
age, and advanced lesions consisting of a central necrotic core with
cholesterol clefts and foam cells, covered by a fibrous cap containing
smooth muscle cells and connective tissue, show after 5-8 months
[150, 151]. Interestingly, plaque rupture and superimposed throm-
bosis is exceedingly rare in apoE-/- mice [152, 153]. Thus, the apoE
-/- mouse model provides only intermediate CV end points. LDLR-
/- mice accumulate LDL in plasma due to a defect clearance and de-
velop severe atherosclerotic lesions throughout their aortas, when
fed a fat and cholesterol enriched diet [145, 154]. The apoE-/- and
LDLR-/- mouse models are now widely used for studying the patho-
genesis of atherosclerosis. Since 2003 three independent groups (in-
cluding Bro et al.) have used the apoE -/- mouse model for studies
of arterial disease in uremia [1, 155, 156]. A fourth group has pre-
sented a study in uremic LDLR -/- mice [157].

Experimental kidney disease may be induced by reduction of the
renal mass by surgery [158, 159] or electrocoagulation [144, 160], li-
gation of renal arterial branches [161], ureteral obstruction [162],
renal irradiation [163] or treatment with tubulotoxic substances
[164]. In the studies by Bro et al., apoE-/- mice were rendered ur-
emic by surgical 5/6 nephrectomy (NX). This method was preferred,
since it allowed a controlled graduation of kidney damage, and a
minimal risk of unwanted side-effects on other organ systems. Fur-
thermore, the uremic state seemed to be relatively stable over time.

5) The average plasma cholesterol of wild-type mice is 1-3 mmol/L and most 
of this cholesterol is carried by HDL. Levels of LDL and VLDL are very 
low. 
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The uremic mice were characterized by a ~2.5-fold increase of
plasma urea [1], which is similar to findings in other studies [155-
157], and a reduction of creatinine clearance to 1/3 of that in mice
with normal kidney function [6]. Like in rats [165], diuresis was in-
creased by uremia [6]. The plasma urea levels remained stable from
4 to 22 weeks after NX [1]. Another group reported that proteinuria
did not increase after subtotal nephrectomy in apoE-/- mice [166],
and a histological study [167] found no progression of CKD 12
weeks after surgery. The uremic apoE-/- mice thrived normally with
a moderate (10 to 17%) reduction of body weight [1, 4]. The blood
hemoglobin concentration was lower (18 to 23%), and the plasma
phosphate level was higher (18 to 27%) in uremic compared with
control mice [1, 4]. Uremic mice showed increased plasma total
cholesterol, VLDL and IDL/LDL cholesterol concentrations [1, 3, 4]. 

In contrast to humans [168, 169], the mice showed 11 to 18%
higher plasma total calcium levels, and did not develop hyper-
homocysteinemia or hypertension upon the induction of uremia [1,
4]. The explanation for the elevated plasma calcium concentration
consistently reported after renal mass reduction in mice and dogs [1,
2, 4, 156, 160, 161, 170] remains enigmatic. Despite the hypercalc-
emia, uremia in both mice and dogs still is accompanied by hyper-
parathyroidism [156, 161, 170]. Like dogs [171] and rabbits [144],
some mouse strains, e.g. the C57BL/6J mouse [1, 4, 155, 156, 172,
173], do not develop hypertension upon renal mass reduction. The
reason is unknown. 

3.2 UREMIA ACCELERATES ATHEROGENESIS 
Twenty-two weeks after NX, the total aortic plaque area fraction, to-
tal aortic cholesterol content, and aortic root plaque area were in-
creased in uremic mice [1] (Figure 1). The unilaterally nephrec-
tomized mice showed intermediate increases (Figure 1). The total
aortic plaque area fraction was closely associated with the total aor-
tic cholesterol content, whereas the association with the aortic root
plaque area was less pronounced [1]. The effect of uremia on
atherogenesis in apoE-/- mice was independent of BP and plasma
homocysteine levels (which were similar in uremic and non-uremic
mice), and it could not be fully explained by changes in total plasma
cholesterol [1]. It is likely, however, that the higher total cholesterol
concentration contributed to the accelerated formation of athero-
sclerosis in uremic mice. In support of this idea, normocholestero-
lemic C57BL/6J mice developed no plaques after subtotal nephrec-
tomy [174], whereas the uremic and hypercholesterolemic mice
developed severe and advanced lesions [1, 2, 4, 5]. Similar observa-
tions were made by other groups [155-157, 175]. The change in the
cholesterol distribution between lipoproteins [1] may also have con-
tributed to the effect of CKD on atherosclerosis. A differential ather-
ogenic response to uremia in different parts of the aorta as shown in
Figure 1 (i.e. a less pronounced effect of uremia on plaque area in
the aortic root than in the total aorta) was also observed by Massy et
al. [156]. The impact of unilateral nephrectomy on atherosclerosis,
which has also been demonstrated by others [155, 176], was note-
worthy. It may be specific to the apoE-/- mouse model, however,
since the apoE-/- mouse spontaneously develops renal lesions with
lipid deposits in the glomeruli [177].

In conclusion, the studies by Bro et al. and three other groups sup-
port the hypothesis that atherogenesis is markedly increased after in-
duction of kidney failure in mice with genetical hyperlipidemia. 

3.3 PLAQUE COMPOSITION IS SIMILAR IN CLASSICAL 
AND UREMIC ATHEROSCLEROSIS
The studies by Bro et al. [1, 2] suggested that the composition of
uremic plaques did not differ from classical atherosclerotic lesions.
Thus, early uremic lesions contained lipid-filled macrophages in the
intima [2], and advanced uremic lesions showed accumulation of
extracellular lipids, lipid-filled macrophages, and collagen-rich con-
nective tissue [1] (Figure 2). Biochemical analyses demonstrated in-
creased free and esterified cholesterol in uremic aortas [2], which is

pathognomonic of classical atherosclerosis. These findings are in
agreement with those of Buzello et al. [155]. Massy et al. [156]
found that the macrophage infiltration (percentage of plaque area)
was similar in aortic plaques from uremic and non-uremic apoE-/-
mice, whereas the collagen content was higher in the uremic
plaques. 

In conclusion, both morphologic and biochemical analyses of
aortas suggested that accelerated initiation and expansion rather
than a specific uremic lesion composition characterize atheroscler-
osis in the uremic mice. 

3.4 UREMIA-INDUCED GENE EXPRESSION CHANGES 
IN THE ARTERIAL WALL
Effects on vascular inflammation
In uremia, signs of increased inflammation including increased
plasma concentrations of soluble portions of major adhesion mol-
ecules, such as ICAM-1 and VCAM-1 [110, 178, 179] are seen.
Moreover, uremic plasma causes increased expression of mRNA for
ICAM-1, VCAM-1 and E-selectin and enhanced shedding of the sol-
uble parts of these adhesion molecules when added to cultures of
vascular endothelial cells [180]. Increased expression of adhesion
molecules represents a key event in atherogenesis initiation by medi-
ating the recruitment of mononuclear white blood cells to the in-

Figure 1. Severity of 
aortic atherosclerosis  
in apoE -/- mice with 
chronic uremia. Aortic 
atherosclerosis was 
measured at 22 weeks 
after 5/6 neph rectomy 
(NX, n=28), unilateral 
nephrectomy (UNX, 
n=24) or no-surgery 
(Controls, n=23). 
 Aortic plaque area 
fraction (A), aortic to-
tal cholesterol content 
(B), and aortic root 
plaque area (C). 
Values are mean ± 
SEM. NS = not signifi-
cant (modified from 
[1]).
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tima [181, 182]. Thus, Bro et al. [2] tested the hypothesis that the
expression of major adhesion molecules might be upregulated in
aortas of uremic mice. Interestingly, uremic aortas had increased ex-
pression of ICAM-1 and VCAM-1. The expression of ICAM-1 and
VCAM-1 is regulated transcriptionally in a nuclear factor-κB (NF-
κB) dependent fashion [183]. NF-κB is a key transcription factor in
vascular inflammation and is activated by proinflammatory cy-
tokines, angiotensin II, atherogenic lipoproteins, advanced glycation
end products (AGEs), and reactive oxygen intermediates [184]. The
above-mentioned stimuli are all characteristically in excess in ure-
mia, suggesting that NF-κB activation may trigger the observed in-
creases of ICAM-1 and VCAM-1 expression. 

To identify novel genes of importance to the development of ur-
emic arterial disease, Bro et al. [3] performed micro-array analyses
of aortic RNA from uremic and control (sham-operated) apoE
-/- mice before and after lesion formation was initiated. With the
micro-array analysis, it was possible to examine the expression of
6,000 characterized genes on a single assay. The gene expression
changes were verified by real-time PCR quantification of 8 selected
genes using RNA from individual mouse aortas. 

Two weeks after surgery, i.e. before lesion formation, 23 of the 41
differentially expressed genes were related to inflammation (all were
increased). This observation is in close accordance with the above
findings. It was striking that 16 of the 41 differentially expressed
genes after 2 weeks were related to production of immunoglobulins.
Although no B-lymphocytes were seen in sections of non-lesioned
uremic aortas, the result could reflect that uremia is accompanied by
a humoral immune response. Indeed, a later study by Bro et al. [4]
could demonstrate a marked increase of plasma titers of antibodies
against OxLDL 2 weeks after the induction of uremia. 

In mice with early atherosclerotic lesions, 24 genes were differen-
tially expressed in uremic compared with control mice [3]. Nine
transcripts involved in inflammation were all upregulated (1.8- to
8.7-fold) and included osteopontin, matrix metalloproteinases-3
and -12, VCAM-1, and serum amyloid A. All of these genes have
been implicated in atherogenesis. 

In conclusion, the above findings support the notion that an aug-
mented inflammatory response in the arterial wall may be an im-
portant impetus for initiation and expansion of atherosclerosis in
uremia. 

Effects in the arterial media
In the uremic mice with early atherosclerotic lesions, a prominent
change observed with the micro-array analysis of aortic RNA was
3.3- to 142-fold downregulations of transcripts assigned to muscle
structure and development, e.g. myosin and α-actin encoding genes.

The ≥ 3.3 fold downregulation of expression of muscle cell assigned
genes (corresponding to ≥ 70% reductions) suggested that uremia in
apoE-/- mice affects smooth muscle cells at all sites within the ar-
terial wall and not only beneath the lesions, since only 3.9% of the
aortic surface area contained lesions. 

To expand this idea, Bro et al. [3] compared the expression of
both macrophage assigned and muscle cell assigned genes in le-
sioned versus non-lesioned areas of the aortas from non-uremic
apoE-/- mice with classical atherosclerosis. Noteworthy, in the le-
sioned areas ~ 30% was lesion-covered, and the lesions were more
advanced than those in the uremic apoE-/- mice. Accordingly, mac-
rophage assigned genes displayed more pronounced increases in ex-
pression in lesioned versus non-lesioned areas of the aortas from
non-uremic apoE-/- mice with classical atherosclerosis than in the
uremic versus sham apoE-/- aortas. In contrast, the downregulation
of muscle cell assigned genes was similar or more pronounced in the
uremic versus sham apoE-/- aortas as compared with lesioned ver-
sus non-lesioned areas of non-uremic apoE-/- mouse aortas. 

To further evaluate the structural characteristics of the arterial
media in uremic mice, Bro et al. [3] examined aortas with advanced
atherosclerosis from uremic and control mice by electron micros-
copy. The ultrastructure of the media was different in the uremic
compared with the sham-operated apoE -/- mice, both underneath

Figure 2. Representative micrographs showing histopathology of athero-
sclerotic plaques in an apoE -/- mouse with chronic uremia and a control 
mouse. Aortic atherosclerosis was measured at 22 weeks after 5/6 neph-
rectomy. (A) Elastic trichrome-stained cross-section of the aortic root from 
an apoE -/- mouse with chronic uremia and advanced plaque formation. The 
plaque extends into the media and consists of lipid-filled macrophages, 
 extracellular lipids, and collagen-rich connective tissue. (B) Elastic trichrome-
stained cross-section of the aortic root from a control apoE-/- mouse (no 
surgery) [1].

BA

Figure 3. Electron microscopy showing altered ultrastructure of aortic me-
dia in apoE-/- mice with chronic uremia. Ultrathin sections of the aortic root 
from uremic and control mice were examined 37 weeks after 5/6 nephrec-
tomy (NX) or sham- operation (Sh) in apoE-/- mice. A, media under non-
lesioned intima (i) in a Sh mouse aorta. B, media under lesioned intima in a 
Sh mouse aorta. Note the more vacuolized and irregularly shaped smooth 
muscle cells and increased deposition of intercellular matrix as compared 
with A (media under nonlesioned intima in Sh mouse). C, media under non-
lesioned intima (i) in a NX mouse aorta. The density of the smooth muscle 
cells was decreased with more intercellular matrix and some of the smooth 
muscle cells were irregularly shaped and vacuolized, as compared with 
A (media under nonlesioned intima in Sh mouse). D to F, media under 
 lesioned intima in NX mouse aorta. In comparison with media under 
 non lesioned intima in NX mice (C), as well as media under intimal lesions in 
Sh mice (B), the smooth muscle cells were more vacuolized and surrounded 
by increased intercellular matrix (D). Under lesioned intima in NX mouse 
aorta some smooth muscle cells were necrotic (E), and others were ir-
regularly shaped with large projections (F); those alterations were not seen 
under non lesioned intima in NX mouse aortas or in sham mouse aortas. 
Original magnification 3500 × (B, D, E), 2800 × (A and F), 2200 × (C) (modi-
fied from [3]).
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non-lesioned and lesioned intima (Figure 3). The smooth muscle
cells in uremic aortas were characterized by more irregular shaping,
vacuolization, and necrosis, and were fewer in number than in con-
trol aortas. These observations agree with the results of the micro-
array analysis and support the notion that uremia has a marked ef-
fect on smooth muscle cells in the arterial media. The morphologi-
cal alterations in the media of apoE-/- mice were similar to those de-
scribed by Ejerblad et al. in aortas from uremic rats [143, 185], and
in radial arteries from uremic patients [186]. Disorganized arrange-
ment of smooth muscle cells and increased extracellular matrix were
also described by Moe et al. [187] in inferior epigastric arteries with
medial calcifications from patients with stage 5 CKD undergoing re-
nal transplantation.

 Noteworthy, in contrast to the finding in apoE-/- mice, Bro et al.
did not observe changes in muscle cell biology related genes in ur-
emic normocholesterolemic wild-type mice [3]. This may reflect
that hypercholesterolemia is required to change smooth muscle cell
gene expression in uremic mouse aortas and raises the possibility
that the changes in smooth muscle cell biology may be associated
with the accelerated intimal lesion formation. It is also possible that
other metabolic disturbances, e.g. abnormalities in calcium and
phosphate metabolism, or apoE in itself, may play a role. Uremic
apoE-/- mice [2] and uremic rats [143] display increased plasma
calcium × phosphate products, whereas the calcium × phosphate
product was not increased by induction of uremia in the wild-type
mice in the study by Bro et al. [3]. Interestingly, it was possible to re-
duce medial smooth muscle cell necrosis (and almost completely
prevent medial calcifications) by parathyroidectomy prior to 5/6
nephrectomy in rats [143]. Recently, Shanahan et al. [188, 189] and
others [190-192] have emphasized the importance of vascular
smooth muscle cell damage (apoptosis) and osteoblastic transfor-
mation in uremic vascular disease. Experimental in vitro data sug-
gest that multiple factors, such as elevated levels of circulating cal-
cium and phosphate, reactive oxygen species(ROS), oxidized lipids,
AGEs, and inflammatory cytokines, may contribute to the vascular
smooth muscle cell changes seen in CKD [193-197]. 

In conclusion, the gene expression analysis, in addition to show-
ing increased inflammation, suggests that uremic vasculopathy in
apoE-/- mice is characterized by a uremia-specific medial smooth
muscle cell degeneration. This observation was supported by elec-
tron microscopy studies. Noteworthy, other changes in gene expres-
sion patterns than those seen by Bro et al. in uremic aortas may have
been overlooked due to limitations of the micro-array analysis.
Hence, the micro-arrays used in the study by Bro et al. did not cover
the complete mouse genome (such micro-arrays did not become
available until 2004).

3.5 UREMIA IS ASSOCIATED WITH DEVELOPMENT 
OF AN IMMUNE RESPONSE AGAINST OXIDIZED LDL 
Uremia is associated with increased plasma levels of markers of oxi-
dative stress, and reduced levels of antioxidants [103, 104]. Aortic
lesions in uremic apoE -/- mice display a marked accumulation of
nitrotyrosine (a marker of ROS-modification of proteins) [1, 155],
and express receptors for AGEs (RAGE) [155], which upon acti-
vation may lead to prooxidative changes including increased expres-
sion of nicotinamide adenine dinucleotide phosphate-oxidase
(NADPH oxidase) and formation of ROS [198]. Increased produc-
tion of ROS may promote generation of OxLDL [199], which has
important proatherogenic effects in the vasculature including en-
dothelial damage and accelerated foam cell formation [28, 200-202].
In addition, the formation of oxidized neoepitopes in LDL can elicit
an immune response with formation of antibodies against OxLDL
[200, 201, 203]. Indeed, patients with CKD display both elevated
levels of OxLDL and titers of antibodies against OxLDL [204, 205]. 

Bro et al. [4] tested the idea that accelerated atherogenesis in ur-
emic mice is associated with development of an immune response
against OxLDL. In fact, acute uremia led to a rapid immune re-

sponse in the uremic apoE-/- mouse model, as indicated by marked
increases of titers of IgM antibodies against OxLDL 2 weeks after
NX. The formation of antibodies against OxLDL 2 weeks after in-
duction of uremia likely reflects increased generation of OxLDL.
Hence, the circulating levels of the oxidized phospholipid epitope
EO6 present on apoB-100 were increased in uremic mice [4]. Inter-
estingly, in normocholesterolemic wild-type mice, the antibody re-
sponse to OxLDL on the induction of uremia by NX was similar to
that in apoE-/- mice indicating that this effect was not dependent on
hypercholesterolemia [4]. All together, the studies by Bro et al.
suggest that uremia is associated with development of an immune
response against OxLDL in mice. Even though increased oxidative
stress is a known proatherogenic stimulus [201, 202], it is not clear
whether the induced antibodies themselves have pro- or antiathero-
genic properties. In LDLR-/- mice, titers of antibodies against
OxLDL are positively associated with atherosclerosis [206]. Never-
theless, vaccination with OxLDL protects animal models against
atherosclerosis [207-209]. Studies are currently in progression to de-
termine the effect of vaccination with OxLDL on atherogenesis in
uremic apoE-/- mice (our group). 

3.6 THE PROATHEROGENIC EFFECT OF UREMIA 
IN MICE IS PREVENTABLE BY INHIBITION OF 
THE RENIN ANGIOTENSIN SYSTEM
Besides the dysregulation of extracellular fluid volume and vasocon-
striction, one of the most deleterious actions of RAS is activation of
NADPH oxidase by angiotensin II, resulting in formation of ROS,
which leads to upregulation of inflammatory mediators including
cytokines, chemokines and adhesion molecules, and ROS scaveng-
ing of NO, e.g. [210, 211]. These events may promote endothelial
dysfunction, and progression of atherosclerosis [210, 211]. More-
over, treatment with ACE inhibitors or angiotensin II receptor
antagonists has previously been reported to be anti-inflammatory
[212] and to inhibit LDL oxidation in vitro [213, 214]. Bro et al. [4]
therefore examined whether the proatherogenic effect of uremia
would be preventable by RAS inhibition in apoE-/- mice. 

Three different findings supported that this is the case. Firstly, the
effect of uremia on atherosclerosis was essentially eliminated by an
ACE inhibitor (enalapril 12 mg/kg/d), when the treatment was
started 4 weeks after NX, i.e. before or at a very early stage of lesion
development (Figure 4A). Secondly, when enalapril treatment was
initiated 20 weeks after surgery, i.e. at a time where lesion formation
is expected to be extensive, the mean aortic plaque area fraction was
reduced by ~30% [4].

Thirdly, enalapril and losartan (an angiotensin II receptor
blocker) both reduced aortic atherosclerosis in uremic apoE-/- mice
(Figure 4B). Although hydralazine was as effective as enalapril and
losartan in lowering the BP, it did not reduce atherosclerosis in ur-
emic apoE-/- mice (Figure 4B). This finding is in agreement with a
BP-independent reduction of atherosclerosis by losartan in unilater-
ally nephrectomized apoE-/- mice [176]. 

The effect of enalapril on atherosclerosis was parallelled by reduc-
tions of the aortic expression of VCAM-1 mRNA (Figure 5A) and
the plasma concentrations of sVCAM-1 and sICAM-1 [4]. Also,
enalapril attenuated the increase of IgM antibodies against OxLDL
(Figure 5B), when treatment was started immediately after induc-
tion of uremia. 

In conclusion, these results suggest that RAS blockade prevents the
proatherogenic effect of uremia in mice. The impact of RAS inhibi-
tion on atherosclerosis was at least partly independent of BP-lower-
ing and possibly reflects anti-inflammatory and antioxidative effects. 

3.7 THE PROATHEROGENIC EFFECT OF UREMIA IN MICE 
IS REDUCED BY BLOCKADE OF THE RECEPTOR FOR 
ADVANCED GLYCATION END PRODUCTS
Both diabetes and kidney dysfunction cause increased plasma con-
centrations of AGEs [215, 216]. AGEs are formed by non-enzymatic
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glycation in a series of biochemical reactions between glucose and
reactive carbonyl compounds, proteins, lipids or nucleic acids [217,
218]. They bind to and activate the receptor for AGEs (RAGE)
[198]. Other RAGE ligands include S100/calgranulins, amphoterin,
and the β2-integrin Mac-1 [219, 220]. RAGE is expressed in cul-
tured endothelial cells, monocytes/macrophages, and smooth
muscle cells [198]; all three cell types participate in atherosclerotic
lesion formation. In vitro, ligand interaction with RAGE leads to
prooxidative changes including increased expression of NADPH ox-
idase and formation of ROS [198]. RAGE stimulation may also
activate NFκB and as such increase the expression of adhesion mol-
ecules and other proinflammatory molecules [198]. Upregulation of
vascular RAGE expression has been demonstrated in both diabetic
individuals and uremic individuals without diabetes [221, 222]. A
role of RAGE in atherogenesis is suggested by reduced development
of atherosclerosis in diabetic apoE-/- mice upon blockade of RAGE
with a soluble extracellular ligand-binding domain of RAGE [223,
224].

Previous studies developed a monoclonal RAGE-antibody that
blocks RAGE and inhibits signaling events elicited by RAGE ligands
in vitro [225] and adverse renal effects in diabetic mice in vivo [226,
227]. To test the involvement of RAGE in development of uremic
atherosclerosis, Bro et al. [5] treated uremic apoE-/- mice with the
RAGE-antibody or an isotype-matched, control antibody for 12

weeks. The RAGE-antibody reduced the aortic plaque area fraction
by 59% (Figure 6A). 

Treatment with RAGE-antibody reduced total plasma levels of the
oxidized phospholipid epitope (EO6) (Figure 6B). Moreover, the
titers of IgG antibodies against both malondialdehyde modified
(MDA)-LDL and Cu2+-oxidized (CuOx)-LDL (Figure 6C) were also
reduced in the RAGE-antibody treated group. OxLDL have several
proatherogenic effects including endothelial damage and accelerated
foam cell formation [28, 200-202]. Thus, an antioxidative effect of
the RAGE-antibody could explain the reduced development of
atherosclerosis in RAGE-antibody treated uremic apoE-/- mice.

It is unknown whether the effect of RAGE blockade reflects a dir-
ect effect of RAGE in the arterial wall in addition to a systemic de-
crease in oxidative stress. Although RAGE mRNA was expressed in
the arterial wall and the expression was increased in uremic versus
non-uremic mice, the tissue expression was >1000-fold lower in the
aorta than in the lung [5]. Treatment of uremic mice with the
RAGE-antibody did not affect aortic mRNA expression of VCAM-1
and ICAM-1 or other selected inflammatory genes [5]. Thus, these
results contrast the findings in both type 1 and type 2 diabetic apoE-
/- mice where treatment with a soluble extracellular ligand-binding
domain of RAGE resulted in decreased VCAM-1 protein expression
in aorta [224, 228]. The apparent discrepancy might reflect subtle
differences in effects of the two modalities used to block RAGE, e.g.
that different downstream pathways may be affected depending on
the agent used for RAGE blockade. Also, it is possible that the effects
of RAGE blockade on atherosclerosis in uremic apoE-/- mice de-
pend on other effects than those mediated through NF-κB. Hence, a
previous in vivo study also saw no effect on NF-κB activation, de-
spite effects on renal morphology and function when treating dia-
betic mice with the RAGE-antibody [226].

Figure 4. Effect of treatment with enalapril, losartan, and hydralazine on 
atherosclerosis in uremic apoE-/- mice. (A) Aortic atherosclerosis was meas-
ured at 36 weeks after 5/6 nephrectomy (NX) or sham-operation in apoE-/- 
mice. Enalapril administration was started 4 weeks after NX or sham-opera-
tion. , Sham-operated mice treated with 0 or 12 mg/kg/d of enalapril (n = 
22 and 24, respectively); , uremic mice treated with 0, 2 or 12 mg/kg/d of 
enalapril (n = 20, 21 and 23, respectively). Values are mean ± SEM. (B) Aortic 
atherosclerosis at 16 weeks after 5/6 nephrectomy (NX) or sham-operation 
in apoE-/- mice. Drugs were administered from 1 week after NX and contin-
ued for 15 weeks. Sh, sham-operated mice receiving no treatment (n = 6); 
NX, uremic mice receiving no treatment (n = 10); NX+E, uremic mice treated 
with enalapril 12 mg/kg/d (n = 13); NX+L, uremic mice treated with losartan 
30 mg/kg/d (n = 15); NX+H, uremic mice treated with hydralazine 55 mg/kg/
d (n = 7). Values are mean ± SEM. NS = not significant [4].
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Figure 5. Effect of enalapril on aortic mRNA expression of VCAM-1 and 
plasma titers of antibodies against oxidized LDL in apoE-/- mice with acute 
uremia. A) Aortic mRNA expression of VCAM-1 two weeks after 5/6 neph-
rectomy (NX) in apoE-/- mice. NX, uremic mice receiving no medication (n = 
9), NX+enalapril, uremic mice treated with enalapril 12 mg/kg/d from day 0 
after NX (n = 14). The mRNA expression of VCAM-1 was normalized by 
GAPDH. B) Plasma titers of IgM antibodies (Relative light units, RLUs) react-
ing with malondialdehyde modified (MDA)-LDL two weeks after NX in 
apoE-/- mice. NX mice (n = 14); NX+enalapril mice (n = 16) [4].
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3.8 NO EFFECT OF UREMIA ON CARDIAC STRUCTURE 
OR FUNCTION IN APOE-/- MICE
 Essential hypertension (with pressure overload of the left ventricle)
causes the same type of structural and functional changes in the
heart as seen in uremia [229]. Uremia is often accompanied by
hypertension and metabolic disturbances such as anemia, hyper-
phosphatemia, hyperparathyroidism, microinflammation, and acti-
vation of the RAS that could also confer negative effects on the heart
[230, 231]. The relative importance of hypertension and direct

metabolic effects in the development of uremic cardiomyopathy is
unknown. 

Uremic rats and CD-1 mice that display hypertension after NX
develop LVH, diastolic dysfunction, and cardiac fibrosis [232-234].
Since C57BL/6J apoE-/- mice are resistant to development of hyper-
tension after renal mass reduction [1, 4, 155, 156, 172, 173], Bro et
al. reasoned that the uremic apoE-/- mouse model could be used to
assess the putative role of BP-independent effects of uremia on the
heart. 

Thirty-six weeks after NX, heart wet weight, echocardiographic
estimates of left ventricular mass and left ventricular diastolic and
systolic functions were similar in uremic and control (sham-oper-
ated) mice [6]. Furthermore, uremia did not increase cardiac fibro-
sis or cardiac mRNA expression of biglycan or procollagen [6]. Since
uremia has no effect on BP in apoE-/- mice, the results may reflect
that hypertension is important for development of left ventricular
disease in uremia. Indeed, dogs with remnant kidneys are also resist-
ant to induction of hypertension, and according to Tatematsu et al.
[235] cardiac dysfunction is not apparent in the uremic dog model. 

It should be noted though that echocardiography is observer-de-
pendent and has inherent limitations and thus may have overlooked
changes in cardiac function. Indeed, flow Doppler assessments are
not as sensitive as tissue Doppler imaging and invasive physiological
measurements to detect changes in left ventricular diastolic func-
tion. Still, with the same equipment as in the present study it has
previously been possible to demonstrate subtle changes in both
systolic and diastolic cardiac function in diabetic and obese mice
[134, 236]. Bro et al. [6] did not see calcifications in the uremic
mouse hearts either by von Kossa staining or by electron microscopy
of the myocardium from 3 uremic mice. It has been proposed that
myocardial calcifications often encountered in uremic individuals
contribute to systolic and diastolic cardiac dysfunction and arrhyth-
mias [237]. Thus, the lack of effect of uremia on cardiac structure
and function could also reflect the absence of calcifications in the
apoE-/- uremic mouse model. Future studies, e.g. comparing car-
diac structure and function in uremic mice with and without hyper-
tension (e.g. in CD-1 versus C57BL/6J wild-type mice), could be
useful to shed further light on the pathogenesis of heart dysfunction
in uremia. 

4. LIMITATIONS, CONCLUSIONS, AND PERSPECTIVES
LIMITATIONS 
Indeed, the mouse model of uremic atherosclerosis described in the
present thesis work has several limitations, including absence of vas-
cular calcifications, unphysiological lipoprotein metabolism, and
absence of hard end points such as myocardial infarction or stroke. 

In humans [37, 187], rats [143] and rabbits [144], uremia is ac-
companied by vascular calcifications. Also, in non-uremic apoE-/-
mice between 45 and 75 weeks of age calcifications can be found in
atherosclerotic lesions [238]. Of note, although the uremic apoE-/-
model has increased plasma calcium × phoshate product, the studies
of Bro et al.  [1] and Buzello et al. [155] of 22 to 29 weeks old male
apoE-/- mice did not reveal calcifications of the arterial wall on his-
tological analysis of the aortic roots (including von Kossa stained
sections) or by microradiographs of the entire aortas. Neither was
any calcium deposition seen in the media on electron microscopy of
aortas from 48 weeks old male uremic apoE-/- mice, although ma-
trix vesicles (potential nidus of microcalcification) were observed
[3]. Similarly, a histologic study of 38 weeks old female uremic
apoE-/- mice could only demonstrate sporadic calcium deposits in
the aortic intima (Tanja X. Pedersen, 2007, personal communica-
tion). The cause of the lack of vascular calcifications is not clear. It
may be related to the marked upregulation of osteopontin, which
was seen both within the intimal lesions and in the media under-
neath the lesions [3]. Osteopontin is believed to inhibit mineraliza-
tion in bone [239] and vascular tissue [240]. Accordingly, excessive
vascular calcifications develop in osteopontin-deficient male apoE-

Figure 6. Effects of uremia and RAGE-antibody treatment on development 
of aortic atherosclerosis, plasma concentrations of EO6-reactive phospholi-
pid epitopes, and formation of antibodies against oxidized LDL in apoE-/- 
mice. Measurements were performed 16 weeks after 5/6 nephrectomy. 
RAGE-antibody (RAGE-ab) or placebo-antibody (placebo-ab) were administ-
ered during weeks 4 to 16 after 5/6 nephrectomy. Control apoE-/- mice did 
not undergo surgery, and received no treatment. (A) Aortic atherosclerosis 
(B) Plasma concentrations of E06-reactive oxidized phospholipid (OxPL) 
epitopes (C) Plasma titers of antibodies reacting with Cu2+-oxidized (CuOx) 
LDL. Antibody titers in uremic mice were normalized to control values. An-
tibody titers and EO6/OxPl reactivity were measured in relative light units 
(RLUs). All values are mean +SEM [5].
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-/- mice [241]. In contrast to the findings by Bro et al. [1, 3] and
Buzello et al. [155], however, Massy et al. [156] showed accentuated
calcium deposition both in the intima and media of aortas from 16-
weeks-old male and female apoE-/- mice as early as 6 weeks after in-
duction of uremia. A putative explanation of this difference may be
a higher vitamin D3 content and calcium to phosphate ratio in the
mouse diet used by the latter group (high carbohydrate Harlan Tek-
lad Global Diet), and perhaps the inclusion of female mice in their
study, since Massy et al. [156] found that female mice had faster
progression of vascular calcification than their male counterparts.
However, the plasma levels of total calcium and phosphate were not
higher in uremic mice fed the Harlan Diet as compared to those fed
the standard Altromin Diet used by Bro et al. and Buzello et al., nor
were the plasma cholesterol concentrations. Interestingly, Professor
Massy’s group did not see significantly increased osteopontin ex-
pression in aortas of uremic mice [242]. Increased intimal and me-
dial calcification of the aortic root with no reported difference be-
tween genders was observed by Davies et al. [157] in uremic LDLR
-/- mice, when these mice were fed a high-fat diet from Harland
Teklad. Studies by our group in a double knock out mouse model
(apoE-/-,OPN-/-) are currently in progression to examine the effect
of osteopontin (OPN) deficiency on arterial disease in uremic apoE
-/- mice.

The unphysiological lipoprotein metabolism due to apoE defi-
ciency implies that the uremic apoE-/- mouse model is not suitable
for studying uremia-induced changes of lipoprotein metabolism.
Also, macrophage-derived apoE has direct effects on the arterial wall
[243].

The apoE-/- mouse model develops human-like advanced athero-
sclerosis, but plaque rupture and trombosis is exceedingly rare in
these mice [152, 153]. Even if atherosclerosis was markedly en-
hanced by uremia, no myocardial infarctions were observed in the
uremic apoE-/-mice studied by Bro et al. Thus, only intermediate
CV end points can be studied in this model.

CONCLUSIONS AND PERSPECTIVES
The mouse studies by Bro et al. showed that uremic vasculopathy in
apoE-/- mice, besides accelerated intimal atherosclerosis, is charac-
terized by a uremia-specific medial smooth muscle cell degener-
ation. Further, the studies suggested that vascular inflammation and
systemic oxidative stress may explain some of the proatherogenic ef-
fects of uremia in mice. 

The potential role of the uremia-associated adaptive immune re-
sponse against neoepitopes in oxidized LDL in the atherogenic pro-
cess is complex and remains unresolved. Studies are in progress to
determine the effects of vaccination with OxLDL on atherogenesis
in uremic apoE-/- mice.

Since 2003 three independent groups have been working with the
uremic apoE-/- mouse model. A series of interesting intervention
studies have been performed (Table 1). Bro et al. showed that accel-
erated atherosclerosis in uremia could be prevented by RAS inhib-
ition, or markedly reduced by RAGE blockade, probably through
anti-inflammatory and antioxidative effects. Accordingly, it was
demonstrated that the antioxidant N-acetyl-cysteine [244] and the

phosphate binder sevelamer [170] reduced both uremia-enhanced
atherosclerosis and the aortic accumulation of nitrotyrosine (a
marker of oxidative stress) in aortic lesions. This suggests antioxida-
tive effects of these agents. Certainly, in human studies sevelamer
proved to have several effects in addition to phosphate binding, such
as lowering of plasma CRP and LDL cholesterol [245]. Remarkably,
none of the agents reducing atherosclerosis in uremic mice, had any
influence on plasma cholesterol concentrations. The mechanism by
which the calcimimetic R-568 reduced the progression of athero-
sclerosis in apoE-/- mice remains to be elucidated [246]. Neither
treatment with a statin (simvastatin) [247], nor repeated injection
of human apolipoprotein A-1 (apoA-1), the major protein compo-
nent in HDL which has been shown to promote reverse cholesterol
transport [248, 249], showed any effect on aortic atherosclerosis in
uremic mice [250], but the importance of these findings in relation-
ship to human disease is unclear. 

In patients with CKD, more RCT trials are needed to establish the
role of antioxidants, RAS inhibitors and other agents in the preven-
tion of CVD. 

It should be kept in mind that the advances in knowledge about
pathogenesis of CVD in CKD obtained in mice may not be valid in
relation to patients with CKD. Nevertheless, the new uremic mouse
model has provided a tool to identify molecular responses of the ar-
terial wall to uremia, and may help identify new approaches for
treatment and prevention of atherosclerotic disease in uremia. Also,
the data obtained with the mouse model provide a platform for fur-
ther studies in humans. Certainly, knowledge is needed to enable
identification of modifiable risk factors in patients not yet on dialy-
sis. One way of obtaining such information could be to identify spe-
cific serum protein expression patterns, as determined by mass spec-
trometry, and specific aspects of the humoral immune response
against OxLDL, together with specific plasma markers of inflamma-
tion and oxidative stress that can be used to stratify uremic patients
into those at high and low risk of CVD. The identification of such
patterns may provide diagnostic tools as well as outline mechanisms
that can be targeted specifically to prevent CVD in uremic patients.
Also studies of gene expression changes in radial artery biopsies ac-
quired during arteriovenous fistula formation could help to identify
specific arterial gene expression patterns related to the development
of CVD in uremia. If the products of some of the differentially ex-
pressed genes are secreted into plasma, it will be possible to assess
whether plasma concentration measurements can be used to assess
the risk of CVD. 

The increasing prevalence of CKD calls for continued research ef-
forts, involving both basal, animal based, and human studies to im-
prove and renew patient care. The uremic apoE-/- mouse model
provides a valuable animal model to study vascular effects of CKD.  

5. SUMMARY 
The purpose of this thesis work was to establish an experimental
mouse model for studying the pathogenesis and therapy of acceler-
ated atherosclerosis in uremia. Uremia was induced by surgical 5/6
nephrectomy in apolipoprotein E-deficient (apoE-/-) mice and led
to development of severe aortic atherosclerosis independently of BP
and plasma homocysteine levels. Also, the accelerated atheroscler-
osis could not be fully explained by changes in total plasma choles-
terol. Morphologic and biochemical analyses of aortas suggested
that accelerated initiation and expansion rather than a specific ure-
mic lesion composition characterize atherosclerosis in the uremic
mice. Increased expression of inflammatory genes in aortas of ur-
emic mice suggests that an augmented inflammatory response in the
arterial wall might be an important impetus for accelerated athero-
sclerosis in uremia. A marked downregulation of expression of
smooth muscle cell assigned genes indicates that besides intimal
atherosclerosis, uremic vasculopathy in apoE-/- mice is character-
ized by a uremia-specific medial smooth muscle cell degeneration.
Oxidative stress could also be important for the development of

Table 1. Invervention studies in the uremic apoE-/- mouse model. 

Treatment
Effect on aortic 
atherosclerosis

Vascular 
calcification Reference

Enalapril/losartan ↓ NA   4
Anti-RAGE antibody ↓ NA   5
N-acetylcysteine ↓ NA 244
Sevelamer ↓ ↓ 170
R-568 ↓ ↓ 246
Simvastatin ↔ ↓ 247
Human ApoA-1 ↔ NA 250
Calcium carbonate ↔ ↓ 242

NA: not available
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atherosclerotic lesions in uremia. In the mouse model, uremia led to
a marked increase of titers of antibodies against oxidized LDL (Ox-
LDL), and increased circulating levels of the oxidized phospholipid
epitope EO6. Treatment with enalapril (an ACE inhibitor) almost
completely prevented the development of accelerated aortic athero-
sclerosis in uremic mice. This effect was parallelled by reductions of
aortic expression of the proinflammatory adhesion molecule
VCAM-1, and plasma titers of IgM antibodies against OxLDL, and
was at least partly independent of BP-lowering. To test the involve-
ment of the receptor for advanced glycation end products (RAGE)
in development of uremic atherosclerosis, uremic mice were treated
with a neutralizing RAGE-antibody. This treatment reduced the
aortic plaque area fraction by 59% in parallel with reductions of the
plasma levels of the oxidized phospholipid epitope EO6, and titers
of IgG antibodies against OxLDL. As opposed to rats and CD-1
mice, apoE-/- mice did not have impaired cardiac structure and
function (as assessed by echocardiography, histology, gene expres-
sion analysis) upon the induction of uremia. Since the uremic apoE
-/- mouse is normotensive and did not develop myocardial calcifica-
tions, it is possible that these factors may be important for the devel-
opment of cardiac dysfunction in uremia. 

In conclusion, the mice studies by Bro et al. showed that uremic
vasculopathy in apoE-/- mice, besides accelerated intimal athero-
sclerosis, was characterized by a uremia-specific medial smooth
muscle cell degeneration. Furthermore, the studies suggested that
vascular inflammation and systemic oxidative stress may explain
some of the proatherogenic effects of uremia in mice. Interestingly,
the accelerated atherosclerosis could be prevented by RAS inhib-
ition, or markedly reduced by RAGE blockade, probably through
anti-inflammatory and antioxidative effects. The new uremic mouse
model has provided a tool to identify molecular responses of the ar-
terial wall to uremia, and may help identify new approaches for
treatment and prevention of atherosclerotic disease in uremia. Also,
the data obtained with the mouse model provide a platform for fur-
ther studies in humans. 

LIST OF ABBREVIATIONS:
ACE: Angiotensin converting enzyme
ADMA: Asymmetric dimethylarginine 
AGEs: Advanced glycation end products
ApoA-1: Apolipoprotein A-1
ApoB-100: Apolipoprotein B-100
ApoE: Apolipoprotein E
ApoE-/-: Apolipoprotein E-deficient
BP: Blood pressure
CKD: Chronic kidney disease
CRP: C-reactive protein
CuOx-LDL: Cu2+-oxidized LDL
CV: Cardiovascular
CVD: Cardiovascular disease
ELISA: Enzyme-Linked ImmunoSorbent Assay
EO6: Oxidized phospholipid epitope recognized by 

the mouse EO6 antibody
GFR: Glomerular filtration rate
HDL: High density lipoprotein
ICAM-1: Intercellular adhesion molecule-1 
IDL: Intermediate-density lipoprotein
IL: Interleukin
LDL: Low density lipoprotein
LDLR-/-: LDL receptor deficient
LVH: Left ventricular hypertrophy
MDA-LDL: Malondialdehyde modified LDL
NADPH: Nicotinamide adenine dinucleotide phosphate
NFkB: Nuclear factor-kB 
NO: Nitric oxide
NOS: Nitric oxide synthase
NX: 5/6 nephrectomy

OPN: Osteopontin
OxLDL: Oxidized LDL
PCR: Polymerase chain reaction
PUFAs: Polyunsaturated fatty acids
RAGE: Receptor for AGEs
RAS: Renin angiotensin system
RCT: Randomized placebo-controlled trial
ROS: Reactive oxygen species
TG: Triglyceride
TLC: Thin layer chromatography 
VCAM-1: Vascular cell adhesion molecule-1 
VLDL: Very low density lipoprotein
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