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1. INTRODUCTION AND AIMS
Regulation of renal haemodynamics is a vital component in the
overall control of renal function [1]. The ability of the kidney to
maintain constancy of renal function over a wide range of renal per-
fusion pressures is termed autoregulation [2]. Impaired renal auto-
regulation leads to enhanced transmission of the systemic blood
pressure into the glomerular capillary network. Understanding the
pathogenesis of abnormal renal haemodynamic in the diabetic state
seems important, because it has been suggested, that abnormal
haemodynamics plays a major role in the development and progres-
sion of diabetic nephropathy [3-10].

Several studies have evaluated the effect of hyperglycaemia on
renal autoregulation in rat models of diabetes mellitus, some of the
studies have revealed impaired renal autoregulation [11-14], and
others preserved [15] or even enhanced renal autoregulation ability
[16]. Only one human study has evaluated the impact of diabetes on
renal autoregulation [17]. Parving et al. [17] demonstrated impaired
autoregulation of glomerular filtration rate (GFR) in type 1 diabetic
patients with diabetic nephropathy. No studies have evaluated the
impact of diabetic nephropathy or glycaemic control on renal auto-
regulation in type 2 diabetic patients. Furthermore no study has
evaluated the effect of nondiabetic nephropathies on renal auto-
regulation. Therefore we studied the GFR autoregulation in these
conditions.

Antihypertensive treatment reduces the rate of decline in GFR by
inducing a faster initial and slower subsequent decline in GFR, in
hypertensive diabetic patients with incipient or overt diabetic
nephropathy [18-20]. This biphasic phenomenon may be due to the
effect of antihypertensive treatment and/or changes in autoregula-
tion of GFR [21, 22]. The relationship between changes in renal per-
fusion pressure and renal autoregulation during treatment with dif-
ferent antihypertensive drugs has been studied extensively in non-
diabetic animals [23-26], while the information in diabetic animals
is limited [15, 27, 28]. Information is completely lacking in humans.
Therefore we decided to study the effects of two classes of com-
monly used antihypertensive drugs, i.e. an angiotensin II receptor
antagonist and a dihydropyridine calcium channel blocker, on auto-
regulation of GFR in hypertensive type 2 diabetic patients without
diabetic nephropathy.

Despite an increasing number of albuminuric type 2 diabetic pa-
tients with end stage renal disease, information on the natural his-
tory of diabetic nephropathy in Caucasian patients with type 2 dia-
betes is scanty. The underling causes of albuminuria in type 2 dia-
betic patients are heterogeneous [29-31]. However, no study has
evaluated the prevalence of nondiabetic kidney disease in unselected

albuminuric type 2 diabetic patients without clinical diabetic
nephropathy, and only relatively few studies have investigated the
relationship between renal structure, causes of albuminuria and
course of renal function [31-36] in albuminuric type 2 diabetic pa-
tients. Therefore we performed a study of the natural history of re-
nal function in Caucasian albuminuric type 2 diabetic patients with
diabetic nephropathy. Furthermore, we performed a renal biopsy
study, to evaluate the prevalence of diabetic and nondiabetic
nephropathies and the potential role of demographic, clinical and
laboratory data in separating these entities in albuminuric type 2
diabetic patients without retinopathy. The structural-functional re-
lationships and the course of GFR in these patients were evaluated
separating the patients with diabetic from those with nondiabetic
nephropathies. Finally, we studied the differences in the course of
GFR in a cohort of unselected albuminuric type 2 diabetic patients
with or without diabetic nephropathy.

2. AUTOREGULATION
The phenomenon termed autoregulation is defined as maintenance
of almost constant tissue and organ perfusion despite large vari-
ations in perfusion pressure (Fig. 1). Autoregulation mechanisms
protect the tissue/organ against hyper- and hypoperfusion by
changing the myogenic activity of the smooth arteriolar muscle
cells. Increased systemic blood pressure (BP) induces a smooth ar-
teriolar muscle cells contraction, which reduce the arteriolar dia-
meter. Decrease in systemic BP induces relaxation of the smooth ar-
teriolar muscle cells, and thus an increase in the arteriolar diameter.
Consequently, autoregulation of the myogenic response not only
protects the tissue and organ against hyper- and hypoperfusion, but
also against enhanced transmission of the systemic BP into the ca-
pillary bed. This mechanism has been demonstrated in the brain
[37], kidneys [38, 39], retina [40], coronary arteries [41, 42], intes-
tinal system [43], liver [44], muscles [45], skin [45] and adipose tis-
sue [46].

Impairment of autoregulation capacity may narrow the perfusion
pressure range for which tissue and organ perfusion remain un-
changed. A reduced perfusion pressure range may lead to a higher
minimal and a lower maximal perfusion pressure limit for normal
autoregulation. When the perfusion pressure is above and below this

Fig. 1. (1) Normal autoregulation of glomerular filtration rate (GFR), (2)
impaired autoregulation of GFR, (3a) shift in GFR autoregulation to the left,
(3b) shift in GFR autoregulation to the right, (4) abolished GFR autoregula-
tion.
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autoregulation pressure range the tissue and organ may become hy-
per- and hypoperfused, respectively (Fig. 1). Alterations in the setting
of autoregulation range may lead to alteration in the upper or lower
perfusion pressure limit for normal autoregulation. A decrease in
the limits (shift to the left) of autoregulation may cause hyperper-
fusion and pressure induced damage to the tissue and organ, when
systemic BP is high e.g. during exercise. If the limits for autoregula-
tion is increased (shift to the right) the tissue and organ may be sus-
ceptible for hypoperfusion and ischaemic injury, when systemic BP
is low e.g. during sleep (Fig. 1). When autoregulation is abolished the
tissue and organ perfusion become totally dependent on the per-
fusion pressure. This condition may lead to hyper- or hypoperfusion
in the tissue and organ, when systemic BP is changing during every-
day activity (Fig. 1).

In conclusion, autoregulatory mechanisms are present in most
tissues and organs. Autoregulation protect the tissues and organs
against systemic hyper- and hypotensive induced damage.

3. AUTOREGULATION OF RENAL FUNCTION
A) DETERMINANTS OF GLOMERULAR FILTRATION RATE
The systemic BP is transmitted through the arcuate arteries to the
interlobular artery and reaches the glomerular capillary network
through the afferent arteriole (Fig. 2). The glomerular capillary net-
work is connected to the efferent arteriole that leads the pressure
into the venous system. The main preglomerular pressure drop oc-
curs during the transmission of the systemic BP from the afferent
arteriole into the glomerular capillary network. The large post-
glomerular pressure drop occurs in the efferent arteriole, which re-
duce the glomerular capillary hydraulic pressure (PGC) with approx-
imately 70%. PGC remains nearly unchanged between the afferent
and efferent arteriole [47].

The structural barrier for glomerular filtration consists of four

structural components: a thin fenestrated endothelium covering the
inner surface of the glomerular capillary, the glomerular basement
membrane (GBM), the podocytes with foot processes, which is in
connection with the glomerular basement membrane on the outer
surface, and finally the pores between the foot processes which are
covered with thin diaphragms (Fig. 2). The fluid movement across
this structural barrier along the capillary wall at any given point into
Bowman space can be expressed as:

                                          Jv=k (∆P–∆π)

Where Jv is the fluid movement, k the filtration barrier permeability,
∆P and ∆π the transcapillary hydralic and colloid osmotic pressure
gradient between the glomerular capillary and Bowman space, re-
spectively. The fluid protein concentration in the Bowman space in
normal and even proteinuric subjects is nearly zero.

The glomerular filtration coefficient (Kf) is the product of k and
the surface area for filtration. The total single-nephron glomerular
filtration rate (SNGFR) can be expressed as the product of Kf and
the net driving force over the filtration barrier (difference between
the average transcapillary hydraulic and osmotic pressure differ-
ences (∆P–∆π)). The net driving filtration force decline from the
preglomerular (afferent) end of the glomerular capillary network
and is reaching zero at the postglomerular (efferent) end. This oc-
curs because the ultrafiltration along the glomerular capillary in-
duces an increase in ∆π while ∆P remains relatively constant. An in-
crease in glomerular plasma flow (QA) will result in a proportional
increase in GFR, when ∆P=∆π in the absence of changes in any
other determinants of SNGFR, because the axial rate of rise in col-
loid osmotic pressure in the capillary fluid is reduced. Thus, QA is
the final determinant of GFR if filtration equilibrium is present. 

B) RENAL AUTOREGULATION
Burton-Opitz & Lucas [48] were the first to demonstrate that the
most characteristic feature of renal circulation is maintained renal
blood flow (RBF) despite extensive variation in systemic BP. 

Both human [38] and animal [39] studies evaluating renal auto-
regulation in pharmacological and surgical denervated kidneys have
made it possible to conclude that RBF is determined by an autono-
mous intrinsic activity of the renal arterioles, which is not depend-
ent upon tonic activity in the sympathetic pathways. The conse-
quence of this statement was that intrinsic mechanisms could re-
spond to extrinsic changes to ensure stability and efficiency of renal
haemodynamic control.

The intrinsic autoregulation of renal function is complex and in-
volves several systems, which modulate the vascular smooth muscle
tone and diameter of the afferent and efferent arterioles. It is gener-
ally accepted that the afferent arteriole is autoregulated by two in-
trinsic systems: the myogenic [49] and macula densa-mediated
tubuloglomerular feedback (TGF) system [50], whereas the import-
ance of the efferent arteriolar and other possible mechanisms in-
volved in the autoregulation of renal function is still debated [50].
The setting of the above-mentioned intrinsic systems is believed to
be under influence from the sympathetic nervous system [51] and
various systemic and local hormones (long-term regulation of GFR)
[52].

The myogenic mechanism is based on the ability of arteriolar ves-
sels to alter endogenous tone in response to change in transmural
pressure. The phenomenon is well known and was described already
in 1902 by Bayliss [53]. TGF is a phenomenon unique to the kidney,
by which a change in GFR induce a change in flow and/or pressure
[54-56] and/or composition of tubular fluid flowing past the macula
densa region of the nephrons [1, 57]. These changes result in alter-
ation in preglomerular resistance and, thus, correct the initial
change in GFR.

There are advocates for a singular mechanism mediating auto-
regulation by the myogenic response [58, 59], whereas others sug-Fig. 2. (1) Normal glomerular structure. (2) Glomerular filtration barrier.
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gest that TGF is the most important mechanism [60]. However,
there is emerging consensus that a complicated interplay between
both myogenic and TGF mechanisms best explains the efficient
autoregulatory response typical of the renal vasculature [50, 54, 61].

Some of the disagreements may reflect significant differences in
the degree to which the myogenic and TGF components contribute
to autoregulation of RBF among species [62]. Difference in response
time to change in perfusion pressure [55] and to location of the two
components [63, 64] may also be part of the dispute.

The range of renal autoregulation in animal studies is from 75-95
mm Hg [39, 61, 65, 66] to 180 mm Hg [14, 67] of renal arterial pres-
sure. The range of systemic BP for normal renal autoregulation in
healthy humans is partly unknown. But a mean arterial blood pres-
sure (MABP) of 80 mm Hg is usually suggested as the lower limit for
normal autoregulation of GFR [62, 68], whereas the lower limit of
cerebral blood flow autoregulation in normotensive humans is 50-
70 mm Hg, and in patients with severe hypertensive 85-150 mm Hg
[69, 70]. Autoregulation of GFR is due to autoregulation of two of
the main GFR determinants, i.e. QA and PGC [47, 71]. Intrarenal an-
giotensin II (AII) levels may influence the plateau of renal autoregu-
lation [72-74]. It is therefore possible that range of BP for normal
renal autoregulation in patients with diabetes is different from
nondiabetic patients, since renin has been suggested to be depressed
[75] and AII receptors diminished [76] in patients with diabetes.

We studied the lower part of the GFR autoregulation interval.
GFR was measured in all our studies after a single intravenous injec-
tion of 51Cr-labeled ethylenediaminetetraacetic by determination of
the radioactivity in venous blood samples 180, 200, 220 and 240
minutes after the injection [77, 78]. We used clonidine to induced
acute reduction in MABP. Clonidine reduces MABP by a prolonged
suppression of the central nervous system sympathetic centres [79,
80]. The decrease in MABP is due to diminished cardiac output not
to effects on total peripheral resistance [79, 81]. Clonidine does not
alter peripheral sympathetic activity and have no direct pharmaco-
logical effects on the renal vessels [79-81]. Intravenous injection of
clonidine in normo- and hypertensive subjects induces a slight but
insignificant reduction in peripheral and renal vein renin concen-
tration [80, 81].

We defined normal GFR autoregulation as a relative reduction in
GFR<13% during clonidine induce acute MABP reduction (the
limit of normal GFR autoregulation found in healthy humans [82]),
impaired GFR autoregulation as a relative reduction in GFR>13%,
and abolished GFR autoregulation as relative reduction in
GFR>13% accompanied by a clonidine induced relative reduction
in MABP less than or equal to the relative reduction in GFR
(∆MABP%≤∆GFR%).

In conclusion, renal autoregulation is determined by an autono-
mous intrinsic activity of the renal arterioles. Renal autoregulation
is due to a complicated interplay between both myogenic and TGF
mechanisms. These systems induces predominantly changes in the
afferent arteriole diameter in response to changes in systemic BP.
Autoregulation of GFR is due to autoregulation of two of the main
GFR determinants, i.e. QA and PGC. The range of arterial BP for nor-
mal renal autoregulation in healthy humans is partly unknown. Fur-
thermore, it is possible that the range of BP for normal renal auto-
regulation in patients with diabetes is different from nondiabetic
subjects.

C) INTRA- AND EXTRARENAL VASOACTIVE HORMONES 
AND RENAL AUTOREGULATION
Many vasoactive hormones such as renin, AII, kinins, prostaglandin,
thromboxane, endothelial-derived relaxing factor (Nitric oxide or
NO), histamin, atrial natriuretic peptide (ANP) and adenosin, have
been suggested to modulate renal autoregulation.

Renin. Both the release of renin from the kidney and plasma renin
activity remains relatively unchanged within normal GFR autoregu-
lation range [83, 84]. On the contary reduction in renal artery pres-

sure below the autoregulation threshold induces a marked raise in
renin activity [83, 84]. The increased renin activity may lead to an
increase in angiotensin I, which is converted to AII by the angio-
tensin-converting enzyme (ACE). Increased AII levels may cause a
contraction primary in the efferent arteriole. Consequently, renin
may be important in regulating GFR when BP is near the lower limit
of normal GFR autoregulation [85]. The presence of an angiotensin-
sensitive efferent resistance component, which is not influenced by
the calcium entry dependent vascular contraction, gives additional
support to this theory [86]. Furthermore, induced renin inhibition
dismissed vascular contractive response when renal perfusion pres-
sure is reduced [87]. However, RBF autoregulation is maintained at
a significantly lower BP level than GFR autoregulation, indicating
that autoregulation of RBF below the limit of GFR autoregulation
involves a dilatation of the efferent arteriole [83].

Angiotensin-converting enzyme. The conversion of angiotensin I to
the presser peptide AII and the degradation of the depressor peptide
bradykinin to inactive fragments is inhibited during ACE inhibitor
(ACEI) treatment [88]. ACEI treatment do not impair renal auto-
regulation in animals [73, 89-91]. However, ACEI treatment might
influence the coupling of RBF and GFR autoregulatory efficiency
when perfusion pressure is reduced below the lower limit of normal
GFR autoregulation, by inhibiting the increased AII induced con-
traction of the efferent arteriole [90].

Angiotensin II. The effects of infusion of AII [92, 93] and inhibi-
tion of AII (AIIA) [94, 95] on renal autoregulation have been evalu-
ated in isolated kidneys [94] and in situ studies [95], during sodium
depletion [85], high salt [74] and normal salt intake [73], during
calcium channel blockade [86] and in relation to TGF [72, 91, 96,
97]. The overall conclusions from these studies are, that AII have no
influence on overall renal autoregulation within the normal au-
toregulation range. However, it is possible that AII modify baseline
GFR [74] and RBF at low perfusion pressures (high renin) [73, 85].
Furthermore AII may play an important role in setting of TGF activ-
ity in the presence of hypertension [72, 97].

Bradykinin. Bradykinin increases RBF [98-101] by dilating both
the afferent and efferent arterioles [99], leaving PGC and mean
effective filtration pressure unchanged [99]. These changes in renal
vascular resistance and RBF do not alter GFR [98, 99, 101]. It is
therefore possible that bradykinin modify Kf, however there are dis-
agreements on the impact of bradykinin on Kf between studies [99,
100]. Infusion of bradykinin [101] and treatment with bradykinin
analogue antagonist [100] have revealed that bradykinin do not af-
fect autoregulation of RBF and GFR [101]. 

Prostaglandin and thromboxane. The synthesis of vasoactive pros-
taglandins and thromboxane is stimulated by bradykinin and AII
[102, 103]. Most studies evaluating the effect of prostaglandins on
renal autoregulation have used either indomethacin or meclofena-
mate as prostaglandin synthesis inhibitors in dogs [104, 105] and
rats [15, 106-111]. The majority of whole kidney and SNGFR stud-
ies show no effect of prostaglandin synthesis inhibitors on auto-
regulation of GFR and RBF [15, 104, 105, 107]. However, studies
evaluating TGF in rats by the stop flow pressure technique [106, 107,
111] have found reduced TGF response to flow changes in the tubu-
lus. Infusion of prostaglandin E2 increases both tubulus pressure
and intrarenal pressure by dilatation of both the afferent and effer-
ent arterioles leaving the effective filtration pressure unchanged
[112]. These parallel changes might be the reason for the main-
tained GFR autoregulation, despite changes in TGF [107]. Even
though rat studies have found impaired renal autoregulation of
SNGFR [110] during prostaglandin inhibition, it seems that the ef-
fect of changes in prostaglandin activation on overall renal auto-
regulation is limited. Thromboxane the vasoconstrictive component
of the prostaglandin system seems to have some influence on TGF
[113], however the effect on GFR autoregulation remains to be elu-
cidated. 

Endothelium-derived relaxing factor (Nitric oxide). Several hor-
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mones, as well as shear stress on the vessel wall influence the release
of NO. The effect of NO release is dilatation of the resistance vessels.
Shear stress is dependent on perfusion and intravasal pressure.
Hence NO is released in response to an increased transmural pres-
sure and may therefore antagonize the myogenic response of vascu-
lar smooth muscle cells. The possible impact of NO on renal auto-
regulation has been evaluated by blockade of NO synthesis via the
stereospecific inhibitor NG-nitro-L-arginine methyl ester (L-
NAME). Most studies [114-116] show no effect of L-NAME on GFR
or RBF autoregulation. However some studies show enhanced TGF
[117] and myogenic response to changes in perfusion pressure
[118]. The effect of NO on renal autoregulation might be affected by
renal damage, since renal autoregulation have been found to be im-
paired in old hypertensive rats during treatment with L-NAME
[119], however no change in renal autoregulation was found during
treatment with L-NAME in renal mass reduction models [120]. In
rat model of diabetes the response to graded reduction in renal per-
fusion pressure is similar to nondiabetic rats between 100 and 130
mm Hg [121, 122]. However, when renal perfusion pressure is re-
duced to the lower limit of normal renal autoregulation, the in-
creased endogenous NO activity in diabetic rat may play a role, since
RBF is kept at a significant higher level in diabetic rats compared to
the nondiabetic animals [121]. Furthermore, if diabetic rats are
treated with L-NAME the differences between diabetic and nondia-
betic rats responses to changes in renal perfusion pressure are elim-
inated [121]. 

Histamines. Vasodilator histamines effect on renal autoregulation
has been evaluated by blockade of the H1 and H2 receptor [105, 123,
124]. H2 receptor blockade has no effect on renal autoregulation
[105, 123], while the effect of H1 receptor blockade on renal auto-
regulation is still debated [123, 124].

Atrial natriuretic peptide. ANP is a potent vasoactive and natri-
uretic peptide, which is capable of reducing systemic BP, renin-aldo-
sterone activity, urine osmolarity and increasing RBF, GFR, diureses
and natriuresis [125]. An ANP dose dependent changes in RBF and
GFR [126] is combined with a dose dependent dilatation of the af-
ferent arteriole and probably a constriction of efferent arteriole
[127-129]. Even though ANP causes vasodilatation of the afferent
arteriole, it does not affect the pressure induced vasoconstriction/
dilatation of these vessels [128, 130]. These results confirmed previ-
ously studies demonstrating that infusion of ANP has no effect on
GFR and RBF autoregulation [126]. However rats studies using the
stop flow pressure model have shown that TGF is reduced during
ANP infusion [131, 132]. But autoregulation of RBF is maintained
in rats despite a reduced TGF response during ANP infusion [133].
It is therefore possible, that in vivo experiments might overestimate
the impact of ANP on TGF. 

Adenosine. Adenosine has been proposed to be the link between
changes in renal perfusion pressure and TGF mechanisms through a
metabolic pathway. The hypothesis is that increased systemic BP
raises RBF and GFR, which thereby increases filtered sodium load
and enhances tubular sodium reabsorption via glomerulo-tubular
balance mechanisms. The increased sodium reabsorption elevate
renal oxygen consumption and energy utilization, thereby increas-
ing ATP hydrolysis and adenosine production. Increased renal tissue
levels of adenosine would then preferentially constrict the afferent
arteriole, and RBF and GFR would return to the control level [134].
Even though this theory is logic and adenosine might been involved
in TGF mechanisms [135], studies evaluating autoregulation of GFR
and RBF during changes in renal perfusion pressure in animals
treated with continuous infusion of adenosine or with intrarenal in-
hibition of the adenosine receptor show no impact of adenosine on
renal autoregulation [136, 137]. Furthermore, studies have recently
showed that ATP through the P2 purinoceptors might be the medi-
ator of renal autoregulation [138, 139]. The exact mechanisms are
not known, but it has been shown that flow-induced shear stress on
vessels walls stimulates ATP release from endothelial cells [140]. 

In conclusion, most studies evaluating the impact of vasoactive
hormones on renal function show no effect on overall renal auto-
regulation within the normal autoregulation range. Vasoactive hor-
mones might have long-term regulatory effect on renal function and
thereby induce changes in renal autoregulation range. Furthermore
some vasoactive hormones e.g. bradykinin and NO may protect the
kidney against hypoperfusion when arterial BP is reduced below the
lower limit of GFR autoregulation. The exact mechanisms for renal
autoregulation are not known, but ATP might be regarded as an im-
portant signal substance. 

D) EFFECT OF HYPERTENSION AND AGE
ON RENAL AUTOREGULATION
The effect of hypertension and age on renal structure and autoregu-
lation has been studied in different animal models. In spontaneous
hypertensive rats the setting of the renal autoregulation range is
changed to a higher lower blood pressure level [141-143], which is
increased further with increasing age [144] (shift to the right, Fig.1).
These changes might reflect an enhanced activity of the calcium
channels [145, 146] with exaggerated pressure induced myogenic
constriction [147]. Furthermore an age related increase in TGF sen-
sitivity has been revealed [148]. Short-term studies have revealed
prearteriolar renal vasculature wall thickening [149], it is therefore
probably a combination of intrinsic changes and structural adapta-
tions that causes the change in autoregulation range [150], but the
impact of structural vascular adaptation on renal autoregulation is
still debated [151, 152]. Morphometric studies have revealed in-
creased renal vascular resistance and diminished renal afferent
diameter especially in old spontaneous hypertensive rats [149, 150,
153]. Consequently, the PGC is maintained normal in face of an ele-
vated pressure in these rats. The result is in agreement with histolo-
gical examinations, revealing that nephrons in spontaneous hyper-
tensive rat kidneys remain intact [154, 155]. Furthermore, in
chronic hypertension a shift in cerebral blood flow autoregulation
range toward higher lower and higher upper pressure limit is in-
duced. The shift re-adapts towards normal autoregulation range
during chronic antihypertensive treatment [156]. These results sug-
gest widespread vascular adaptation during chronic hypertension.
The effect of age on cerebral blood flow autoregulation during mod-
erate pressure changes is probably present in the majority of healthy
elderly people, but a study focusing on this has not been published
[157].

In conclusion, animal studies have demonstrated an adaptive
change in the setting of autoregulation range to higher BP limit dur-
ing hypertension and increasing age (shift of the autoregulation
range to the right (Fig. 1)). Human studies are needed to evaluate
the possible effect of age and hypertension on the renal autoregula-
tion range in humans.

E) ANIMAL STUDIES OF RENAL AUTOREGULATION 
IN DIABETES MELLITUS
In experimental diabetes, high blood glucose causes high PGC, RBF
and GFR [4]. These findings implies that hyperglycaemia affects
regulation of renal function, which have been confirmed in most
studies in humans [158-161]. Several studies in streptozotocin dia-
betic rats and dogs have suggested that hyperglycaemia induces im-
paired autoregulation of RBF and GFR [11, 14, 121, 162]. Changes
in vasoactive hormone activities have been suggested to contribute
to impaired renal autoregulation [163, 164]. Furthermore, a rise in
growth hormones in diabetic patients induces glomerular structural
changes, which may change the regulation of GFR [165]. Diabetic
autoregulation impairment develops over time [11, 121], but im-
paired afferent arteriolar contraction during increased renal arterial
pressure can occur in the early course of experimental diabetes [13,
14]. Furthermore diabetes has been shown to impair TGF response
[162, 166]. Other investigators have however shown preserved [15]
or even enhanced autoregulatory ability (shift of the autoregulation
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range to the left) in rats with short time diabetes [16]. Differences
between studies may relate to differences between rat models of dia-
betes. In subtotal pancreatectomy islet mass is markedly reduced,
while streptozotocin induced diabetes islet cells are spared but a spe-
cific β-cell destruction is induced. These two methods of diabetes
resulted in different renal haemodynamic outcomes [16].

In conclusion, even though most animal studies of diabetes, indi-
cate that diabetes per se impair renal autoregulation, it is possible
that differences between the diabetic models may have substantially
impact on the results. Furthermore no exact mechanisms causing
impairment in renal autoregulation in diabetes have been revealed,
but changes in vasoactive and growth hormones have been proposed.

F) RENAL AUTOREGULATION IN PATIENTS WITH DIABETES
In the first human study of renal autoregulation Parving et al. [17]
studied type 1 diabetic patients with and without diabetic nephro-
pathy. They found no significant change in GFR during acute lower-
ing of BP with clonidine in patients without clinical signs of micro-
angiopathy. The patients had mean blood glucose less than 13
mmol/l during the investigation [17]. In our first autoregulation
study [167], we included type 2 diabetic patients with and without
diabetic nephropathy. We found no significant change in GFR dur-
ing acute lowering of BP in normoalbuminuric type 2 diabetic pa-
tients. Mean blood glucose was less than 10 mmol/l during the in-
vestigation. The above-mentioned studies were not designed to
evaluate the potential effect of acute changes in blood glucose on
autoregulation of GFR. We therefore performed of randomised
crossover study of GFR autoregulation, in normoalbuminuric type 2
diabetic patients during blood glucose <10 mmol/l (“normoglyc-
aemia”) and during acute blood glucose >15 mmol/l (hyperglyc-
aemia) [168]. Two out of the fourteen included patients had simplex
retinopathy, while the remaining 12 had no clinical signs of micro-
angiopathy. Acute reduction in systemic BP induced a mean (SE) re-
duction in GFR from 92 (3.1) to 86 (3.7) ml/min/1.73 m2 during
“normoglycaemia” (p<0.05), whereas the reduction in GFR during
hyperglycaemia was from 102 (4.1) to 98 (4.2) ml/min/1.73 m2, NS
(Fig. 3). Mean difference between the mean reductions in GFR dur-
ing the two examinations was 2.3 (95% CI, –1.3 to 5.9) ml/min/1.73
m2, NS. The significant reduction in GFR during “normoglycaemia”
might be explained by a more profound reduction in MABP com-
pared to the examination during hyperglycaemia (mean difference
3.9 (95% CI. –0.005 to 7.8)), p=0.053. Furthermore 4 patients had a
reduction in MABP below the lower limit of the autoregulation
curve (80 mm Hg) during “normoglycaemia”, while this did not oc-
cur during the hyperglycaemic evaluation. Finally, it is possible that
hyperglycaemia enhances renal autoregulation (shift the autoregula-
tion range to the left (Fig. 1)) as described by Mauer et al. [16].

In conclusion, it is impossible to reach a definitive conclusion on
the effect of diabetes on GFR autoregulation. The present results
suggests that hyperglycaemia has little influence on GFR autoregula-
tion and that diabetes per se do not impair autoregulation of GFR in
humans when systemic BP is reduced.

Further studies are needed to estimate the effect of diabetes on
renal autoregulation, when systemic BP is acutely increased.

G) RENAL AUTOREGULATION IN PATIENTS 
WITH AND WITHOUT DIABETIC NEPHROPATHY
Even though animal studies have demonstrated impaired renal
autoregulation in models of glomerulosclerosis [169], glomerulo-
nephritis [170], nephrosclerosis [171, 172] and nephrosis [173,
174], only one human study has evaluated autoregulation in pa-
tients with kidney disease. In this study Parving et al. [17] demon-
strated a wide variation in response to clonidine induced acute BP
reduction ranging from normal to severely impaired GFR autoregu-
lation in long-term type 1 diabetic patients with nephropathy. A
similar clonidine induced reduction in MABP had no impact on
autoregulation in short-term normoalbuminuric type 1 diabetic pa-

tients and in the nondiabetic control group. To explore this further,
we performed a randomised single blinded case-control study com-
paring the effect of acute lowering of BP on GFR autoregulation in
26 hypertensive type 2 diabetic patients with (n=14) and without
(n=12) diabetic nephropathy [167]. The two groups were matched
with respect to demographic data, baseline GFR and BP. Most of the
patients in the control group without nephropathy had retinopathy
(n=8). Our results demonstrated impaired to abolished autoregula-
tion in hypertensive type 2 diabetic patient with nephropathy,
whereas hypertensive type 2 patients without nephropathy only
showed moderate signs of altered renal autoregulation, and none of
these patients had abolished autoregulation (Fig. 4). We found a sig-
nificant correlation between the relative changes in MABP and GFR
and a significant reduction of fractional renal clearance of albumin
in patients with nephropathy. These results suggest that type 2 dia-
betic patients with nephropathy frequently have enhanced transmis-
sion of systemic BP into the capillary network, whereas the glomer-
ular arterioles in type 2 diabetic patients without nephropathy re-
spond adequately to changes in systemic BP. Later we demonstrated
in a similarly designed study that patients with nondiabetic neph-
ropathies, as patients with diabetic nephropathy, frequently suffer
from impaired autoregulation of GFR [82]. In comparison, an age,
sex, BP and baseline GFR matched group of healthy control subjects
had preserved autoregulation (Fig. 5). The main results from the
above mentioned studies are shown in Fig. 6. 

In conclusion, both animal and human studies have revealed im-
paired renal autoregulation, if nephron number is reduced and clin-
ical signs of nephropathy are present, irrespectively of the under-
lying cause of the albuminuria. Information on the impact of
nephropathy in humans on the upper part of the GFR autoregula-
tion curve is still lacking.
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Fig. 3. A and B. Rela-
tive change in GFR
(percentage change of
control GFR) and
relative change in
MABP (percentage
change of control
MABP) induced by in-
travenous injection of
clonidine.
A. During blood glu-
cose <10 mmol/l.
B. During blood glu-
cose >15 mmol/l.
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H) AUTOREGULATION IN EXTRARENAL TISSUES 
AND ORGANS IN DIABETIC PATIENTS
Diabetic microangiopathy is widespread and causes vascular dam-
age in both arterioles and capillaries [175-177]. The diabetes-in-
duced microangiopathy might change the arteriolar smooth muscle
cell response to changes in perfusion pressure, and thereby impaired
autoregulation in many tissue and organs of patients with diabetes.

In the brain of type 1 diabetic patients with microvascular com-
plications, a wide variation in response to alteration of BP ranging
from normal to severely impaired autoregulation of cerebral blood
flow have been demonstrated [178]. In type 2 diabetic patients with
retinal microangiopathy of varying severity, the severity of the re-
tinal microangiopathy reflects the cerebral microangiopathy and the
cerebrovascular reactivity to changes in perfusion pressure [179].
The reflection of the severity of retinopathy on cerebrovascular reac-
tivity corresponds well to the fact that the retina is an outlying part
of the brain. Furthermore a reduced reactivity (vasodilatation) of
the cerebral vessels to an increase in arterial CO2 concentration in
patients with type 1 and type 2 diabetes gives further support for
impairment of cerebral blood flow in patients with diabetes [180].

Originally, Rassam et al. [181] demonstrated impaired autoregu-
lation of retinal blood flow during acute hyperglycaemia in type 1
diabetic patients with early background non-proliferative diabetic
retinopathy. The degree of glycaemic changes in their and our study
was similar [168]. The difference in outcome between the two stud-
ies might well reflect differences in the mechanisms of retina and
GFR autoregulation. An additional reason for the apparent discrep-
ancy between our and their study could be that Rassam et al. [181]
studied the upper part of the autoregulation curve by increasing the
BP, whereas we, as most animal studies [11, 121, 162], investigated
the lower part of the autoregulation curve by decreasing BP. Fur-
thermore, differences in severity of diabetic microangiopathy could

influence the results. Finally, the differences might be related to the
vasoactive response to different levels of blood glucose during dif-
ferent changes in BP levels. Hyperglycaemia induces vasodilatation,
which can act against the vasoconstrictive response to elevated sys-
temic BP. Consequently hyperglycaemia may impair the function in
the upper part of the autoregulation curve. The opposite result may
be expected in the lower part of the autoregulation curve. Since low-
ering of systemic BP induces vasodilatation, which can act together
with the vasodilatation induce by hyperglycaemia, and thereby im-
prove the autoregulation capability when BP is lowered (shift to the
left of the autoregulation range (Fig. 1)).

Recently studies including both type 1 and type 2 diabetic pa-
tients with and without retinopathy has confirmed that retinal auto-
regulation in diabetic patients is impaired [182, 183]. However these
studies, as in kidneys, showed no effect of acute changes in blood
glucose [182] and no effect of long-term glycaemic control on re-
tinal autoregulation during increase in systemic BP [183].

In type 1 diabetic patients with clinical microangiopathy the
autoregulatory response to both decreased [45] and increased BP
[184] is impaired in cutaneous tissue and skeletal muscles. In these
patients the autoregulation impairment is independent of level of
glycaemic control [185]. In contrast short-term type 1 diabetic pa-
tients without clinical microangiopathy have intact cutaneous auto-
regulation [184]. These results are in accordance with our results in
type 2 diabetic patients with [167] and without clinical microangio-
pathy (diabetic nephropathy or retinopathy) [168]. Diabetic micro-
angiopathy is characterised by an increased arteriolar hyalinosis.
This has been suggested to be the main determinant of changes in
vascular resistance in the skin [186]. 

In conclusion, diabetic microangiopathy induce autoregulatory
impairment in many tissue and organs. The severity of the microan-
giopathy seems to be associated with the degree of autoregulatory

Fig. 4. A and B. Rela-
tive change in GFR
(percentage change of
control GFR) and rel-
ative change in MABP
(percentage change of
control MABP) in-
duced by intravenous
injection of clonidine.
A. Type 2 diabetic pa-
tients with nephro-
pathy.
Mean response (á).
B. Type 2 diabetic pa-
tients with normoalbu-
minuria.
Mean response (á).
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impairment. The autoregulation impairment appears not to be in-
fluenced by short or long-term changes in the blood glucose level
when clinical microangiopathy is present. More studies are needed
to determine the effect of glycaemic control on renal autoregulation
in diabetic patients without microangiopathy.

I) ANTIHYPERTENSIVE TREATMENT 
AND RENAL AUTOREGULATION
Changes in cytosolic Ca2+ is recognized as a pivotal step in mediat-
ing smooth muscle contraction. Increase in cytosolic Ca2+ can be
achieved through influx of the ion from the extracellular compart-
ment, mobilization of intracellular Ca2+ from sequestered storage
sites, and/or reduced activity of the transport processes involved in
Ca2+ sequestration or extrusion. The influx of the ion is primarily
regulated by mechanisms, which alter membrane Ca2+ permeability
through influences on specific ion channels. Myogenic control of
renal autoregulation is primarily regulated by afferent arteriolar
smooth muscle permeability to Ca2+ [187, 188], while mobilization
of intracellular Ca2+ appears to be of minor importance [189]. In ac-
cordance, data have revealed that the major vasoconstrictive effect
of raised extracellular ionised Ca2+ is a pressure dependent alter-
ation in membrane Ca2+ permeability [190]. The efferent arteriole
seems to be less responsive to changes in membrane Ca2+ permeabil-
ity [188, 191], and respond to AII with a major component of intra-
cellular calcium release. The different calcium signalling mechan-
isms in afferent and efferent arterioles indicate that the overall auto-
regulatory response to pressure changes is characterized by a
combination of calcium entry and mobilization pathways [192].

Since calcium channel blockers (CCB’s) interfere with the influx
of Ca2+ they may affect normal renal autoregulation. Studies of dogs
[86, 193], isolated perfused rat kidneys [190, 194], normal rat kid-
neys [195], hydronephrotic rat kidneys [130, 196], remnant rat
models [197], models of spontaneously hypertensive rats [26, 198-
200] and rat models of diabetes [15] have all shown that CCB’s im-
pair renal autoregulation. The effect of CCB’s on autoregulation
seems to be a dose-dependent inhibition of the vasoconstriction

[130, 201], which at high doses make the system pressure-passive
(abolish autoregulation) [86] and not influenced by renin secretion
[194]. Even though most studies show that both dihydropyridine
and non-dihydropyridine CCB’s impair autoregulation, some stud-
ies indicate that there might be differences within and between the
classes of drugs [202, 203]. The different actions of the various cal-
cium channel blockers on renal autoregulation may be related to
differences in tissue selectivity and binding sites [25].

Despite the overwhelming evidence suggesting adverse effect of
CCB’s on renal autoregulation, no study has previously evaluated
the effect of CCB’s on renal autoregulation in humans. We therefore
performed a double-blind randomised cross over study in hyperten-
sive type 2 diabetic patients without overt nephropathy. We selected
hypertensive type 2 diabetic patients with normal GFR without
overt nephropathy, in order to have a group in need of antihyper-
tensive treatment with normal or only slightly impaired autoregula-
tion. In order to minimise the effect of the patients usual treatment,
all antihypertensive treatment was stopped at least 14 days before
randomisation. Sixteen patients were treated with the dihydropyri-
dine CCB isradipine retard 5 mg o.d. or matched placebo [204]. Our
study revealed that isradipine therapy induced a variable response
ranging from no impact to impaired (relative reduction in
GFR>13%) or abolished (∆MABP%≤∆GFR%) GFR autoregulation
(Fig. 7). Despite intravenous injection of clonidine more profoundly
reduced MABP during placebo treatment as compared to isradipine
therapy, none of the patients had abnormal autoregulation during
placebo treatment, whereas 38% of the patients showed complete
pressure passive vasculature during isradipine treatment. The pa-
tients with abolished autoregulation of GFR had an increase in GFR
during isradipine treatment. The enhanced GFR probably reflects a
more pronounced vasodilatation of the afferent arteriole during is-
radipine treatment as compared to patients without this response.
The isradipine induced vasodilatation enhances the transmission of
the systemic BP into the glomerular capillary network resulting in
increased PGC and GFR. A reduced autoregulation capacity during
isradipine treatment is also supported by the clonidine induced
pressure dependent reduction in urinary albumin excretion rate
(UAE). In addition to the effect on the kidney, some CCB’s are cere-
bral vasodilatators and have the potential for paralysing cerebral au-
toregulation, whereas ACEI has been shown to improve cerebral au-
toregulation during hypotension [205]. Consequently, antihyper-
tensive treatment with blockade of the renin-angiotensin system
may be superior to CCB’s from both a renal and a cerebral autoregu-
latory point of view.

As described previously, animal studies have revealed that AIIA
do not change whole kidney autoregulation. To explore the effect of
AIIA on renal autoregulation in humans, we studied seventeen
hypertensive type 2 diabetic patients without overt nephropathy
during treatment with candesartan cilexetil 16 mg o.d. or matching
placebo [206]. We used the same design as described above. Intra-
venous injection of clonidine induced an equal and significant re-
duction in MABP during both the placebo and candesartan treat-
ment. The mean difference in changes of GFR between placebo and
candesartan treatment were not significant. Furthermore, no sig-
nificant correlation between the relative changes in MABP (%) and
the relative changes in GFR (%) during the two treatments were re-
vealed (Fig. 8). These results are in agreement with the results ob-
tained from animal studies. In our study candesartan furthermore
reduced BP without changing baseline GFR. In addition AIIA has
been shown not to influence baseline cerebral blood flow, but a shift
in the autoregulation curve to the left similar to that of ACEI has
been demonstrated. This effect might be due to release of AII-de-
pendent tone in the larger cerebral resistance vessels [207].

In animal studies the effect of Alpha 1-receptor blockade on renal
autoregulation have been investigated in normotensive and spon-
taneously hypertensive rats during stepwise reduction of arterial
perfusion pressure [26], in micro-puncture studies [208, 209] and

Fig. 6. Absolute reduction in mean arterial blood pressure (MABP) and
glomerular filtration rate (GFR) induced by intravenous injection of cloni-
dine in type 1 and type 2 diabetic patients with or without nephropathy, and
in nondiabetic (Non-DM) subjects with or without nephropathy.
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by stop-flow measurements [26, 210]. In the studies Alpha 1-recep-
tor blockade increased blood flow [26], and dilate both the afferent
and efferent arteriolar [208, 209]. However, no impact on whole
kidney autoregulation has been demonstrated [26, 209].

Only one study has investigated the effect of beta-adrenergic
blockade on renal autoreguation. In this study Anderson et al. [94]
investigated the effect of propranolol on renal autoregulation during
stepwise reduction of renal arterial pressure in dogs. Their results
suggested that autoregulation of both GFR and RBF are maintained
during propranolol-treatment. Both combinations of alpha 1 and
beta-receptor blockade treatment and individual treatment with
either of the two have shown a tendency to normalise the autoregu-
lation range of cerebral blood flow in animals [211] and patients
with hypertension [205, 212]. Furthermore beta-receptor blockade
treatment does not affect cerebral autoregulation in healthy humans
[213].

Thiazide diuretics decrease systemic vascular resistance, whereas
the opposite effect has been demonstrated in the renal vasculature
[214]. This results in a decrease in RBF and GFR [214, 215]. The ef-
fect of thiazide diuretics on the afferent and efferent arterioles seems
not to be a direct constrictive effect, but rather to changes induced
in TGF by the inhibition of sodium reabsorption [214, 215]. How-
ever there are disagreements on the effect of thiazide diuretics on
TGF [216].

In contrast to loop diuretics, which affect ion reabsorption in the
proximal tubules, amilorid mainly affect the sodium absorption
connected to potassium and hydrogen secretion in the collection tu-
bules. The different sites of action between these drugs might ex-
plain the different effect on renal autoregulation [217]. Whereas
amilorid has no effect on TGF, the acute effects of loop diuretics
have been shown to be a dose dependent impairment of both TGF
[218] and the myogenic response to changes in renal perfusion pres-

sure [61, 219]. However, if loop diuretic is given as a continuous in-
fusion both autoregulation of RBF and GFR are maintained [220,
221]. 

In conclusion, animal and human studies reveals great differences
between different antihypertensive drugs effect on renal autoregula-
tion. Our studies in type 2 diabetic patients suggest that treatment
with dihydropyridine CCB’s impair/abolish renal autoregulation,
while AIIA’s have little or no effect on whole kidney autoregulation.
Thiazide diuretic impairs renal autoregulation, whereas ACEI, beta-
blockers, alpha-blockers, amilorid and long-term loop diuretic
treatment have no impact on renal autoregulation in animals.
Studies have not yet evaluated the effect of treatment with alpha-
blockers, beta-blockers or diuretics on renal autoregulation in hu-
mans. Consequently there is a need for further studies of renal auto-
regulation in humans, to evaluate renal autoregulation during dif-
ferent antihypertensive treatments and to evaluate differences be-
tween and within different patient groups. 

J) CONSEQUENCES OF IMPAIRED RENAL 
AUTOREGULATION
The interplay between impaired renal autoregulation on one hand,
and systemic BP [222-227], glomerular mechanical strain [8, 228-
233], different growth hormones [234-237], glomerular permselect-
ive properties [238, 239], diabetes [3, 17, 240, 241], albuminuria
[169, 171, 174] on the other hand, and the development/progression
of renal histological changes has been studied [173, 222, 242]. Al-
though the pathogenesis in the different models differs in several as-
pects, impairment of renal autoregulation might induce the follow-
ing pathological events: Enhanced transmission of systemic BP into
the capillary network, induces wide swings and increased glomeru-
lar volume [230, 243]. These alterations are further magnified by
hypertension [230]. The pressure induced wide swings induces ca-

Fig. 7. A and B. Rela-
tive change in GFR
(percentage change of
control GFR) and
relative change in
MABP (percentage
change of control
MABP) induced by in-
travenous injection of
clonidine.
A. Treatment with
placebo.
B. Treatment with
isradipine retard 5 mg
o.d.
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Fig. 8. A and B. Rela-
tive change in GFR
(percentage change of
control GFR) and rel-
ative change in MABP
(percentage change of
control MABP) in-
duced by intravenous
injection of clonidine.
A. Treatment with
placebo.
B. Treatment with can-
desartan 16 mg o.d.
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pillary distension and mesangial stretch [244]. Capillary distension
induces glomerular epithelial cell hypertrophy with epithelial cell
protein droplets, increase in lysosomes, vacuolisation [245], focal
and segmental detachment of endothelial and epithelial cells from
the basement membrane [174, 239], segmental capillary collapse
with adhesion to Bowman’s capsule [245] and fusion of foot pro-
cesses [242, 243]. These changes combined with increased in PGC

[174, 238] lead to changes in size- and charge-selective properties of
the glomerular capillaries, and results in increase UAE [174, 239]. 

Cultured mesangial cells undergoing cyclic stretching demon-
strates increased synthesis of protein, total collagen and key compo-
nents of extracellular matrix (collagen, laminin, fibronectin) [231],
this synthesis is further increased in the presence of high glucose
concentration [228]. Consequently it is highly likely that glomerular
stretching increases mesangial expansion [226, 239, 242, 243] and
that diabetes per se enhances the stretch induced extracellular ma-
trix accumulation [228]. Furthermore mechanical stretching in-
creases the synthesis and activation of the prosclerotic molecule
transforming growth factor-β [229]. Transforming growth factor-β
is found to be a critical mediator in the net accumulation of extra-
cellular matrix especially in cell culture exposed to high glucose
[233, 237]. The above-mentioned changes are ultimately leading to
albuminuria and glomerulosclerosis with hyalinosis [169, 226, 241].

Biopsy studies of patients with long-term hypertensive lesions
[246] and/or diabetic glomerulosclerosis [32, 247] have revealed se-
vere arteriolar hyalinosis and/or fibrinoid swelling of the intima,
these changes is likely to cause further impairment in renal auto-
regulation [32, 246, 248-250]. 

The importance of glomerular capillary hypertension in the de-
velopment/progression of renal disease is supported by the fact that
normotension [154, 171, 173, 224, 251] and reduction of glomeru-
lar capillary pressure with antihypertensive treatment [245, 252,
253] or low protein diet [226, 227, 239, 242, 254, 255] protects
against the development and progression in renal disease in animals. 

Combination of the above mentioned animal studies, with studies
in patients with diabetic [256] or nondiabetic glomerolopathies
[257] have made it generally accepted that lowering of BP with anti-
hypertensive treatment is the keystone in reducing the development
and progression in kidney diseases. Furthermore, it has recently
been revealed that treatment with AIIA is renoprotective independ-
ent of its bloodpressure-lowering effect in microalbuminuric [258]
and macroalbuminuric type 2 diabetic patients [259, 260]. From a
kidney point of view, antihypertensive treatment that does not im-
pair renal autoregulation, such as AIIA, should therefore be the first
drug of choice.

In conclusion, impaired renal autoregulation is part of the patho-
physiological changes that leads to albuminuria and glomeruloscler-
osis with hyalinosis. Antihypertensive treatment is the keystone in
reducing the development and progression in kidney diseases. How-
ever, antihypertensive treatment not interfering with normal renal
autoregulation, such as AIIA, should from a kidney point of view be
the first drug of choice.

4. NEPHROPATHY IN TYPE 2 DIABETIC PATIENTS
A) THE NATURAL COURSE OF KIDNEY FUNCTION 
IN ALBUMINURIC TYPE 2 DIABETIC PATIENTS
The cumulative incidence of diabetic related renal disease in Europe
[261-266], the United Stats [261] and in Japan [261, 267, 268] is ap-
proximately 20-45% after 20 [261, 263-265, 268] to 40 years [262,
266, 267] duration of diabetes. Whereas the incidence of diabetic
nephropathy in patients with type 1 diabetes seems to be unchanged
[261, 265] or decreased over the years [264, 268], the incidence of
type 2 diabetic patients with nephropathy tends to increase [268].
Diabetic nephropathy has become the single most important cause
of ESRD [269-271]. At least 50% of the ESRD associated with dia-
betes occurs in type 2 diabetic patients [271-274]. Even though
health care problems related to renal disease in type 2 diabetic pa-

tients has become a major burden for the patients and the health
care system, most of our knowledge concerning the natural history
of diabetic nephropathy originates from studies of albuminuric
type1 diabetic patients.

Mogensen et al [275] performed the first study evaluating the rate
of decline in GFR in Caucasian mainly hypertensive albuminuric
type 1 diabetic patients who had never received antihypertensive
treatment. A highly variable rate of decline in GFR was found (11 (4
to 24) ml/min/year), and a positive correlation was shown between
BP and albuminuria, and rate of decline in GFR. Parving et al [276]
later confirmed these results. They also revealed a progressive in-
crease in BP and albuminuria, and a variable rate of decline in GFR
of 9 (1.2 to 18) ml/min/year. Jacobsen et al [277] demonstrated in a
selected group of normotensive albuminuric type 1 diabetic patients
a much slower, but still highly variable decline in GFR of 1.2 (–4.4 to
12.9) ml/min/year. The above-mentioned studies all suggests that the
level of BP and albuminuria acts as so called progression promoters.

The information on the natural course of kidney function in type
2 diabetic patients not treated with antihypertensive treatment is
limited. Baba et al [278] studied five normotensive type 2 diabetic
patients and found a rate of decline in GFR of 4.8 (0.7 to 7.0)
ml/min/year. Nelson et al [279] studied the natural course of the de-
velopment and progression of renal disease in Pima Indians with
type 2 diabetes mellitus followed for 4 years. Initially patients with
albuminuria were not treated with drugs that might alter the course
of kidney function, however as the renoprotective effect of ACEI was
demonstrated in 1993 [280] 30% of the patients were started on
ACEI treatment. In that study, the average decline in GFR was 11
ml/min/year, and urinary albumin-to-creatinine ratio (mg/g) in-
creased from 1180 to 2621 during follow-up. Higher renal plasma
flow, albuminuria and body mass index (BMI) at baseline predicted
a more rapid decline in GFR, whereas systemic BP and Haemo-
globin A1c (HbA1c) values did not.

It is common knowledge, that antihypertensive treatment has a
beneficial effect in reducing the rate of decline in GFR in both albu-
minuric type 1 [281, 282] and type 2 [20, 283-285] diabetic patients,
and in preventing development of macrovascular complications
[286]. In combination with a high prevalence of hypertension of ap-
proximately 90% [287] in type 2 diabetic patients with nephropathy,
this knowledge did not, for obvious ethical reasons allow us to con-
duct a prospective study on the natural history of diabetic nephro-
pathy in an unselected group of albuminuric type 2 diabetic pa-
tients. We therefore retrospectively identified all type 2 diabetic pa-
tients with diabetic nephropathy who had been or still were
attending the out patient clinic at Steno Diabetes Center. Patients
with a follow-up period without antihypertensive treatment for
more than 2 years, and with at least three determinations of GFR
after onset of albuminuria were selected (n=13) [288]. During the
follow-up time of 4.6 (2.0 to 8.8) years, a highly variable rate of de-
cline in GFR of 4.5 (–0.4 to 12.0) ml/min/year was revealed (Fig. 9).
Due to the small sample size, our results must be interpreted with
caution, but they do provide evidence of a rather slow rate of decline
in GFR in normotensive to borderline hypertensive type 2 diabetic
patients with diabetic nephropathy. We found no significant corre-
lation between the rate of decline in GFR and BP. However, we
found a tendency to increasing BP (predominately systolic BP) and
albuminuria during follow-up. Other putative progression promot-
ers such as: HbA1c, cholesterol, baseline GFR, known duration of
diabetes, BMI, smoking, or age had no significant association with
the rate of decline in GFR in our study. Furthermore, the variability
in the rate of decline in GFR could hardly be due to heterogeneity in
the underlying kidney disease, since we used strict criteria for selec-
tion (persistent albuminuria, presence of diabetic retinopathy, and
no clinical or laboratory evidence of other kidney or renal tract dis-
ease) of patients with diabetic nephropathy [29]. One patient did
not fulfil these clinical criteria, but a kidney biopsy showed diabetic
glomerulosclerosis.
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The decline in GFR in the Pima Indians was more than twice as
high as in our study despite nearly same BP level. Different race and
more pronounced elevation in baseline GFR, albuminuria, BMI,
and HbA1c in the former study might explain part of the discrep-
ancy. Furthermore glomerular size is nearly two times greater in
Pima Indians as compared to Caucasians [289], and increased
glomerular size may play an important role for initiation and pro-
gression of glomerulopathy [290, 291].

In conclusion, the natural course of rate of decline in GFR in type
1 and type 2 diabetic patients with nephropathy, who never have
been treated with antihypertensive drugs, is characterized by a
highly variable rate of decline in GFR, which is predominately de-
pendent on the level of arterial BP and albuminuria. 

B) CAUSES OF ALBUMINURIA IN TYPE 2 DIABETIC PATIENTS
Whereas only 5% or less of type 1 diabetic patients with persistently
elevated UAE have evidence of a nondiabetic kidney disease [292], a
much higher and highly variable prevalence of nondiabetic kidney
disease has been demonstrated in kidney biopsies as the cause of al-
buminuria in type 2 diabetic patients [29-31, 34, 293-311] (Table 1).
The heterogeneity in prevalence of nondiabetic kidney disease seen
in type 2 diabetic patients may partly be explained by differences in
geographical and ethnic origin. Furthermore, differences in patient
sampling, study design, level of albuminuria and age of the patients
adds to the disparity. In particular it is important to stress whether a
study reflect selected (biased) or unselected patients groups. 

Ethnic origin and geographical differences. The highest rate of
nondiabetic kidney disease (81%) has been found in type 2 diabetic
patients from India [312]. The majority of the patients suffered
from acute infectious glomerulonephritis, which is particular com-
mon in tropical area. Even though glomerulonephritis is common
in tropical area, the high prevalence of nondiabetic kidney disease in
the study of John et al. [312] is based on kidney biopsies from rela-
tively young type 2 diabetic patients who had nephrotic syndrome,
unexplained haematuria, proteinuria without retinopathy, rapidly
progressive renal failure or unexplained renal failure, and should
therefore not be regarded as the prevalence of nondiabetic kidney
disease among Indian type 2 diabetic patients with albuminuria.

Nzerue et al. [310] found a prevalence of nondiabetic kidney dis-
ease of 58% in African-American type 2 diabetic patients who had
severe nephrotic syndrome, suspected nephritis or renal failure
atypical for diabetic nephropathy. The most prevalent nondiabetic
glomerulopathy was focal segmental glomerulosclerosis. This is in
contrast to other biopsy studies including Caucasians, Japanese or
Chinese patients where the most prevalent found nondiabetic kid-
ney disease was immunoglobulin A (IgA) nephropathy [29, 302,
308, 313]. These results are in agreement with a higher prevalence of
focal segmental glomerulosclerosis in unselected populations of
nephrotic African-American patients compared to white patients
[314]. In an autopsy study from 1974 including type 2 diabetic Pima
Indians, Kamenetzky et al. [293] found that pyelonephritis was the
most frequently nondiabetic cause of proteinuria. However the
treatment of pyelonephritis has improved over the years, and a
change in the prevalence of nondiabetic renal disease among this
ethnic group might have occurred, but no new data is available. 

Patient sampling and study design. The prevalence of nondiabetic
kidney disease is 13-48% in Caucasian type 2 diabetic patients re-
ferred to nephrology department for a kidney biopsy [34, 298-300,
306]. This prevalence is based on retrospective and cross-sectional
studies (Table 1). The studies have different indications for renal bi-
opsy, however all patients had clinical symptoms/signs suggesting
renal disease other than diabetic nephropathy. Richards et al [298]
who included mainly type 2 diabetic patients with nephrotic syn-
drome found a large prevalence, whereas a much lower prevalence
was found by Olsen et al. [306] who included patients clinical signs
not completely characteristic of diabetic nephropathy. It is evident
that such differences in selection of patients might cause bias of the
results.

Only one prospective study has included unselected albuminuric
type 2 diabetic patients who were attending a diabetic clinic. Parving
et al. [29] found a prevalence of 33% of nondiabetic kidney disease
in patients less than 66 years of age, 4 (33%) of these patients had
normal or near normal glomerular structure. A relatively high
prevalence (25%) of albuminuric type 2 diabetic patients with nor-
mal glomerular structure has recently been confirmed in a cross-
sectional study from Finland [304].

In 1997 Brocco et al. [307] included 53 mikroalbuminuric type 2
diabetic patients in a prospective study and found atypical pattern
in 33% of the patients, but no nondiabetic glomerular disease was
revealed. In an unbiased clinical trail Cordennier et al. [31] included
both albuminuric and microalbuminuric patients and revealed
nondiabetic kidney disease in 15% of the patients.

Albuminuria and age. Unfortunately most of the studies evaluat-
ing the prevalence of nondiabetic kidney disease lack information
on patient age and level of albuminuria. The prevalence of nondia-
betic renal disease is likely to increase with increasing age and it is
therefore important to know differences in age between studies.
Since the prevalence of nondiabetic glomerular structural lesions in
microalbuminuric type 2 diabetic patients is close to zero [305, 309,
315], and the prevalence of nondiabetic kidney disease in albumin-
uric patients is approximately 30% [29, 300, 304, 308, 311], it is even
more important to have information on differences in level of albu-
minuria between studies.

Even though the differences between above-mentioned studies
make it difficult to establish the prevalence of nondiabetic kidney
disease in type 2 diabetic patients, it is evident that a higher percent-
age of albuminuric type 2 diabetic patients without retinopathy suf-
fers from nondiabetic kidney disease compared to patients with
retinopathy [29, 295, 296, 299, 308], however the exact prevalence of
nondiabetic kidney disease in this group of patients without retino-
pathy is not known. 

We evaluated all eligible Caucasian type 2 diabetic patients with
persistent albuminuria (>300 mg/24 h), without retinopathy, and
with age less than 66 years, who were attending the out patient clinic
at Steno Diabetes Centre between 1978-1998 [313]. Fifty-eight of

Fig. 9. Individual course of GFR in 13 type 2 diabetic patients with diabetic
nephropathy, who had never received any antihypertensive drugs.
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the patients without retinopathy were referred for a kidney biopsy,
but 6 of these patients later decided not to participate and one kid-
ney biopsy did not succeed. The kidney biopsy revealed diffuse
(n=34) or nodular (n=1) diabetic glomerulopathy in 69% of the pa-
tients. In the remaining 16 patients (31%), normal glomerular
structure was found in 9 (18%) and 7 (13%) biopsies had different
types of glomerulonephritis. In agreement with other studies [298,
300, 302, 308] it was not possible to predict causes of albuminuria or
obtain prognostic information on the kidney disease based on dif-
ferences in demographic, clinical and laboratory data between the

two groups. The prevalence of patients without diabetic glomeru-
lopathy in our study was, as expected, higher than in most of the
above mentioned studies where patients with clinical diabetic neph-
ropathy (persistent albuminuria, presence of diabetic retinopathy,
and no clinical or laboratory evidence of other kidney or renal tract
disease [29]) were included. It must be emphasized that the sole in-
dication for kidney biopsy in our study was presence of albuminuria
and lack of diabetic retinopathy, in other words we had no clinical
suspicion of a nondiabetic kidney disease.

Our finding of normal glomerular structure in 18% of the pa-

Table 1. Renal disease in type 2 diabetic patients based on reports in the literature.

Diabetic Normal/near Nondiabetic

Level of glomerulo normal kidney

Type of Ethnic Patient albuminuria Age pathy structure disease

Reference Number diabetes origin sampling Design (mg/24h) (years) (%) (%) (%)

Kamenetzky et al 43 2 Pima Indians Autopsy Cross-sectional normal to 62 65.1 ? 16.3
1974 albuminuric

Kasinath et al 122 1 + 2 ?(USA) Medical Retrospective/ ? ? ?(92) ?
1983 center cross-sectional

Chihara et al 69 2 Japanese Medical Cross-sectional normal to ? 67 0 33
et al. 1986 center nephrotic

Amoah et al 60 2 Caucasian/ Nephrology Retrospective/ Dipstick ? 72 0 28
1988 Black (USA) department cross-sectional positive

Waldherr et al 210 1 + 2 ?(Germany) Autopsy Cross-sectional ? 74 79 ?(20.5) 0.5
1992

Parving et al 35 2 Caucasian DM out- Prospective/ >300mg <66 77 11 22
1992 patient clinic cross-sectional

Richards et al 46 2 ?(UK) Renal Retrospective/ normal to 54/60 52 0 48
1992 unit cross-sectional nephrotic

Kleinknecht et al 35 2 ?(France) Nephrology ? ? ? 60 0 40
1992 department

Gambara et al 52 2 ?(Italy) Nephrology Retrospective >500 49 to 83 36 (31% 33
1993 department atypical pattern)

John et al 80 2 India Nephrology Retrospective/ ? 47 19 0 81
1994 department cross-sectional

Suzuki et al 128 2 Japanese Medical Retrospective/ normal to 54 84 0 16
1994 department cross-sectional nephrotic

Pinel et al 30 2 ?(UK) ? No evidence of 70 to 5000 26 to 65 83 (17% non-
1995 nondiabetic specific pattern)

kidney disease

Wirta et al 16 2 Caucasian Health care Population based/ 300 ? 75 25
1995 center cross-sectional

Fioretto et al 34 2 ?(Italy) Diabetic Multicentre <300 58 29 29
et al.1996 centre study (41%

atypical pattern)

Olsen & Mogensen 33 2 Caucasian Nephrology Retrospective/ ? 62 87 0 13
1996 department cross-sectional

Brocco et al 53 2 Caucasian Diabetic Prospective/ <300 58/55/61 26 41 0
1997 clinic consecutive (33 %

atypical pattern)

Mak et al 51 2 Chinese Renal Prospective >600 57/50 67 0 33
1997 unit

Firetto et al 32 2 Caucasian Medical In rolled into <300 57/51/55 38 31 0
1998 department clinical study (31%

atypical pattern)

Schwartz et al 34 2 ?(Multicentre) ? In rolled into >300 57/59 94 0
1998 clinical study

Ruggenenti et al 65 2 ?(Italy) Nephrology Retrospective/ >100 60 82 0 18
1998 department cross-sectional

Cordonnier et al 26 ?(France) Clinical In rolled into 70 to 4210 47 85 0 15
et al.1999 centres clinical study

Nzerue et al 31 2 African- Medical Retrospective/ ? ? 42 0 58
2000 American department cross-sectional

8

0

0

6
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tients may, however, be a conservative estimate since 15 patients
with albuminuria between 300-1000 mg was excluded from the
study, because the criteria for performing kidney biopsy was
changed during the study period from albuminuria persistently
above 300 mg to albuminuria persistently above 1000 mg/24 h. 

Albuminuria in some of our patients with normal renal structure
may reflect one of the following causes: Minimal-change nephro-
pathy, focal segmental glomerulosclerosis (undetected), silent dia-
betic glomerulopathy (electron microscopic glomerulopathy) and
finally, a hypothetic entity with normal renal structure but increased
glomerular permeability to macromolecules (size/charge-defects).
Furthermore arteriolar structural abnormalities may lead to im-
paired vascular responses to changes in systemic BP and thereby
contribute to increased leakiness of glomerular filter[82]. 

In conclusion, type 2 diabetic patients with evaluated UAE, espe-
cially in the macroalbuminuric range, have a high prevalence of
nondiabetic kidney disease, the prevalence and cause of nondiabetic
albuminuria is highly dependent on geographic and ethnic differ-
ences. Most studies evaluating the prevalence of nondiabetic kidney
diseases suffers from sampling bias, but unbiased studies indicate a
prevalence of app. 30% among albuminuric Caucasian type 2 dia-
betic patients and an even higher prevalence if the patients lack
retinopathy. A kidney biopsy is necessary to establish the underlying
cause of albuminuria in type 2 diabetic patients without retino-
pathy. Further studies are needed in order to determine the preva-
lence of nondiabetic kidney disease in diabetic non-Caucasian
populations.

C) RENAL STRUCTURE AND FUNCTION 
IN ALBUMINURIC TYPE 2 DIABETIC PATIENTS
In patients with kidney disease the morphometric techniques have
allowed for quantitations of the structural changes and thereby
facilitated correlation of these changes with kidney function.

The structural changes most commonly seen in albuminuric type
1 and type 2 diabetic patients are: GBM thickening, changes in po-
docyte number and podocyte foot processes, increased mesangium
and mesangial matrix leading to loss of filtration surface area, totally
sclerotic or occluded glomeruli, hyalinosis, interstitial fibrosis and
expansion, and tubular atrophy.

Glomerular filtration barrier, albuminuria and kidney function.
Albuminuric type 2 [32, 316-318] and type 1 [319] diabetic patients
have increased thickening of GBM. The increased thickening of
GBM is associated with increased albuminuria [320]. An association
between GBM thickening and loss of kidney function has further-
more been demonstrated in type 2 diabetic patients [317, 318, 321]
whereas it is not clear if such an association is present in type 1 dia-
betic patients [322].

Studies have shown that albuminuria correlate with changes in
foot process number and width in type 1 [323] and type 2 diabetic
patients [324], and in nondiabetic patients [325]. However, albu-
minuria can be found in absence of changes in podocytes number
and foot process width. While the above-mentioned changes are
present in patients with low levels of microalbuminuria, changes in
endothelium and filtration slit-length density are only detectable in
type 2 [321] and type 1 diabetic patients [326] with high levels of
microalbuminuria. The changes in the endothelium and the filtra-
tion slit-length density may reduce Kf. This reduction in Kf may re-
sult in a decline in GFR.

Mesangium, albuminuria and kidney function. Several studies of
type 1 diabetic patients [322, 327-329] with a wide range of albu-
minuria and with normal to severe renal structural lesions have re-
vealed a correlation between mesangial volume fraction and albu-
minuria. Our results suggested that a correlation between mesangial
volume fraction and albuminuria is also present in albuminuric
type 2 diabetic patients without retinopathy irrespectively of the
underling cause for albuminuria [313]. However, our study of
macroalbuminuric type 2 [313] and a study of microalbuminuric

type 1 diabetic patient [330] have revealed that the mesangial vol-
ume fraction can be within the normal level in spite of micro- and
macroalbuminuria. These findings indicate that the cutoff point be-
tween normal mesangial volume fraction and mild diabetic glomer-
ulopathy is somewhat arbitrary.

A close inverse correlation between mesangial volume fraction
and kidney function has been demonstrated both in type 2 [36, 316]
and type 1 [322, 327] diabetic patients. We confirmed and extended
these findings, by demonstrating a close inverse correlation between
mesangial volume fraction and GFR in albuminuric type 2 diabetic
patients with and without diabetic kidney disease [313]. Since the
structural determinant of kidney function is the total area of the
peripheral capillary surface, this relationship probably resulted from
the expanding mesangium compromising the structure of glomeru-
lar capillaries [292]. In further support of this theory are results sug-
gesting that the peripheral capillary filtration surface per glomeru-
lus is directly related to GFR in type 1 diabetic patients with varying
degree of albuminuria [331, 332]. 

Glomerular vessels, totally occluded glomeruli, albuminuria and
kidney function. Hyaline degenerative changes can involve both the
afferent and efferent glomerular arterioles in diabetic patients [333].
These degenerative changes might cause impairment of renal auto-
regulation and thereby pressure dependent albuminuria and
glomerular hypertension, which may induce pathological changes
within the glomerulus as described previously. This scenario is in
agreement with results suggesting that the severity of arteriolar hy-
alinosis correlates with the level of albuminuria and GFR [327]. The
frequency of more advanced glomerular arteriolar lesions, defined
as complete replacement of smooth muscle by hyaline, correlate dir-
ectly with increased percentage of globally sclerotic glomeruli [334].
We revealed that the percentage of sclerotic glomeruli correlates
with the level of albuminuria and GFR in patients with diabetic
nephropathy [313]. In sequential biopsy studies, both arteriolar
hyalinosis lesions [329] and the number of sclerosed glomeruli
progresses as the diabetic kidney disease advances [35]. These obser-
vations support the hypothesis that global glomerular sclerosis in
diabetic nephropathy might derive in part from vascular pathology.
This view is supported by studies indicating that the cortical distri-
bution of global glomerular sclerosis in type 1 diabetic patients fits a
pattern consistent with a vasculo-occlusive process. However, pres-
ence of sclerosed glomeruli is relatively common in normoalbu-
minuric nondiabetic persons with normal renal function in the
same age as our patients [335]. Furthermore it is possible that inter-
lobar arteriosclerosis is also involved in the vascular impairment of
kidney function in type 2 diabetic patients [336]. An additional
mechanism in diabetes might be extreme mesangial expansion with
consequent capillary closure [337].

Tubulo-interstitial changes, albuminuria and kidney function.
Tubulo-interstitial changes might develop as sequelae to arteriolo-
and arteriosclerosis. Consequently, tubulo-interstitial abnormalities
might occur in biopsies with as well as without diabetic glomerulo-
pathy. Studies in type 2 diabetic patients have demonstrated severe
tubulo-interstitial changes in absence of or with only mild diabetic
glomerular changes in patients with microalbuminuria [305, 307].
In our study albuminuric type 2 diabetic patients with as well as
those without glomerulopathy included cases with marked focal fi-
brosis [313]. However, a correlation between fractional area of focal
interstitial fibrosis and tubular atrophy of cortical area and GFR was
only revealed in patients without diabetic glomerulopathy. Further-
more the tubulo-interstitial changes did not correlate with the level
of albuminuria irrespectively of the underlying cause of albumin-
uria. Since mesangial expansion is the central element in the devel-
opment of diabetic glomerulopathy, it is possible that tubulo-inter-
stitial changes at later stages are consequences of the advanced
glomerular injury [329]. The advanced glomerular injury may thus
overrule the effect of tubulo-interstitial changes on the change in
GFR and albuminuria. Mauer et al. [338] have shown that both
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hypertension and mesangial expansion increased the tubulo-inter-
stitial injury in albuminuric type 1 diabetic patients. However, Taft
et al. [35] reported that the decline in creatinine clearence over time
correlated inversely with changes in interstitial fibrosis in a mixed
group of albuminuric type 1 and type 2 diabetic patients, while the
changes in interstitial fibrosis did not correlate with the level of pro-
teinuria and BP. Furthermore, White et al [318] demonstrated in
hypertensive type 2 diabetic patients with proteinuria a close inverse
correlation between volume fraction of the interstitium and creati-
nine clearance, whereas proteinuria only correlate with the glo-
merulopathy. While the above-mentioned studies all demonstrate
lack of correlation between albuminuria and tubulo-interstitial
changes, there is disagreement with respect to the impact of tubulo-
interstitial changes on kidney function. This disagreement may be
related to differences in the measurements of the tubulo-interstitial
changes, and differences in BP and antihypertensive treatment that
might alter the course of kidney function.

In conclusion, diabetic nephropathy is related to structural
changes in the glomerular filtration barrier that leads to a reduction
in Kf. Reduction in Kf will induce a reduction in kidney function.
Mesangial expansion is closely associated with reduction in kidney
function and increased level of albuminuria. The relationship prob-
ably results from the expanding mesangium compromising the
structure of the glomerular capillaries. The development of renal
vascular changes such as hyalinosis might impair renal autoregula-
tion and thereby contribute to the development of glomerulopathy.
Tubulo-interstitial changes occurs both in patients with and without
diabetic nephropathy. In diabetic patients tubulo-interstitial
changes might be related to mesangial expansion and develop as se-
quelae to arteriolo- and arteriosclerosis. The severity of the tubulo-
interstitial abnormalities do not correlates with increasing albu-
minuria, and the effect on kidney function is still debated. New se-
rial biopsy studies are needed in order to determine the effect of dif-
ferent antihypertensive medications on the progression of renal
structural lesions in albuminuric type 2 diabetic patients.

D) COURSE OF KIDNEY FUNCTION 
IN ALBUMINURIC TYPE 2 DIABETIC PATIENTS 
WITH OR WITHOUT DIABETIC NEPHROPATHY
As discussed earlier, the prevalence of nondiabetic kidney disease is
5% in albuminuric type 1 diabetic patients, whereas a much higher
prevalence is found in albuminuric type 2 diabetic patients [31].
Despite the heterogeneous nature of underlying kidney disease in
type 2 diabetic patients with albuminuria, no long-term study has
compared the clinical course of GFR in albuminuric type 2 diabetic
with or without diabetic glomerulopathy [31, 33-36]. 

We decided to add information to this important topic, by per-
forming a prospective observational study describing the clinical
course of GFR [33] in thirty-four patients previously enrolled in the
unbiased cross-sectional biopsy study by Parving et al [29]. Twenty-
six patients had diabetic glomerulosclerosis (DG-group), and eight
had nondiabetic glomerulopathies (NDG-group). There were no
differences in clinical, laboratory or demographic data between the
two groups at baseline. More than 75% of the patients received anti-
hypertensive treatment at the end of study. During the 7.7 years of
follow-up GFR decreased in the DG-group form 82 to 38 ml/min/
1.73 m2, with rate of decline in GFR of 5.6 (0.3-21.6) ml/min/year. A
slower rate of decline in GFR of 1.3 (0.3-7.6) ml/min/year was found
in the NDG-group (Table 2). Six (23%) of the patients in the DG
group developed ESRD, whereas none of the patients in the NDG-
group developed this condition. However, the latter group had a
better preserved kidney function at the onset of the study. The rate
of decline in patients with diabetic glomerulopathy found in our
study was comparable with the rate of decline found in previous
studies of type 2 patients with clinical diabetic nephropathy [283,
285, 339]. 

The patients with diabetic nephropathy had a significantly rise in

albuminuria from 1.4 to 2.6 g/24 h, despite BP decreased during fol-
low-up. This pattern was not seen in the NDG-group, they had a
significant decrease in albuminuria from 2.2 to 0.8 g/24 h, despite
unchanged BP. The significantly more rapid decline in GFR in the
DG-group compared to the NDG-group is therefore more likely to
be caused by qualitative and quantitative difference in the renal
structural lesions rate than differences in extrarenal conditions. This
suggestion is further supported by the fact that the different course
of decline in GFR in the two groups could not be explained by dif-
ferences in baseline GFR, nor by differences during follow-up in the
following putative progression promoters: arterial BP, albuminuria,
serum cholesterol, smoking and glycaemic control.

Ruggenenti et al [34] evaluated 153 type 2 diabetic patients ad-
mitted to nephrology department because of proteinuria and/or
renal insufficiency. Patients with rapidly progressive renal disease,
advanced renal insufficiency and contraindications for renal biopsy
were excluded. In the patients who were selected for renal biopsy
they found typical diabetic glomerulopathy in 30, predominant
nephroangiosclerosis in 23 and nondiabetic glomerulopathy in 12 of
the patients. The patients were followed for 1.8 year. In this highly
selected group of patients there were no correlation between the his-
tological groups and the development of endpoints (combined end-
point was doubling of serum creatinine, dialysis, or transplanta-
tion). The main predictor of kidney survival was baseline protinu-
ria. In the patients with proteinuria <2 g/24 h and in patients with
proteinuria >2 g/24 h with limited histological abnormalities end-
points were never reached. These finding is in agreement with our
finding [33, 340] of a rate fast rate of decline in GFR in patients with
nephrotic range albuminuria. 

The most commonly found reason for nondiabetic albuminuria
in type 2 diabetic patients is IgA glomerulopathy [313]. Mak et al
[311] evaluated and compared type 2 diabetic patients with diabetic
glomerulopathy (n=27) to patients with IgA glomerulopathy super-
imposed on diabetic glomerulosclerosis (n=9). They reported after a

Table 2. Course of GFR, serum creatinine, albuminuria and arterial blood
pressure in type 2 diabetic patients with persistent albuminuria.

Glomerulopathy

diabetic non-diabetic

(n=26) (n=8) p-valuea

Follow-up (months)  . . . . . . . . . . 86 (12-170) 118 (55-163) ns
Number of GFR measurements  . 10 (3-20) 12 (7-14) ns

GFR (ml/min/1.73 m2)
At entry  . . . . . . . . . . . . . . . . . . . 82 (24-146) 107 (89-135) <0.05
At end . . . . . . . . . . . . . . . . . . . . . 38 (2-116) 90 (17-119) <0.05
p-valueb  . . . . . . . . . . . . . . . . . . . <0.001 <0.05
Rate of decline  . . . . . . . . . . . . . 5.6 (0.3-21.6) 1.3 (0.3-7.6) <0.05

Serum creatinine (µmol/l)
At entry  . . . . . . . . . . . . . . . . . . . 92 (51-262) 83 (52-101) ns
At end . . . . . . . . . . . . . . . . . . . . . 168 (75-1106) 95 (69-239) <0.05
p-valueb  . . . . . . . . . . . . . . . . . . . <0.001 =0.05

Albuminuria (g/24h)
At entry  . . . . . . . . . . . . . . . . . . . 1.4 (0.3-7.2) 2.2(0.8-8.7) ns
At end . . . . . . . . . . . . . . . . . . . . . 2.6 (0.1-21.6) 0.8 (0.2-2.5) <0.05
p-valueb  . . . . . . . . . . . . . . . . . . . <0.05 0.05
Median during follow-up . . . . . . 1.8 (0.2-7.4) 1.1 (0.2-5.0) ns

Systolic blood pressure (mm Hg)
At entry  . . . . . . . . . . . . . . . . . . . 162±5 141±4 <0.05
At end . . . . . . . . . . . . . . . . . . . . . 154±5 149±6 ns
p-valueb  . . . . . . . . . . . . . . . . . . . ns ns
Mean during follow-up  . . . . . . . 161±4 149±4 0.07

Diastolic blood pressure (mm Hg)
At entry  . . . . . . . . . . . . . . . . . . . 96±3 88±3 ns
At end . . . . . . . . . . . . . . . . . . . . . 80±2 83±3 ns
p-valueb  . . . . . . . . . . . . . . . . . . . <0.001 ns
Mean during follow-up  . . . . . . . 89±2 88±2 ns

Median (range) and mean±SE indicated.

a) Significance of difference between the two groups, and b) within the two groups.
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follow-up of 2.6 years that the two groups had comparable rate of
decline in creatinine clearance, final serum creatinine and protein-
uria.

To explore this topic further, we evaluate the course of GFR in our
patients without retinopathy from the cross-sectional biopsy study
previously discussed [313]. Forty-nine patients were eligible for this
study [340], 34 had diabetic glomerulopathy, 9 normal glomerular
structure and 6 glomerulonephritis (predominantly IgA glomeru-
lonephritis). Patients were followed for 7 years. In the DG-group the
rate of decline in GFR was 5.3 compared to 3.2 ml/min/year in the
NDG-group. The lower rate of decline in GFR in patients with dia-
betic glomerulosclerosis but without retinopathy as compared to
patients with diabetic glomerulosclerosis with retinopathy is not
unexpected since a correlation between severity of retinopathy and
glomerular structural changes has been reported in type 2 diabetic
patients [32]. The relatively fast rate of decline in the NDG-group
might be explained by the combination of diabetic glomerulopathy
and nondiabetic glomerulopathy seen in some of the patients.
Fioretto et al. (personal communication) have measured GFR re-
peatedly during 4 years (range 1.5 to 6 years) in 64 type 2 diabetic
patients with persistent microalbuminuria. The cause of microalbu-
minuria was evaluated by a percutaneous kidney biopsy. The study
revealed that only patients with typical diabetic glomerulopathy
(12/64, 19%) had a significant decrease in GFR as compared pa-
tients with mainly tubulo-interstitial and arteriolar changes (26/64,
40.5%) and patients (26/64, 40.5%) with normal or near normal re-
nal structure, ∆GFR: –6.4, –0.7 and 2.0 ml/min/year, respectively.
Interestingly the microalbuminuric patients with normal or near
normal renal structure had an increase in GFR, which is in contrast
to our albuminuric type 2 diabetic patients without retinopathy
with normal glomerular structure, who had a decrease in GFR
[340]. However, a rate of decline in GFR close to the age dependent
decline in GFR seen in normal subject was revealed in type 2 dia-
betic patients who had minimal structural lesion, and low levels of
albuminuria combined with relatively low BP.

 None of our patients with nondiabetic glomerulopathy received
specific treatment (e.g. steroid), but exact knowledge of the underly-
ing cause of albuminuria may play an important role in offering the
correct treatment to the patients, as demonstrated in several studies
in type 2 diabetic patients suffering from nondiabetic glomerulo-
pathies [294, 296, 341].

Both our studies in albuminuric type 2 diabetic patients [33, 340]
showed BP as an independent predictor of the rate of decline in
GFR, which is in agreement with studies in both type 1 [256, 342]
and type 2 diabetic patients [278, 343].

Several studies have shown that antihypertensive treatment re-
duces the rate of decline in GFR and thereby postpones ESRD in
type 2 [344] and type 1 diabetic patients with albuminuria [18, 19,
345]. Recently, Østerby et al [346] have extended these findings in a
sequential biopsy study, by reporting that antihypertensive treat-
ment was capable of slowing the progression of renal ultrastructural
changes in diabetic type 1 patients with microalbuminuria. In type 1
diabetic patients with overt nephropathy the effect of antihyperten-
sive treatment on reducing renal structural changes is limited [347].
Unfortunately the observational design of our studies makes it im-
possible to evaluate the effect of different antihypertensive regimes
on the rate of decline in GFR in albuminuric type 2 diabetic patients
[33, 340].

Albuminuria is assumed to be an independent risk factor for the
progression of renal diseases and a reduction in albuminuria is im-
portant to preserve kidney function in type 2 diabetic patients [257,
284, 348, 349]. A close correlation between albuminuria and rate of
decline in GFR was demonstrated in our albuminuric type 2 dia-
betic patients with [33, 340] and without diabetic glomerulopathy
[340], which supports the concept that albuminuria is a risk factor
for progression in renal disease. 

The impact of hyperglycaemia on the progression in diabetic

nephropathy is debated. In agreement with our findings several
other studies have failed to demonstrate a significant correlation be-
tween glycaemic control and progression of GFR in albuminuric
type 2 diabetic patients [279, 343]. In contrast several studies in type
1 diabetic patients have shown that hyperglycaemia is a progression
promoter of diabetic nephropathy [350-352] and that long-term
normalisation of blood glucose after pancreas transplantation can
reverse structural lesion in patients with diabetic glomerulopathy
[353].

Both studies in albuminuric type 1 [342, 354] and type 2 diabetic
patients [355] have reported that high serum cholesterol is associ-
ated with a more rapid deterioration of kidney function. We found
no such correlation between the rate of decline in GFR with total
serum cholesterol or HDL-cholesterol. To solve this disagreement, it
is necessary to conduct a study to evaluate the effect of lipid-lower-
ing therapy on the progression of diabetic nephropathy in hyper-
lipidaemic type 2 diabetic patients, unfortunately no such study has
yet been performed.

The effect of smoking on progression of diabetic nephropathy is
debated [288, 342, 356].

In conclusion, the clinical course of kidney function in type 2 dia-
betic patients with albuminuria is dependent on the underlying kid-
ney disease. Type 2 diabetic patients with typical diabetic glomeru-
losclerosis have a faster rate of decline in GFR compared to albu-
minuric type 2 diabetic patients with nondiabetic glomerulopathies.
A highly variable course of GFR is found in type 2 diabetic patients
irrespective of the underlying kidney disease. In albuminuric type 2
diabetic patients with and without diabetic glomerulosclerosis both
systemic BP and albuminuria act as progression promoters. 

5. CONCLUSIONS
Autoregulation of renal haemodynamics is a vital component in the
overall control of kidney function. Renal autoregulation is complex
and involves both an autonomous intrinsic activity of the renal ar-
terioles and the tubuloglomerular feedback system. The inborn abil-
ity to alter the activity of the smooth muscle cells in the afferent ar-
teriolar in response to changes in systemic BP is the main regulator
of the renal autoregulation system, whereas changes in intra- and
extrarenal vasoactive hormones have less importance. However, age,
hypertension and some vasoactive hormones may change the renal
autoregulation range, but no human studies have yet evaluated the
effect of age, hypertension and vasoactive hormones effects on renal
autoregulation range. Furthermore the range for normal renal auto-
regulation in humans is only partly known.

There are disagreements between different animal models of dia-
betes with respect to the effect of diabetes on renal autoregulation.
Our study in normoalbuminuric type 2 diabetic patients did not re-
veal any impact of short-term changes in glycaemic control on GFR
autoregulation, when BP was acutely reduced with clonidine. Future
human studies are needed to clarify whether or not diabetes per se
impairs renal autoregulation, especially studies of diabetic patients
evaluating the effect of increased BP on renal autoregulation is lack-
ing.

Both animal studies and our studies of albuminuric diabetic and
nondiabetic patients have revealed impaired renal autoregulation if
nephron number is reduced and albuminuria present, irrespectively
of the cause of albuminuria. The development of diabetic microan-
giopathy may indicate that autoregulation is impaired not only in
the kidney, but also in many other tissues and organs.

Animal studies suggest that antihypertensive drugs have different
effects on renal autoregulation. CCB’s abolish, thiazide diuretic im-
pair, whereas ACEI, AIIA, beta-blockers, alpha-blockers, amilorid
and loop diuretic treatment have little or no effect on renal auto-
regulation. We revealed that hypertensive type 2 diabetic patients
treated with a dihydropyridine calcium channel blocker displays
normal to abolished GFR autoregulation response to acute reduc-
tion in BP. Abolished renal autoregulation was related to renal ar-
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teriolar vasodilatation during the treatment. In contrast, treatment
with an angiotensin II receptor antagonist did not change renal au-
toregulation in hypertensive type 2 diabetic patients. Similar find-
ings have been revealed with respect to these two antihypertensive
drugs effect on autoregulation of cerebral blood flow. Since our
studies are the first human studies of the effect of antihypertensive
treatment on GFR autoregulation, there is a need for further studies
evaluating other antihypertensive medications effect on renal auto-
regulation in humans.

Impaired renal autoregulation leads to enhanced transmission of
the systemic BP into the glomerular capillary network resulting in
wide swings in PGC. A reduction in PGC is the key to protection
against the development and progression of diabetic nephropathy.
Consequently, selection of antihypertensive drugs that blocks the
synthesis or actions of AII is important in the prevention and treat-
ment of nephropathy.

The natural course of kidney function in mainly normotensive
type 1 and type 2 diabetic patients with nephropathy not receiving
antihypertensive treatment, is characterized by a rather slow but
highly variable rate of decline in GFR, which is predominantly de-
pendent on the level of systemic BP and albuminuria. In compari-
son, diabetic patients with elevated BP have a faster rate of decline in
GFR.

Studies of type 2 diabetic patients have revealed a highly variable
prevalence of nondiabetic kidney disease. This variance is caused by
high prevalence of infectious diseases in certain geographic areas,
ethnic differences, and sampling bias in most of the studies. In un-
biased studies a prevalence of app. 30% among albuminuric Cauca-
sian type 2 diabetic patients and an even higher prevalence if the pa-
tients lack retinopathy is reported. IgA glomerulonephritis and nor-
mal glomerular structure are the most frequent nondiabetic kidney
diseases in Caucasian albuminuric type 2 diabetic patients. It is im-
possible to establish the underlying cause of albuminuria in these
patients without kidney biopsies. More studies are needed to estab-
lish the prevalence of nondiabetic kidney disease in non-Caucasian
patients.

Kidney biopsy studies in Caucasians have revealed that increased
albuminuria and reduction in kidney function is related to struc-
tural changes that reduce filtration surface area. The dominating
structural changes leading to reduced filtration surface is mesangial
expansion, however at a later stage of the development of renal im-
pairment vascular changes might be involved in the final glomerular
closure. In diabetic patients tubulo-interstitial damage might be re-
lated to mesangial expansion or develop as sequelae to arteriolo- and
arteriosclerosis. The severity of the tubulo-interstitial abnormalities
do not correlates to increasing albuminuria, and the effect on kidney
function is still debated. In our biopsy studies, we furthermore dem-
onstrated that type 2 diabetic patients with typical diabetic glo-
merulopathy have a tendency to a faster rate of decline in GFR as
compared to albuminuric type 2 diabetic patients with nondiabetic
glomerulopathy. Whereas both systemic BP and albuminuria act as
progression promoters in albuminuric type 2 diabetic patients with
and without diabetic glomerulopathy, the degree of glycaemic con-
trol, dyslipidaemia and smoking seems to have less importance. Ser-
ial biopsy studies are needed to establish if progression in structural
lesions can be changed by antihypertensive treatment.

ABBREVIATIONS
ACE Angiotensin converting enzyme
ACEI Angiotensin converting enzyme inhibition
AII Angiotensin II
AIIA Angiotensin II receptor antagonist
ANP Atrial natriuretic peptide
ATP Adenosintriphosphat
BMI Body mass index
BP Blood pressure
CCB Calcium channel blocker

CI Confidence interval
DG Diabetic glomerulosclerosis
ESRD End stage renal disease
GBM Glomerular basement membrane
GFR Glomerular filtration rate
HbA1c Haemoglobin A1c

Jv Fluid movement
K Filtration barrier permeability
Kf Glomerular filtration coefficient
L-NAME NG-nitro-L-arginine methyl ester
MABP Mean arterial blood pressure
NDG Nondiabetic glomerulopathies
NO Nitric oxide
PGC Glomerular capillary hydraulic pressure
QA Glomerular plasma flow
RBF Renal blood flow
SNGFR Single-nephron GFR
TGF Tubuloglomerular feedback
Type 1 diabetes Insulin-dependent diabetes mellitus
Type 2 diabetes Non-insulin-dependent diabetes mellitus
UAE Urinary albumin excretion rate
Vv (mes/glom) Mesangium in fraction of the total

   glomerular volume
∆P Transcapillary hydraulic pressure gradient

   between the glomerular capillary and
   Bowman space

∆π Transcapillary colloid osmotic pressure gradient
   between the glomerular capillary and
   Bowman space
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