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1. INTRODUCTION
Type 1 diabetes mellitus (T1DM) is an immune mediated disease
characterised by selective destruction of the pancreatic beta-cells in
the islets of Langerhans leading to lack of insulin production cap-
acity, insulin depletion, hyperglycaemia, diabetic ketoacidosis and
death if untreated. Exogenous delivery of insulin is standard care
with the aim to obtain near-normalised blood sugar levels thereby
preventing the metabolic deroute. Despite insulin-replacement
treatment, T1DM patients face the risk of late diabetic complica-
tions like severe macro- and microvascular complications resulting
in a decreased life-expectancy (Borch-Johnsen, 1989; Ng et al.,
2001). However, stringent blood glucose control has shown to re-
duce the risk of developing late diabetic complications (DCCT,
1993; DCCT, 2003). 

There is a between-ethnic group and between-country variation
in incidence and prevalence of T1DM (Karvonen et al., 2000). Re-
cently, increasing incidence rates have been demonstrated especially
in the eastern parts of Europe and a general tendency of decrease in
the age of onset (Green et al., 2000; Green et al., 2001; Gale, 2002).
In Denmark the incidence is approx. 16/100,000 per year in the age
group 0-15 years (Green et al., 2000; Green et al., 2001), and the
prevalence is 0.4% (Christy et al., 1979; Green et al., 1992). A recent
publication describing the increasing incidence rates of T1DM in
Danish children from 1996 to 2000, suggested the steep increase in
the youngest age group to be associated to an increased risk of co-
horts born in the beginning of the 1980s (Svensson et al., 2002).

T1DM is an immune-mediated disease. Both cellular (Roep, 2003)
and humoral immunity (Notkins et al., 2001) have been detected in
T1DM patients. Although autoantibodies to GAD65, IA-2, and insu-
lin are clearly markers for T1DM, today these are believed to be a re-
sponse of the underlying destructive process and do not contribute to
the pathogenesis (Notkins et al., 2001). However, the observation of
cellular infiltration of the islet of Langerhans (Gepts, 1965) as well as
T-cell immuno-suppression preserving beta-cell function (Feutren et
al., 1986) suggest a functional role of the T-cells in T1DM pathogene-
sis, which has been substantiated (Roep, 2003). Whether the initiation
of the selective beta-cell destruction is mediated by T-cells or by cy-
tokines remains controversial (Donath et al., 2003).

The aetiology of T1DM is still incompletely understood, however
both genetic and environmental factors are involved. The evidence
supporting T1DM being a genetically complex disorder includes:

– increased average risk for siblings of 6% rising with increasing
observation time (Lorenzen et al., 1994) compared to 0.4% in the
general population (Karvonen et al., 2000)

– increased familiar clustering (Risch, 1987) with a genetic risk
ratio (λs) of approximately 15 (6.0/0.4)

– the increased concordance rate for monozygotic twins spanning
from 0.27 to 0.53 and from 0.04 to 0.11 for dizygtic twin pairs
(Kyvik et al., 1995; Hyttinen et al., 2003)

– HLA identical siblings are 15% concordant (Thomson et al.,
1988)

The genetic basis of T1DM is complex and more than 30 chromo-
somal loci have been linked to T1DM susceptibility, suggesting
T1DM being a polygenetic disease and implicated genes are risk
modifying. Specific susceptibility/protective genes may not be re-
quired or sufficient for disease development; hence the susceptibility
genes are commonly occurring alleles of normal genes in an un-
favourable combination in individuals at risk (Pociot, 1996). Vari-
ous environmental factors have been proposed, but so far none – ex-
cept for vira in a minority of cases – have been shown to initiate or
accelerate the development of T1DM (Akerblom et al., 2002; Jun et
al., 2003). However, the environmental impact seems to influence
the varying disease frequencies from country to country as these dif-
ferences cannot be explained simply by ethnic differences e.g. mi-
grants from countries with low T1DM frequencies moving to areas
with high frequencies are more susceptible than their compatriots
(Patrick et al., 1989). Secondly, the incidence increase in most
countries over the last decades strongly points to environmental in-
fluence.

As of today, most genetic studies within T1DM have been limited
to the question of a gene or chromosomal region being associated or
linked to T1DM, e.g. candidate genes have been tested for associ-
ation and various genetic markers for linkage to T1DM. Most ge-
netic studies are conducted to either demonstrate or reject associa-
tion or linkage of genetic markers to T1DM – only few studies are
extended with functional data, e.g. (Pociot, 1996; Vafiadis et al.,
1997; Bergholdt et al., 2000; Morahan et al., 2001; Ueda et al., 2003).
Moreover, the search for candidate genes has been carried out
mainly for genes related to the immune system, as the beta-cell gen-
erally has been considered a passive bystander cell to its own de-
struction.

Thus, the hypothesis underlying this thesis is: 

Target organ candidate genes are identified from an experimentally
testable pathogenetic model of cytokine mediated beta-cell destruc-
tion, Figure 1. Such candidate genes may show inter-individual se-
quence variation, conferring a genetic risk of or protection against
T1DM – alone or in combination. Functional characterisation of
such gene variants might show correlation between genetic risk of
or protection against T1DM development and beta-cell function.

Hence, this thesis aims at:
– Identifying predisposing T1DM genes with special reference to

those selected from an experimentally testable pathogenetic
T1DM model of cytokine mediated beta-cell destruction.

– Testing such identified candidate genes for association to dia-
betes in a Danish T1DM family collection – preceded by a review
of investigated candidate genes in T1DM. Finally,

– To investigate inter-individual differences in expression of se-
lected candidate genes by examining mRNA and protein expres-
sion pattern in islets from two rat strains and to relate different
expression pattern to genetic variation of the encoding genes
within the rat strains.

Chapter 2 deals with general aspects regarding genetic studies in
T1DM, various ways and approaches to identify genes and chromo-
somal regions of interest to T1DM. The main findings from these
studies are presented in tabulated form.

As a consequence of the relatively limited success from these ef-
forts – especially in identifying minor contributing T1DM genes –
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Chapter 3 presents a “combined approach to select candidate genes”
as a supplement to identify new candidate genes. This approach
ideally comprises (i) theoretical pathogenetical considerations based
upon “The Copenhagen Model”, (ii) an in vitro, functional testable
model hereof using expressing profiling of proteins expressed in
islets of Langerhans, and (iii) linkage analysis data derived from
T1DM genome scans.

As the approach is based upon “The Copenhagen Model”, a brief
review of cytokine mediated beta-cell destruction introduces this
chapter – leading to the selection of the candidate genes to be
studied.

In Chapter 4, the selected candidate genes of this thesis are evalu-
ated. This comprises genetic studies of identified polymorphisms.
Secondly, determination of different mRNA and protein expression
patterns of the selected candidate genes in islets from two rat strains
as well as associating the expression pattern to inter-individual dif-
ferent genetic variations within the rat strains – will illustrate
genetic functionality of the selected candidate genes. 

Chapter 5 presents the summary, conclusion and perspectives.
This review will not include a presentation of the genetics of the

two most used rodent models for T1DM, the BioBreeding (BB) rat
and the Non Obese Diabetic (NOD) mouse. Neither will the differ-
ent genetic tools for testing heredity of polygenetic disorders or in-
teraction between different loci be discussed in detail and data from
the T1DM genome scans will only be discussed when appropriate.

2. PUTATIVE PREDISPOSING GENES TO T1DM
This chapter briefly reviews some general aspects regarding genetic
studies in T1DM, various ways and approaches to identify suscepti-
bility genes as well as genetic areas of interest within the genome
(e.g. genome scans). Different genetic tests of such genes/genetic

markers are briefly touch upon and the main findings from these
studies are presented in tabulated form.

2.1. GENERAL ASPECTS
Over the years, many genes have been investigated as predisposing
genes to T1DM. Today it is generally considered that the HLA region
is the only major genetic contributor along with minor contribu-
tions by other genes. However, no gene is neither sufficient nor ne-
cessary for T1DM development (Pociot et al., 2002).

In general, at least three aspects need to be considered when con-
ducting genetic studies: (i) identification, characterisation and col-
lection of the population to be studied, (ii) identification of genes or
genetic regions to be investigated and, (iii) methods to analyse data.

Ad (i). The study population investigated in the papers included in
this thesis is derived partly from a national survey obtained in 1990-
1991 describing epidemiological parameters of T1DM individuals
ageing less than 18 years – a study performed in collaboration with
The Danish Society of Diabetes in Childhood and Adolescent
(DSBD) (Pociot et al., 1993) – and partly from The Danish Insulin-
Dependent Diabetes Mellitus Epidemiology and Genetics Group
(DIEGG) in 1994-1999 (Lorenzen et al., 1998) identifying all T1DM
probands below the age of 30 years. Population based sampling of
probands (the T1DM individual through which the family was iden-
tified) and their families in racial/ethnically uniform populations in
large sample sizes are important to identify genes with minor con-
tributions (Risch et al., 1998; Altmuller et al., 2001; Cox et al., 2001;
Risch et al., 2002). Sample size is particular important when the
original data set is stratified for various parameters in order to test
for association or linkage in relevant sub-fractions. When the candi-
date gene approach is undertaken – using either a case-control de-
sign or the design using Transmission Disequelibrium Testing of
family based data – calculations regarding the power and size of the
study population can be performed. The power of the study is deter-
mined by e.g.:

– the different allele frequencies of the tested gene(s)
– penetrance of the disease
– the relative disease risk of a given polymorphism

– parameters often unknown beforehand, when testing new poly-
morphisms. However, papers have been published comparing the
power using different analytical approaches e.g. using different sub-
tests of TDT (Deng et al., 2001), and the number needed in TDT
testing under various permissions (McGinnis, 2000).

Hence, the power calculation in our negative findings has been
performed as follows: Given OR = 1.25 leads to P1 = 0.5 and P2 =
0.625 and hence, p(average): 0.5625.

Standard difference can then be calculated to 0.252.
N = 500/power 80 at 5% level and, N = 350/power 70 at 5% level

(Altmann, 1993).
The collected multiplex families are characterised as being either

affected sibs, including parents (n = 154) or parent/offspring fam-
ilies (trios) (n = 103) – in total 1143 family members.

Phenotypic characterisation is important to reduce genetic he-
terogeneity in the population studied. Hence, subsequent stratifica-
tion of the patient material i.e. by onset of age or HLA-status may
furthermore result in more homogeneous classes studied. In T1DM,
variation in phenotype may not be a major problem as the clinical
presentation of the disease is quite unique. However, the clinical
presentation in very young childhood may clinically be slightly dif-
ferent, as the length of the remission period may be shorter or even
absent (Bonfanti et al., 1998; Muhammad et al., 1999). This differ-
ence could hold a genetic component (Veijola et al., 1995). Age of
onset has also been suggested to possess a genetic component (Fava
et al., 1998). Another recent study found a lower MZ concordance
rate when the index case was diagnosed at 25 years of age or older,
suggesting a role for age-related non-genetic dependent factors (Re-

Figure 1. The Copenhagen Model, 1994. An inflammatory model of the
pathogenesis of T1DM. The model suggests that environmental factors, e.g.
common viruses, (i) induce initial beta-cell damage releasing beta-cell com-
ponents and/or (ii) induce a MHC Class I restricted presentation of beta-cell
antigen – leading to a CD8+ T-cell /MHC Class I restricted beta-cell damage 
– effected via either cytotoxic cytokines and/or the perforin/granzyme 
system. Released beta-cell components, possible modified due to e.g. intra-
cellular beta-cell oxidative stress, hence not previously “recognised” by the
immune system, are taken up by antigen presenting cells in the islet, where
the antigens are processed and presented to CD4+ cells – either in the islet
or in regional pancreatic lymph nodes. Activated CD4+ T-cells will recruit
and activate specific as well as non-specific inflammatory cells that then
build up the inflammatory insulitis infiltrate. The effecter phase of beta-cell
destruction is mediated by (i) cytokines via induction of intracellular free
radicals and/or proapoptotic signalling selectively in beta-cells and/or 
(ii) inducing beta-cell expression of Fas, marking the beta-cells for MHC
Class II non-restricted CD4+ T-cell killing via interaction between the Fas
ligand on CD4+ T-cells and Fas in the beta-cells.
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dondo et al., 2001). The probands in the present material are identi-
fied in accordance to WHO criteria for T1DM (WHO, 1999). Data
have subsequently been stratified according to e.g. HLA status or age
of onset.

Ad (ii). Two different forms of genetic variation have been used in
most studies of genetics in T1DM: (i) single nucleotide polymor-
phisms (SNP) being one nucleotide substituted by another at the
same genomic position, when located in the coding regions may
alter the “triplet” and give rise to an amino acid shift. (ii) variable
numbers of tandem repeats (VNTR) also called “microsatelites” or
“minisatelites” being two (or more) nucleotides repeated for a vari-
able number of times. Microsatelites are typically located in ge-
nomic regions between genes and are widely distributed throughout
the entire genome. The SNP provides two genetic variants whereas
the VNTR may lead to typically 10-15 alleles, thereby being more in-
formative than the SNPs in genetic testing. Today, the localisation
and nature of many microsatelites are public available in various
databases and have been generated from the world-wide efforts in
sequencing the entire human genome. SNPs are also public available
e.g NCBI dbSNP database (Sherry et al., 2000) but much of this in-
formation is based on comparisons of various submitted base-pair
sequences, and many SNPs have not been confirmed (Taillon-Miller
et al., 1998; Marth et al., 2001). In the studies included in this thesis
we have screened the coding regions for polymorphisms. When do-
ing so, two issues need to be considered:

– Number of chromosomes tested: we have tested in the range of
34 and 40 persons equalling a frequency of minimum 1.25% for
the most rare allele if only one copy was identified. Allele fre-
quencies less than 5% were not studied further due to the low
chance of detecting such a gene to influence T1DM susceptibility.

– The method used for identification of the polymorphism: as
direct sequencing is automated for most procedures today, this
would be the method of choice. Previously, we did not have the
capacity needed for such an approach, hence we used the
technique of Single Stranded Conformational Polymorphism
(SSCP), which in our hands had a sensitivity and specificity of
91% and 92%, respectively (Johannesen et al., 2001a).

Finally, when a candidate gene has been screened for polymor-
phisms the identified SNPs should be prioritised according to their
putative functional impact of the protein before selecting of which
SNP should be tested for association and/or linkage to disease
(Tabor et al., 2002). However, even silent mutations may confer
considerable impact on protein function due to e.g. involvement in
mRNA splicing (Cartegni et al., 2002).

Ad (iii). Two analytical approaches have been undertaken in the
analysis of T1DM genetics: association of a polymorphism to T1DM
tested in case-control designs and association/linkage analysis applied
to data generated from T1DM family collections. Linkage means that
a marker allele co-segregate with the disease within each family – dif-
ferent families can have different marker alleles segregating with dis-
ease – in contrast to association where different families have the same
specific marker co-occurring with disease (Field, 2002).

The association test in case-control designs is typically a chi-
square test simply testing whether there is a difference in allele or
genotype frequencies between cases and controls. The case-control
design is straightforward in the sense that only genetic testing of the
proband is required and the statistics are simple. When positive as-
sociation is identified it is considered to be due to linkage disequi-
librium between the disease and marker loci. However, especially
the control population should be carefully selected in order to mir-
ror the general population best possible and obviously the case
population should be phenotypically well characterised and
randomly included to avoid selection bias. The case-control design
is typically used in the candidate gene approach.

The genetic analyses used in T1DM family collections have either

been linkage or association based tests. Linkage analysis is a method
to determine whether there is evidence for co-segregation – due to
physical linkage on the chromosome – of alleles at a hypothetical
disease-susceptibility locus and alleles at a marker locus in families
with multiple affected members. Classical linkage requires the col-
lection of families comprising affected and unaffected members in
consecutive generations and a defined hypothesis for heredity to be
tested. As T1DM is considered a genetic multiplex disease without a
known mode of heredity, model-free methods testing linkage has
been used in T1DM. The most common model-independent
method is the affected sib-pair (ASP) linkage analysis – used in
genome scans (see Chapter 2.3). The average proportion of alleles
shared in affected sibs is tested against the 50% sharing expected by
chance. A higher sharing is indicative of the marker locus also con-
tains a disease locus – hence being linked. The relatively low fre-
quency of affected sib-pair families lead to the development of the
Linkage Disequelibrium Test (TDT), as this test uses the informa-
tion obtained from simplex families (“Trios”). The TDT compares
the number of transmitted alleles to non-transmitted alleles from
heterozygous parents to affected offspring and is an association test
(Spielman et al., 1993). This method was extended to handle multi-
allelic marker systems (ETDT) (Sham et al., 1995). TDT statistics
have become the golden standard for testing candidate genes in fam-
ily collections for linkage disequilibrium (Spielman et al., 1996), and
have been used for testing the candidate genes in the papers in-
cluded in this thesis.

As transmission distortion in general seems to be evident in
humans, all polymorphisms tested by TDT have been performed for
affected as well as non-affected individuals, to ensure random trans-
mission to non-affected individuals (Zollner, 2004).

Hence, initially the classical candidate gene approach testing for
association in a case-control design was taken – later, ASP linkage
analysis of genome scan data and TDT analysis were applied to
T1DM family collections. 

2.2. THE CANDIDATE GENE APPROACH
The candidate gene approach is a classical strategy. Based upon a
pathophysiologically relevant indication allelic variants of such
selected genes are tested for either association or linkage to T1DM.

The strength of the candidate gene approach depends upon the
model in which it is a candidate. In favour of the candidate gene
approach is the testing of the gene encoding the relevant protein in
contrast to genomic markers of chromosomal loci as in genome
scans. Using the candidate gene approach in a classical association
study design, the identification and collection of a large T1DM pop-
ulation are more easily achieved than for a large T1DM family mate-
rial, whereas the draw back is the risk of selection bias and con-
founding. Thus, by using the family based design testing candidate
genes this potential bias is eliminated. In order to exclude a candi-
date gene as a susceptibility or protective gene, the search for poly-
morphisms to be tested can be quite extensive. In addition to the
coding region, the functional regulation of the gene can be found 5’
in the proximal promoter region and 3’ UTR’s distant regulatory re-
gions as well as within introns (intron/exon splicing sites) (Cartegni
et al., 2002). In a recent review more than 600 positive association
studies were reviewed of which only 6 were considered consistently
replicated. It was concluded that in order to substantiate association,
case-control studies should contain large number of cases and con-
trols tested of uniform ethnical origin and that replication studies
seem mandatory (Hirschhorn et al., 2002). However, a rejection of
genetic association of a protein does not exclude a pathogenetical
relevance of the protein. 

This thesis will review the current status of candidate genes tested
in T1DM at two levels:

– Candidate genes subdivided into categories based upon “The
Copenhagen Model”: 
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– T-cell regulation and inflammation
– cytokine genes
– genes relating to deleterious and protective mechanisms in 

the beta-cell and, finally
– other tested classical candidate genes in T1DM. The HLA 

region is described separately, the remaining tabulated and 
categorised as above described, see Table 2.

– Encoding genes for proteins identified upon the “combined
approach to select functionally focused candidate genes” – as
previously defined and reviewed in Chapter 4.

2.2.1. HLA genes
The HLA region has been proposed to account for 40-50% of the
genetic susceptibility to T1DM (Risch, 1987; Noble et al., 1996). The
HLA class II mediated susceptibility/protection seems to be me-
diated through class II antigen presentation in the islets as well as
through the development of central and peripheral tolerance (Lee et
al., 2001; Todd et al., 2001).

The human leukocyte antigen (HLA) region is located at the short
arm of chromosome 6, 6p21. Its organisation is shown in Figure 2
(HLA overview incl. genes).

The current understanding of HLA-DQ association shows the
strongest association for individuals being heterozygous carrying
the genotype DQA1*0501-DQB1*0201/DQA1*0301-DQB1*0302
(encoding the DQ2 and DQ8 molecules, respectively) conferring a
relative risk of ≥ 10. Likewise, protection from developing T1DM is
conferred by the haplotype DRB1*1501-DQA1*0102-DQB1*0602
(DQ6 molecule), which may provide dominant protection over the
susceptibility conferred by other HLA genes. Finally, the risk con-
ferred by DQ2 and DQ8 molecules is modified by DR (Thorsby et
al., 1993; Boitard et al., 1997; Undlien et al., 1999) which points to a
role of the DR locus in susceptibility to T1DM.

The observation that the highest susceptibility are seen for DR3/4
heterozygous, has lead to the hypothesis of transcomplementation
allowing for the construction of DQA1*0501-DQB1*0302/DQA1*
0301-DQB1*0201 molecules. Linkage studies have also shown the
existence of susceptibility genes in the HLA region: of 538 diabetic
sib-pairs 54% shared two HLA haplotypes and only 7.3% shared no
haplotypes, both frequencies being significantly different from the
25% expected (Payami et al., 1985; Robinson et al., 1993). Recently,
the genome scans within T1DM have all demonstrated highly
significant LOD-scores for the HLA region, demonstrating linkage
to T1DM of the HLA region (see Chapter 2.3 for references). The

above listed associations are primarily found in Caucasians, see
review by (She, 1996; Zamani et al., 1998) for further explorations
into inter-racial differences.

Recently, changes in the frequencies of HLA genotypes over time
in Finnish T1DM patients have been reported: the frequency of high
risk HLA genotype has decreased from 25.3% to 18.2% while the
protective HLA genotypes have doubled comparing data from pa-
tients diagnosed before 1965 and after 1990, despite an increase in
incidence of 2.5 times during the period from 1966 to 2000 in Fin-
land (Hermann et al., 2003). It is concluded that the environmental
pressure has increased resulting in higher penetrance of disease,
especially in individuals with protective HLA genotypes.

The functional basis of the HLA class II molecule in T1DM has
been related to peptide/antigen binding of the molecule, for review
please see (Nepom et al., 1998).

2.2.2. HLA non-DQ/DR genes
Within the HLA region, other genes – apart from the HLA-DQ and
DR – have been tested for genetic susceptibility to T1DM.

Based upon a review of the literature, genes tested for genetic
susceptibility are listed in Table 1 and Table 2. An evaluation of the
genes being demonstrated or rejected as risk modifying genes is
based upon the the following criteria:

– The study of a candidate gene must have been consistently repli-
cated at least once, in order to minimize the risk of false positive
reports (Lohmueller, 2003).

– A single case/control study should comprise approximately 200
or more cases and a matching number of controls. This number
is required to have a power of 80, at the significance level of 0.05,
identifying a relative risk of 1.5-2.0, given the frequency of the
associated allele in the control group is 0.15-0.60 (Breslow et al.,
1987). However, the finding of several minor case/control studies
(n: 4-5) uniformly indicating the same result has also been taken
into account within the overall evaluation of a gene influencing
the risk of T1DM.

– All family based studies are included, as the number of qualified
transmissions within the family collection depends on the allelic
frequencies of the tested polymorphism and the analysis used.

These simple criteria represent one way to select the more robust
candidate genes in T1DM, as a huge number of genes have been
tested as candidate genes in T1DM.

Figure 2. HLA organisation. A sim-
plified illustration of a selection of
genes in the HLA region located at
the short arm of chromosome 6.
None of the tested microsatelites
within this region are illustrated. 
Besides the location of the antigen
presenting genes, other genes tested
in T1DM are shown. In the lower
panels are outlined the structure in a
simplified way of the HLA molecule
as well as the association between
the serological typing of DR3/DR4
and the genomically defined DQ
genes. The DQA1*0301 and
DQB1*0201 genes are found on the
same haplotype (in cis) among Black
T1DM patients, while – as illustrated
in the figure – they are most often
found on different haplotypes (in
trans) among Caucasians and Japanese
T1DM patients.
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However, in some cases even replicated results from independent
studies of tested candidate genes are contradictory. Hence, in such
cases it can be difficult to determine whether the candidate gene is
truly associated to T1DM or not – the genetic risk modification of
the candidate gene being inconclusive. Within the column “Con-
firmed replication” (Conf. Rep) these genes are marked “Yes for
both outcomes”. An explanation of these apparent contradictory re-
sults could be due to genetic heterogeneity of disease susceptibility
between and within populations e.g. (Metcalfe et al., 1996). The risk
modifying effect is considered minimal for these genes. Further-
more, in some cases different genetic variants have been tested
within the gene, hence no meta-analysis has been performed.

Table 1 lists the HLA non-DQ/DR candidate genes. As strong
linkage disequilibrium (LD) exists within the HLA region – strong
LD exists between studied non-DR/DQ genes in the HLA region
and the high risk HLA DR/DQ genes – different strategies have been
used to evaluate the independent effect of the studied non-DR/DQ
genes. Within the case/control design the use of HLA haplo-iden-
tical control subjects and diabetic patients have been used (Deng et
al., 1995). Furthermore in the case/control study by Gambelunghe
testing the MIC-A gene polymorphism (Gambelunghe et al., 2000),
a test for the strongest HLA association was performed as described
by (Svejgaard et al., 1994).

Within family studies subset TDT analyses have been performed
e.g. (i) comparing the risk conferred by HLA-DQ8 and HLA-DQ2
in the presence/absence of the tested genetic variation as illustrated
for HERV-K(C4) (Pani et al., 2002) or (ii) by testing the transmis-
sion of parents being homozygous for the high risk DR/DQ and
heterozygous for the variant in question to affected offspring as
illustrated for LMP2 and LMP7 (Undlien et al., 1997).

As previously described, strong linkage disequilibrium exists
within the HLA region, making identification of DR/DQ inde-
pendent contributions of other genes within the HLA region diffi-
cult. A pathogenically interesting observation is the association of
the diabetogenic TNF haplotype, TNFa2/TNFB*2/HLA-B15 to high
TNFα production from macrophages (Pociot et al., 1993). This TNF
microsatelite has been shown to be associated to age of onset of
T1DM (Obayashi et al., 1999). Furthermore, a retroviral long termi-
nal repeat adjacent to the HLA-DQB1 gene (DQ-LTR13) has been
shown to modify T1DM susceptibility on high risk DQ haplotypes
(Bieda et al., 2002). Recently, the random marker approach has been
applied to the HLA region, identifying susceptibility regions outside
HLA class II (Lie et al., 1999; Undlien et al., 2001), and Noble has
shown an importance of class I antigens in modulating suscepti-
bility to T1DM (Noble et al., 2002). Support for additional suscep-
tibility genes in the HLA class III region, close to the TNF genes, has
been provided by an analysis of the Belgian diabetes registry
(Moghaddam et al., 1998).

Apart from determining T1DM risk, the HLA genes have been
associated to modulation of clinical features of the disease, e.g. age
of onset or outcome of active cellular autoimmunity, see (Bach et al.,
2001).

2.2.3. Candidate genes outside the HLA region 
catagorised according to “The Copenhagen Model”
The major genetic contribution of the HLA region in T1DM has been
assessed to approximately 40-50% (Risch, 1987; Noble et al., 1996).
Hence, the remaining genetic susceptibility comes from several other
minor contributions outside the HLA region. Many different genes
have been tested for association and linkage to T1DM. In Table 2 are

Association
Confirmed

Gene Position case/control TDT replication Reference

Bf1 6p21.3 Yes (57/342) Yes (Kirk et al., 1982)
Yes (96/115) (Kirk et al., 1985)
Yes (217/136) (Wang et al., 1989)
Yes (215/192) (Staneková et al., 1993)

C41 6p21.3 Yes (217/136) Yes (Wang et al., 1989)
Yes (176/92) (Caplen et al., 1990)
Yes (48/35) (Ben-Salem et al., 1991)
Yes (61/64) (Segurado et al., 1991)
Yes (67/73) (Jenhani et al., 1992)
Yes (241/140) (Lhotta et al., 1996)

No (220 fam)* (Pani et al., 2002)

MICA 6p21.3 No (241/354)* Yes (Nejentsev et al., 2000)
Yes (162/154) (Lee et al., 2000)
Yes (101/110)* (Kawabata et al., 2000)
Yes (119/134) Yes (52 fam)* (Park et al., 2001)
Yes (93/108)* (Shtauvere-Brameus et al., 2002)
Yes (52/73) (Sanjeevi et al., 2002)

Yes (70 fam)* (Bilbao et al., 2002)
Yes (95/98)*                                                                         (Gambelunghe et al., 2000)

Yes (78 fam) (Zake et al., 2002)
No (98/113) (Torn et al., 2003)
Yes (635/503)* (Gupta et al., 2003)

Table 1A. The HLA non-DQ/DR genes.
Genes demonstrated as having an 
increasing risk modifying effect in
T1DM.

Association
Confirmed Putative

Gene Position case/control TDT replication function Reference

LMP2 6p No (77/102)* Yes Cleaves (Van-Endert et al., 1994)
No (45/53) endogenous (Kawaguchi et al., 1994)
Yes (198/192)* antigenic (Deng et al., 1995)
No (92/117)* peptides (Chauffert et al., 1997)
No (285/337) No (61 fam.)* (Undlien et al., 1997)

LMP7 6p Yes (198/192)* Yes Cleaves (Deng et al., 1995)
No (285/337) No (62 fam)* endogenous (Undlien et al., 1997)

No (142 fam)* antigenic (McTernan et al., 2000)
Yes (71/86)*                                                               peptides (Ding et al., 2001)

Table 1B. Genes rejected as having 
a risk modifying effect in T1DM.
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listed putative candidate genes tabulated according to – but not iden-
tified by – “The Copenhagen Model” of pathogenesis to T1DM, as
other strategies naturally have been advocated to qualify candidate
genes in T1DM than based upon “The Copenhagen Model”.

The idea has not been to provide the reader with a complete list of
published papers in the field, as a meaningful review of a specific
gene in T1DM would require a separate up to date search of the
literature, but to illustrate the huge effort world wide that has been
put into this field – and the relatively sparse outcome.

The criteria for selection of genes in Table 2 are identical to those
listed for the HLA non-DQ/DR genes in Table 1.

In conclusion: The success of the candidate gene approach in iden-
tifying the HLA region is evident, since the major genetic predisposi-
tion to T1DM resides in the HLA region. However, the identification
of specific genes inside the HLA region associated and/or linked to
T1DM is complicated by strong linkage disequilibrium within this re-
gion. Genes outside the HLA region each contributing to a minor de-
gree of the overall genetic predisposition to T1DM have also been
identified by means of the candidate gene approach – however, the
number of genes and their significance as well as interactions need
further exploration. The functional implications of the genetic con-
tributors to T1DM identified so far (HLA, CTLA4 and INS) do not
reject “The Copenhagen Model” as a pathogenetic model of T1DM as
the immune system as well as the beta-cell are considered to be im-
portant in this model. Neither has the identification of genes not in-

fluencing the genetic risk of T1DM lead to the rejection of “The Co-
penhagen Model”. The encoding gene to a pathological important
protein does not need to be genetically associated to the disease.

In the search for identifying the genetic predisposition of T1DM
supplementary model-independent approaches has been initiated,
e.g. genome scans.

2.3. GENOME SCANS
As a consequence of T1DM being a polygenetic disorder and the
failure of the candidate gene approach to identify all the genetic
components conferring increased or decreased risk of T1DM devel-
opment, new approaches to solve the T1DM genetic puzzle were
sought. In the early 1990’s, an alternative to the classical candidate
gene approach emerged: complete and partial genome scans using
polymorphic microsatelite markers spread over the entire genome
or specific parts of the genome, in order to identify chromosomal
regions linked to the disease.

The obvious strength of using polymorphic markers widely
spread over the entire genome is that no a priori considerations
regarding interesting regions are required; hence, the opportunity of
identifying unknown regions of putative importance exists. Further-
more, as for the case/control design testing for association the link-
age analysis (examining identity by descent) in affected sibs pairs
overcomes the lack of knowledge regarding the mode of inherence
of T1DM. Drawbacks, however, are that after identifying a region of

Table 1C. Genes having an in-
conclusive risk modifying effect 
in T1DM.

Association
Confirmed Putative

Gene Position case/control TDT replication function Reference

HSP70 6p21.3 Yes (176/92) Yes for both Beta-cell (Caplen et al., 1990)
No (47/102)* outcomes defence (Pugliese et al., 1992)
No (32/31) (Kawaguchi et al., 1993)
Yes (114/110)* (Pociot et al., 1993)
Yes (112/110) (Pociot et al., 1994)
Yes (59/83) (Chuang et al., 1996)

TAP1 6p23.1 No (167/98)* Yes for both Facilitates (Caillat-Zucman et al., 1993)
Yes (199/140)* outcomes transport (Jackson et al., 1993)
No (129/90)* of proteins (Cucca et al., 1994)
No (45/53)*                                                              to be MHC (Kawaguchi et al., 1994)
No (77/102)* presented (Van-Endert et al., 1994)
No (92/75)*                                                                                    (Nakanishi et al., 1994)
No (179/200)* (Maugendre et al., 1996)
Yes (119/92)*                                                                                 (Ma et al., 1997)
No (92/117)* (Chauffert et al., 1997)
Yes (60/62) (Yan et al., 1997)
No (120/218)* (Rau et al., 1997)
Yes (75/ 80)*                                                                                  (Yu et al., 1999)

TAP2 6p Yes (167/98)* Yes for both Facilitates (Caillat-Zucman et al., 1993)
btw: No (254/248)* outcomes transport (Rønningen et al., 1993)
DQ-DP No (129/90)* of proteins (Cucca et al., 1994)

No (64/63)*                                                             to be MHC (Yamazaki et al., 1994)
No (45/53)* presented (Kawaguchi et al., 1994)
No (77/102)* (Van-Endert et al., 1994)
No (92/75) (Nakanishi et al., 1994)

No (49 fam)* (Caillat-Zucman et al., 1995)
Yes (241/208)* (Jackson et al., 1995)
No (179/200)* (Maugendre et al., 1996)
No (92/117)* (Chauffert et al., 1997)
No (120/218)* (Rau et al., 1997)
Yes (146/90)*                                                                                 (Penfornis et al., 2002)

Only results from case/control studies including more than approx. 200 cases and controls as well as all family studies
have been included in the evaluation of a gene modifying the risk of developing T1DM – however, the finding of sev-
eral minor case/control studies (n: 4-5) uniformly indicating the same result has also been taken into account.
The column “Confirmed replication” indicates whether confirmation of the outcome of association/linkage has been
obtained for the candidate gene tested. Hence, only genes where the outcome has been confirmed can either be (i)
rejected as a candidate gene or (ii) a gene modulating risk of T1DM.
1): The apparent association is not independent of HLA-DQ/DR, as no stratification has been performed.
*): Results stratified for HLA-DQ/DR.
The following genes have been tested, but only as non-replicated studies or in small populations: 
AGER (Prevost et al., 1999), BAT2 (Hashimoto et al., 1999), DMB (Esposito et al., 1997), LST-1 (Rau et al., 1995), TNFA
(Pociot et al., 1994; Monos et al., 1995; Feugeas et al., 1997; Moghaddam et al., 1997; Obayashi et al., 1999; Gambe-
lunghe et al., 2000; Camacho et al., 2002; Shtauvere-Brameus et al., 2002), TNFB (Monos et al., 1995) – hence the genetic
risk modulation being inconclusive.
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interest, a major effort has to be put into identifying the pathogeni-
cally relevant gene(s) (fine mapping) and subsequent cloning and
functional characterisation (positional cloning) as the chosen poly-
morphic markers used in genome scans typically are located in
genetic areas between the coding genes, see Table 3. However, new

strategies for positional cloning are continuously emerging, e.g.
hierarchical genotyping design using successive rounds of genotyp-
ing and analysis by the haplotype pattern mining algorithm
(Laitinen, 2004).

Experience from the first complete genome scans in T1DM has

Table 2A. Candidate genes outside the HLA region in T1DM. Genes demonstrated as having an increasing risk modifying effect in T1DM.

Association
Poly- Confirmed Func. Putative 

Gene Position       morph. case/control TDT replication sign. function Reference

Copenhagen Model
T-cell regulation and inflammation

CD4 12p12 5UTR Yes (199/212) Yes Allele Early phase of (Zamani-Ghabanbasani
Yes (220 families) dose T-cell activation et al., 1994)
Yes (253 families) effect and clonal (Kristiansen et al., 1998)

expansion (Kristiansen et al., 2004)

CTLA4 2q33 3UTR Yes (616/502) Yes Allele Down regula- For review see: 
and (Lowe et al., dose tion of T-cell (Kristiansen et al., 2000)
exon1 2000) effect function and (Einarsdottir et al., 2003)

Yes                                                                                    regulation of 
(one large family) immune (Ueda et al., 2003)
Yes (3671 families) responses

(IDDM12)

PTPN22 1p13 Exon Yes (468/609) Yes                                               Negative (Bottini, 2004)
Yes Yes regulator
(1599/1718) (1388 families) of T-cell (Smyth et al., 2004)

Yes (406 families) reactivity (Onengut-Gumuscu
et al., 2004)

Beta-cells 11p15.5 Promoter Yes Yes Yes Different Autoantigen/ For review see:
INS classes: shaping of (Pugliese et al., 2002)

different INS T-cell repertoire
transcription in thymus
in pancreas
and thymus

Other candidate genes

IRS-1 2q36 Exon Yes (307/243) Yes (140 families) Yes                                                                                (Federici et al., 2003)
Yes (767 families) (Morrison et al., 2004)

VDR 12q12-14 Exon/ Yes (93 families) Yes                                               Vit D having (McDermott et al., 1997)
intron                                         Yes (152 families) immuno- (Pani et al., 2000)

Yes (157/248) regulatory (Chang et al., 2000)
No (147 families) function (Malecki et al., 2000)

Yes (108/142) (Yamada et al., 2001)
Yes (285 families) (Pani et al., 2001)
No (204 families) (Guja et al., 2002)

Yes (75/57) (Fassbender et al., 2002)
Yes (206 families) (Eerligh et al., 2002)

Yes (108/120) (Yokota et al., 2002)
Yes (107/103) (Györffy et al., 2002)
Yes (134/132) (Skrabic et al., 2003)

Table 2B. Genes rejected as having a risk modifying effect in T1DM.

Association
Poly- Confirmed Func. Putative 

Gene Position        morph. case/control TDT replication sign. function Reference

Other candidate genes

AIRE 21q22 Exons No (224/205)                                                   Yes (Meyer et al., 2001)
No (235/318) (Nithiyananthan 

et al., 2000)

CCR5 3p21 Deletion No (115/280)                                                   Yes Trafficking of (Szalai et al., 1999)
No (93/105) leukocytes (Imberti et al., 1999)

GAD2 10p11-12 Promoter No (186 families) Yes                                          Autoantibody (Wapelhorst et al., 1995)
exons  No (58 families) (Rambrand et al., 1997)
and No (1345 families) No (Johnson et al., 2002)
3UTR association

to GAD Ab

PTPRN 2q35-36.1 Intron No (352 families) Yes                                                                           (Esposito et al., 1998)
(IA2) No (139/137) (Nishino et al., 2001)

GC 4q12 Intron, No (181/163)                                                   Yes Immuno- (Klupa et al., 1999)
exon No (181/172) regulatory (Sieradzki et al. 1999)

No (152 families) function (Pani et al., 1999)
Yes (44/58) (Ongagna et al., 2001)
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generated quite different results with only few consistently identified
chromosomal regions contributing to the risk of T1DM. The HLA
region (IDDM1) has been identified within all complete human
genome scans within T1DM (Davies et al., 1994) (Hashimoto et al.,

1994; Concannon et al., 1998; Mein et al., 1998; Nerup et al., 2001).
The VNTR at the 5’ end of the insulin gene (IDDM2) has also dem-
onstrated to confer risk of T1DM in two genome scans and several
association studies. As these two regions together only can account

Table 2C. Genes having an inconclusive risk modifying effect in T1DM.

Association
Poly- Confirmed Func. Putative

Gene Position morph. case/control TDT replication sign. function Reference

Copenhagen Model
T-cell regulation and inflammation

CD3 11q23 intron Yes (168/89) Yes for T-cell (Wong et al., 1991)
No (24/49) both (Timon et al., 1991)
Yes (199/212) outcomes (Zamani-Ghabanbasani 
No (403/446) No (120 families) et al., 1994)

(Pritchard et al., 1995)

TCR 14q11.2 RFLP’s Yes (118/126) Yes for T-cell (Millward et al., 1987)
7q34 No (50/48) both function (Bhatia et al., 1988)
7p15-p14 Yes (50/94) outcomes (Ito et al., 1988)

No (29 families) (Sheehy et al., 1989)
No (72/97) No (36 families) (Niven et al., 1990)
No (73/45) (Concannon et al., 1990)
No (164/193) (Reijonen et al., 1990)
No (56/48) (Aparicio et al., 1990)
Yes (102/163) (McMillan et al., 1990)
Yes (198/84) (Field et al., 1991)

No (10 families) (Avoustin et al., 1992)
No (125/78) (Hibberd et al., 1992)

No (5 families) (Kelly et al., 1993)
Yes (75/84) (Martínez-Naves et al.,

No (21 families) 1993)
(McDermott et al., 1996)

IFNG 12q14 Intron 1, Yes (175/267) Yes for 2-allele: Cytotoxic to (Awata et al., 1994)
CA-repeat No (266/195) No (153 families) both increased beta-cells (Pociot et al., 1997)

Yes (168/110) outcomes in vitro (Jahromi et al., 2000)
Yes (236/104) expression                                       (Tegoshi et al., 2002)
No (206/160)

IL1B 2q12-q22 Exon Yes (90/48) Yes for Allele Effector (Pociot et al., 1992)
No (112/110) both dosage ef- molecule, (Pociot et al., 1994)

No (245 families) outcomes fect on LPS acting on β-cells, (Kristiansen et al., 2000)
Yes (312/171) stimulation co-stimulatory (Krikovsky et al., 2002)

on IL-1 cytokine for 
secretion T-cells, 

macrophages

IL1RI 2q12-q22 Promoter Yes (112/110) Yes for Allele (Pociot et al., 1994)
Yes (262/189) No (97 families) both dosage (Bergholdt et al., 1995)
Yes (351/254) outcomes effect (Metcalfe et al., 1996)

No (245 families) (Kristiansen et al., 2000)
Yes (253 families) (Bergholdt et al., 2000)

Cytokines

IL10 1q31-32 Promoter No (437/307) Yes for Immuno- (McCormack et al., 2001)
No (204 families) both                                           suppressive (Guja et al., 2002)

Yes (128/107) outcomes (Ide et al., 2002)
Yes (207/160) (Tegoshi et al., 2002)

IL12B 5q31.1- 3’UTR, Yes (249 + 120 Yes for 1-allele Influence (Morahan et al., 2001)
q33.1 promoter, families) both increased on T-cell (Johansson et al., 2001)

intron No (387 families) outcomes expression function (Nisticò et al., 2002)
No (470/544) No func-                                           (Davoodi-Semiromi et al.,

Yes (364 families) tional 2002)
No (120/330) No (307 families) significance                                      (McCormack et al., 2002)

No (337 families (Bergholdt et al., 2004)
+ 795 families)

Other candidate genes

ICAM1 19p13 Exon 6 Yes (164/171) Yes for Regulation of (Nishimura et al., 2000)
No (218/212) both leukocyte (Nejentsev et al., 2000)

Yes/No outcomes circulation and (Kristiansen et al., 2000)
(559 families) homing

IGH 14q32 RFLP Yes (101/114) No (101 families) Yes for (Veijola et al., 1996)
Microsat Yes/No (351 and both                                                                          (Field et al., 2002)

241 families) outcomes
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for a λs of 4-5 (Todd et al., 1997) of the total λs of 15, the remaining
genetic susceptibility is located elsewhere (Lernmark et al., 1998).

A major problem in the genome scans using linkage analysis is the
limited power to map genes with a weak genetic component, e.g.
testing relatively small sample sizes only detect disease genes with a
genotypic risk ratio of more than 4 (the increased chance that an
individual with a particular genotype has the disease); – hence, in-
creasing the chance of identifying minor genetic components would
require very large family materials (1000s of ASPs) (Risch et al.,
1996). This can partly explain the deviating results obtained in the
different genome scans indicating the importance of sample size.
Other possible explanations of the variation observed in the results
between the different genome scans are (i) genetic heterogeneity (an
apparently uniform phenotype being caused by two or more differ-
ent genotypes), (ii) differences in disease phenotype: age of onset,
presence/absence of IDDM-associated auto antibodies at onset,
other autoimmune diseases, gender-specific effect (iii) ethnic origin,
(iv) gene to gene and gene to environmental interactions being
different in various populations and (v) variation due to random
chance (She, 1998; Altmuller et al., 2001; Cox et al., 2001). In an
attempt to overcome these drawbacks of complete genome scans,
linkage disequelibrium analysis has been taken into use, as a tool to
confirm and fine map susceptibility intervals. This approach has
successfully been used for e.g. IDDM12/CTLA4 (Nistico et al., 1996;
Marron et al., 1997; Kristiansen et al., 2000; Ueda et al., 2003).

On the other hand, besides suggesting chromosomal regions of
importance in modifying genetic risk, the genome-scan data poten-
tially exclude chromosomal regions as disease modifying.

In the future, there is an urgent need for collaboration world wide
within this area in order to increase the number of tested families.
This can be done by two separate approaches (i) pooling of existing
data set and (ii) identification and sampling of new families. Finally,

stratification of genome-scan data has been proposed to identify
various interactions between different loci, as initially proposed by
Cox (Cox et al., 2001; Nerup et al., 2001). This approach has lead to
the identification of an increased LOD score on chromosome 6q27
from 0.94 to 3.69 when conditioned for age at onset less that 11
years in the combined UK and US family material (Cox et al., 2001),
and in the Scandinavian genome scan evidence of heterogeneity was

Table 2C. Continued.

Association
Poly- Confirmed Func. Putative

Gene Position morph. case/control TDT replication sign. function Reference

Other candidate genes

NeuroD/ 2q32 Exon No (160/124) Yes for Regenera-tion/ (Owerbach et al., 1997)
beta2 No (146/268) both                                             differentiation (Marron et al., 1999)

Yes (60/174) outcomes of beta-cells (Iwata et al., 1999)
No (87/114) Positional (Dupont et al., 1999)
No (234/383) cloning of (Awata et al., 2000)

Yes (138 families) No IDDM7 (Hansen et al., 2000)
Yes (105/122) association (Yamada et al., 2001)
Yes (80/121) of poly- (Mochizuki et al., 2002)
Yes (285/289) morphisms (Cinek et al., 2003)

No (2434 to insulin (Vella et al., 2004)
families) promoter

activity

Notes to Table 2:
Only results from case/control studies including more than approx. 200 cases and controls as well as all family studies have been included in the evaluation of a gene
modifying the risk of developing T1DM – however, the finding of several minor case/control studies (n: 4-5) uniformly indicating the same result has also been taken
into account.
The column “Confirmed replication” indicates whether confirmation of the assertion of association/linkage has been obtained for the candidate gene tested. Hence,
only genes where the assertion has been confirmed can be either (i) a gene modulating risk of T1DM or (ii) rejected as a candidate gene.
The following genes have been tested, but only as non-replicated studies or in small populations:
– “The Copenhagen Model” (T-cell regulation and inflammation): CD28 (Ihara et al., 2001; Wood et al., 2002), FAS (Nolsoe et al., 2000), FASL (Nolsoe et al., 2002),
– Cytokines: IL1RN (Pociot et al., 1994; Kristiansen et al., 2000), IL4R (Reimsnider et al., 2000; Bugawan et al., 2001; Mirel et al., 2002), IL4 (Jahromi et al., 2000; Reim-

snider et al., 2000; Ohkubo et al., 2001), IL6 (Jahromi et al., 2000), IL12R (Tabone et al., 2003), IL18 (Kretowski et al., 2002), TNFR2 (Rau et al., 1997),
– Beta-cells: BCL2 (Komaki et al., 1998; Heding et al., 2001), GCK (Bain et al., 1992; Rowe et al., 1995; Lotfi et al., 1997), IRF1 (Johannesen et al., 1997), IRF2 (Field 

et al.), NF B (Hegazy et al., 2001; Gylvin et al., 2002), NOS2 (Johannesen et al., 2000b; Johannesen et al., 2001a), SOD2 (Pociot et al., 1993; Pociot et al., 1994; Furuta
et al., 2001; Savostianov et al., 2002).

– Other candidate genes: AIR1 (Sartoris et al., 2000), CCR2 (Szalai et al., 1999), FADD (Eckenrode et al., 2000), GAD1 (Rambrand et al., 1997), GALN (Eckenrode et al.,
2000), GALNT3 (Kristiansen et al., 2000), GCGR (Gough et al., 1995), HOXD8 (Owerbach et al., 1997), ICOS (Ihara et al., 2001), IDDMK1,222 (Kinjo et al., 2001), IGFBP5
(Owerbach et al., 1997), Kidd (Barbosa et al., 1982; Hodge et al., 1983; Olivès et al., 1997), LCK (Nervi et al., 2002), NAT2 (Mrozikiewicz et al., 1994; Korpinen et al.,
1999), NHE1 (Dubouix et al., 2000), NQO1 (Kristiansen et al., 1999), NRAMP1 (Esposito et al., 1998; Takahashi et al., 2001; Bassuny et al., 2002), OAS (Hitman et al.,
1989; Field et al., 1999), PAI1 (Mansfield et al., 1994), PARP  (Delrieu et al., 2001), PPAR  (Ringel et al., 1999), SEL1L (Larsen et al., 2001; Pociot et al., 2001), SOX13 
(Argentaro et al., 2001), TCF7 (Noble et al., 2001), – hence, the genetic risk modulation being inconclusive.

Some of the conflicting results are due to different tested polymorphisms within the same genes. Positive association are indicated if the association are significant 
after stratification/ identified in a subpopulation.

Table 3. Results from the two recent genome scans in T1DM. The chromo-
somal regions are selected as those having a MLS of more than 1.5. as sug-
gested by (Cox et al., 2001).

Nerup et al., 2001 Cox et al., 2001
(n = 408) (n = 767 ) Putative genes*

IDDM1 6p21.3 6p21.3 HLA-DQ
IDDM2 11p15.5 INS 5’ VNTR
IDDM5 6q25 6q25 ESR1/MnSOD
IDDM7 2q31 HOXD8
IDDM8 6q27 6q27
IDDM10 10p11
IDDM12 2q33 CTLA4
IDDM13 2q34 2q34 IGFBP2, IGFBP5, 
IDDM15 6q21 distinct from HLA,

neonatal diabetes
IDDM17 10q25

1q42
2q11
4p16
5q11.2
12p13
16p13.1-p11 16p13.1-p11

16q22-q24
17q25
19q11-q13

*) The LOD-score peaks span in average 20-40 cM (Concannon et al., sub-
mitted) covering the listed putative genes (Pugliese et al., 2003).
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demonstrated with markers at 16p and in the HLA DR3/4 group
(Nerup et al., 2001).

A spin-off from the genome scans has been the opportunity to
compare genome scan data obtained from different autoimmune
mediated diseases in order to identify shared loci within e.g. lupus
erythematosus, multiple sclerosis and Crohn’s Disease (Becker et al.,
1998; Becker, 1999). Overlapping regions at chromosome 2q
(CTLA4), 6p (HLA), 11p, and Xp have been reported and may lead
to identification of common pathogenically pathways encoded by
genes within these regions.

In conclusion: The initial high expectations of whole genome
scans to enlighten the genetic puzzle of T1DM have not been fully
met as only few genetic regions have been consistently identified.
The limitations of genome scans possibly responsible for these find-
ings e.g. population and ethnic differences and imperfect statistical
and analytical methods have led to initiatives of large scale sampling
of affected sib pair families and pooling of existing data. However,
pooling of data worldwide does not exclude population based differ-
ences. Secondly, it may turn out, that the major benefit from T1DM
genome scans is to exclude certain genomic areas as potential candi-
date gene containing areas. However, genome scans might exclude a
chromosomal region being important in gene-to-gene interactions,
hence, the analytical methods need to include such interaction anal-
yses. New analytical methods should be introduced e.g. haplotype
interactions (Zhang, 2003) and non-model based analytical meth-
ods e.g. data mining (Pociot et al., 2004) in which non-genetic fac-
tors may also be included in the analyses. Finally, as the genome
scans generate data from affected individuals and do not include
data from non-affected – no protective chromosomal regions are
identified.

2.4. OTHER APPROACHES
In order to limit the genetic variation in the study population, dia-
betes related genes have been searched for within: (i) populations
with few founders and no mixing to other populations (e.g. Arab
families, IDDM17), and (ii) T1DM encountered in rare genetic syn-
dromes (e.g. mitochondrial disorders, Downs Syndrome, Fried-
reisch’s ataxia, Wolcott Rallison Syndrome and Wolfram Syndrome
(Watkins et al., 1998)) in order to examine common diabetes asso-
ciated genes. Finally, animal models spontaneously developing dis-
ease as homologous genes/chromosomal regions may be of interest
regarding human diabetes.

In order to study the effect of limited population mixing in a po-
pulation with a common ancestor, a genome scan of an Bedouin
Arab family with a high prevalence of T1DM has been performed
(Verge et al., 1998), identifying a locus mapping to the long arm of
chromosome 10 (10q25) (IDDM17) being in linkage to T1DM. At
this locus, increased LOD scores were observed near the reported lo-
cation of this putative IDDM17 locus when conditioning the analy-
sis for DR3 positive individuals in the combined UK/US data set
(Cox et al., 2001). So far no candidate gene has been identified
within this region.

Wolfram’s syndrome is an autosomal recessive disorder defined by
the occurrence of young-onset diabetes mellitus and progressive bi-
lateral optic atrophy; neurological symptoms and predisposition to
psychiatric disease may also associate to the diagnosis (Swift et al.,
1998). Linkage of the wolfram syndrome to the short arm of
chromosome 4 (D4S431) was established in 1994 (Polymeropoulos
et al., 1994). Within the Scandinavian genome scan of T1DM, evi-
dence of linkage to chromosome 4p16.1 was found, particular in the
subset of Danish families (Nerup et al., 2001). In a Danish study, ad-
ditional markers to those used in the Scandinavian genome scan
further confirmed linkage to this region, however the 15 new poly-
morphisms identified did not show linkage to T1DM in the Danish
population (Larsen et al., 2004). These results are indicative of a role
of yet unidentified polymorphisms of the WFS1 gene in the devel-
opment of common T1DM.

Regarding the main candidate gene loci in the NOD mouse,
please see the following reviews: (Wicker et al., 1995; Todd et al.,
2001; Serreze et al., 2001). Special focus has been set upon loci of
disease protection (Todd et al., 2001; Adorini et al., 2002). In the
paper of Kloting et al., the disease associated chromosomal regions
within the BB rat have been reviewed (Iddm1, Iddm2 and Iddm3) as
well as alleles within diabetes-resistant BB rats contributing to in-
sulin-dependent type 1 diabetes mellitus (Kloting et al., 2003) are
described. These studies have mainly confirmed association to the
MHC complex.

In conclusion: The use of clinical syndromes comprising im-
mune-mediated diabetes mellitus, the study of isolated populations
and animal models of diabetes, have been used as a supplement to
the candidate gene approach and genome scans within the general
population in order to identify common genetic disposition to
T1DM. 

Conclusion from Chapter 2
The genetic predisposition to T1DM is complex and despite major
efforts to identify the genetic disposition to T1DM many questions
still remain. Both the candidate gene approach and whole genome
scans have been applicated in the search for T1DM genetic pre-
disposition, however the results so far have been incomplete. Incon-
sistency between the results obtained from the different genome
scans and the partial overlap of the genome scan findings to the
results generated by the candidate gene approach are future chal-
lenges. Putative explanations could be different markers used in the
genome scans as well as the markers used in the genome scans being
too far apart – hence, the small chromosomal regions harbouring
the candidate genes are missed. In the future, there is a need for
sampling large ethnically homogeneous population based T1DM
family collections to expand the genome scans by using SNP’s or
haplotype Tag SNP’s and to refine the statistical methods for evalu-
ation of the candidate genes, e.g. to include interaction with other
genes or environmental factors.

Finally, new approaches for candidate gene identification may
supplement the search for T1DM modifying genes. In vitro data
derived from a functional testing of the target organ based upon
‘The Copenhagen Model’ will be proposed for selection of new can-
didate genes. In contrast to e.g. the genome scans, this approach
allows the identification of protective candidate genes, as the func-
tional testing will illuminate a putative race between deleterious and
protective mechanisms in the target organ.

3. “THE COPENHAGEN MODEL” 
– A WAY TO SELECT CANDIDATE GENES 
3.1. A COMBINED APPROACH TO SELECT 
CANDIDATE GENES
As previous strategies to identify susceptibility genes in T1DM have
not succeeded in clarifying the genetic predisposition to T1DM, new
strategies may provide additional information. Due to the possibil-
ity of gaining more detailed information regarding intracellular
processes by the protein and mRNA expressing profiling technol-
ogies, a broader understanding of the cytokine mediated beta-cell
destruction has become possible.

Hence, a combination of various strategies, all pin-pointing
towards the same candidate gene, increases the a priori chances of
identifying genes affecting T1DM susceptibility. The different strat-
egies used in this combined approach to select candidate genes are
based upon:

– Theoretical pathogenetical considerations derived from “The
Copenhagen Model”,

– An in-vitro, testable model hereof – focusing at the beta-cell –
using expressional profiling: As cytokine induced beta-cell de-
struction may play a role in the pathogenesis of T1DM (Berg-
holdt et al., 2003) IL-1β induced altered protein expression in
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beta-cells reflects putative pathogenetic mechanisms involved in
cytokine induced beta-cell destruction. It has been speculated,
that in T1DM the beta-cell destruction is not only dependent
upon an auto-aggressive immune response – the beta-cells them-
selves may also influence the outcome (Andersen, 1999). Hence,
islet proteins identified as having a changed expression level due
to cytokine exposure qualify as putative candidate genes: Firstly,
in contrast to the classic candidate gene approach, where sub-
sequent functional evaluation of novel genetic variations is
standard, candidate genes identified by an altered expression
profile after cytokine exposure have been selected upon a func-
tional basis. However, to what extent such altered expression can
influence the outcome of the cytokine exposed beta-cell needs to
be evaluated in subsequent functional analyses, e.g. in over-ex-
pression studies. Secondly, such genes are focused, as only target
organ proteins are considered.

– Linkage analyses data derived from T1DM genome scans.

This approach has been advocated as a general way to identify sus-
ceptibility genes in genetically complex diseases (Hirschhorn et al.,
2002) and specifically for T1DM (Pociot et al., 2002) (see Figure 3).

As this approach is based upon “The Copenhagen Model” – cyto-
kine induced beta-cell destruction – and a functional evaluation
hereof by use of expressing profiling, these two topics are summar-
ised below. The data from T1DM genome scans are reviewed in the
previous chapter. In the end of this chapter, the selection of three
candidate genes based upon the combined approach and the strat-
egy for their evaluation are outlined.

3.1.1. Expression profiling
The development of two different technologies provides the possi-
bility to gain insight into the expression profiling of cellular systems
at different levels: (i) proteome analysis, e.g 2D-protein gel analysis
combined with mass spectrometry as protein identification and (ii)
transcriptome analysis e.g. microarray or genechip array technol-
ogy, for review plase see (Jungblut et al., 1999; Celis et al., 2000;
Lockhart et al., 2000; Karlsen et al., 2001). In short, these two com-
plementary technologies aim at identifying and quantifying gene
transcripts at the mRNA expression (transcriptome analysis) or the
protein level including posttranslational protein modifications (pro-
teome analysis) in order to obtain further insight into pathological
and pathogenetic mechanisms of different diseases and/or altered
physiological conditions (e.g. toxicology). Examples of application
areas within human diseases have been leukaemia, breast-, colo-
rectal- and bladder cancers, and heart diseases, e.g. dilated cardio-

myopathy and atherosclerosis. Within these diseases various prog-
nostic markers and different transcription factors of putative patho-
genetic relevance have been identified.

The technologies comprise obvious advantages as they mirror the
intracellular changes in expression within the target organ or cel-
lular system in much more detail than other methods are capable of.
The microarray or gene chip arrays can display several thousands of
Expressed Sequence Tags (EST) or known mRNA’s at the same time
making comparisons to different conditions possible by analysing
the change in the expression level. A draw back of microarray com-
paired to 2-dimentional protein gel analysis is that not all mRNAs
present in a cell are translated into protein (Gygi et al., 1999) and
mRNAs encode for unmodified pre-forms of proteins. On the other
hand, 2-dimentional protein gel analysis is able to detect the pro-
teins as well as identifying post-transcriptional modified proteins
which is very important, as (i) it is the proteins that initiate and run
the cellular processes, not the mRNA – and (ii) posttranscriptional
changes e.g. phosphorylation often activate inactivated cytosolic
proteins. However, it is only a part of the total number of proteins
present in a cell preparation that is actually displayed at a protein gel
e.g. proteins with high and low molecular weight as well as mem-
brane bound proteins are missed. General drawbacks of both
methods are (i) they represent snap shots of processes that are dy-
namic in nature as they only reflect the cellular status at a defined
time point or period, (ii) they do not allow for discrimination
between primary and secondary events or elucidation of putative
interactions.

Results from expressing profiling in insulin producing cells: So far, 7
papers have been published applying the proteome analysis at cyto-
kine or NO-donor treated insulin producing cell lines or islets of
Langerhans (Andersen et al., 1995; Andersen et al., 1997; Chri-
stensen et al., 2000; John et al., 2000; Mose-Larsen et al., 2001;
Sparre et al., 2002; Nielsen, 2004). Based upon “The Copenhagen
Model”, it has been attempted to categorise the identifications from
these studies into the following main areas: (i) cytokine-signalling,
(ii) energy generation, (iii) NO-production, (iv) insulin produc-
tion/beta-cell function, (v) apoptosis and, (vi) defence/repair. Tran-
scriptome data have been obtained using either RINm5F cells, pri-
mary rat beta-cells, INS-1 cells or NHI-glu/NHI-ins cell lines ex-
posed to various combinations of cytokines (Rieneck et al., 2000;
Cardozo et al., 2001a; Cardozo et al., 2001b; Kutlu et al., 2003;
Nielsen et al., 2004). Comparing the data generated using these two
methods has revealed only partial overlap. Possible explanations for
the different findings can be different cellular sources, variation in
cell phenotype and experimental settings, and the biphasic effect of
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IL-1 – some cells may be stimulated other suppressed. Finally, not all
mRNA changes lead to altered protein expressions. The results will
be discussed in more detail in relevant chapters.

In conclusion: These novel and powerful technologies are promis-
ing and may add new valuable information to cytokine mediated
beta-cell destruction and increase our understanding of biology in
general. Naturally, there are obstacles: the generation of huge amounts
of data requires development of new software, further insight in bio-
informatics, standardisation of normal expression levels in various
tissues e.g. target cells, and finally the limitation of the techniques of
showing a static picture of a dynamic process. However, the approach
of combining transcriptome analysis with serial experiments and
cluster analysis has been attempted in order to include a dynamic di-
mension to this technology (Kutlu et al., 2003). Finally, it seems more
relevant to select putative candidate genes based on the data generated
from the changed protein expression in the target organ than using al-
tered mRNA in the target as the altered protein expression pattern re-
flects the functional significant processes best.

3.2. ASPECTS OF CYTOKINE MEDIATED 
BETA-CELL DESTRUCTION
This chapter reviews some aspects of cytokine mediated beta-cell
destruction in order to give background (i) for the functional selec-
tion of parameters and expressed mRNA and/or protein transcripts
when comparing cytokine exposed islets from two genetically differ-
ent rat strains (a signalling factor, deleterious as well as protective
molecules), and (ii) for the selection of the tested candidate genes.
The apoptotic and necrotic process of beta-cells initiated by cyto-
kines is depicted within the iNOS chapter.

3.2.1. Cytokines in beta-cell destruction
The observations by Gepts in 1965 (Gepts, 1965) of lymphocytic in-
filtration within the islets of Langerhans (insulitis) seen in newly
diagnosed T1DM patients were demonstrated in vivo and in vitro to
correlate to immune mediated beta-cell destruction (Nerup et al.,
1971). In 1974 association of the HLA system to type 1 diabetes be-
came evident (Nerup et al., 1974), and in 1985 it was suggested that
soluble mediators of the immune system liberated during the in-
flammatory process were beta-cell cytotoxic (Mandrup-Poulsen et
al., 1985). IL-1β was identified as being the single cytokine which
alone could impair beta-cell function (Bendtzen et al., 1986; Man-
drup-Poulsen et al., 1986a; Mandrup-Poulsen et al., 1986b). IL-1
was shown to be selectively beta-cell cytotoxic (Mandrup-Poulsen et
al., 1987a; Sandler et al., 1989; Helqvist et al., 1991b), an effect
intensified by INFγ and TNFα (Mandrup-Poulsen et al., 1987b;
Eizirik, 1988).

In animal models spontaneous developing diabetes, cytokines
were identified in the insulitis lesion in the NOD mouse and BB rat
(IL-1, TNFα, IFNα and IFNγ, IL-6 and IL-12). Transgenic NOD
mice or BB rats expressing IL-4 under the rat insulin promoter
(RIP) were protected against diabetes development, and expression
of IL-4 and IL-10 was observed in NOD mice protected from dia-
betes development by various treatments such as oral administra-
tion of insulin, injection of CFA or intraperitoneal injections of
long-lasting IL-10 preparation. Further, blocking cytokines by either
anti-cytokine antibodies (against IFNγ, IL-6, TNFα) or blocking
cytokine receptors (by either soluble IL-1 receptor or IL-1Ra) or dis-
rupting cytokine genes (IL-12 and INFγ) have been reported to de-
lay and/or decrease diabetes incidence in NOD mice. Recently, it has
been shown that NOD mice being deficient of the IL-1R demon-
strated slowed progression to diabetes (Thomas et al., 2004). Finally,
over-expression of various cytokines in beta-cells (IFNγ, IFNα) un-
der the RIP in non-diabetic-prone mice resulted in severe lym-
phocytic islet infiltration and diabetes; whereas beta-cell expression
of IL-2, IL-6, IL-10 and TNFα induced insulitis without causing
overt diabetes. For more details, please see review (Rabinovitch et
al., 1998b).

Histopathology of the islet has identified antigen presenting
macrophages (MHC class II positive) and CD4+ T helper cells (Th)
as the first cells to infiltrate the islet in the BB rat, NOD mouse and
the low-dose streptozotocin animal models of diabetes (Kolb-Ba-
chofen et al., 1988; Lee et al., 1988; Hanenberg et al., 1989). The
end-stage infiltrate comprises large number of macrophages, CD8+

cytotoxic T-cells (Tc) and CD4+ T-helper cells (Th), as well as B-
lymphocytes (Kay et al., 1991; O’Reilly et al., 1991; Thivolet et al.,
1991; Bach, 1994). This lead to the hypothesis of an initiating phase,
characterised by antigen presentation and recognition, followed by a
perpetuation and amplification phase in which the infiltrate builds
up during the insulitis process (Nerup et al., 1994). The role of the
CD8+ T-cell in the initiating phase is controversial, as the CD8+ T-
cell has been suggested to be necessary but not sufficiently early in
the initiating phase (Serreze et al., 1997; DiLorenzo et al., 1998)
whereas NOD mice lacking beta-cell class I expression show both
initiation and progression of the benign insulitis process (Hamilton-
Williams et al., 2003). However, recently a paper demonstrating
over-expression of SOCS-1 leading to protection of CD8+ T-cell me-
diated beta-cell destruction indicates a role of cytokines in CD8+

function in beta-cells destruction (Chong et al., 2004).
Transplantation experiments using mixed syngenic and xenograft

islets in C57BL/6 mice have been used for evaluating the effect of lo-
cally sustained exposure of islets to cytokines in vivo. The xenograft
response elected a cellular infiltrate dominated by the presence of
macrophages, CD4+ T-lymphocytes and eosinophils with only a
small number of CD8+ cells. Within the mixed xenogenic/syngenic
islet graft, irreversible impairment of first and second phase insulin
response was seen, contrasting the observations of no structural or
functional impairment in allogenic/syngenic islet grafts (Korsgren et
al., 1994). The latter could be due to low intra-islet IL-1 production,
as within the allograft rejection only very few macrophages are seen
(Simeonovic et al., 1990).

At the time of the first reports of the proposed role of cytokines in
beta-cell destruction, Mosmann et al suggested a dividing of the
CD4+ T helper cells into two populations with contrasting and
cross-regulating cytokine profiles Th1: secreting IL-2, TNFβ and
INFγ leading to a cell mediated (type IV) delayed hypersensitivity
reaction, and Th2: secreting IL-4, IL-5, IL-6, and IL-10 mainly initi-
ating antibody formation and inhibition of cell mediated immunity
(Mosmann et al., 1986; Liblau et al., 1995). On the basis of the cyto-
kine profiles identified above being able to either promote or inhibit
diabetes development, these cytokine profiles have subsequently
been characterised as being either (i) Th1 associated with a destruc-
tive insulitis process or (ii) Th2 associated with a benign insulitis
process (Rabinovitch, 1994c; Charlton et al., 1995; Liblau et al.,
1995; Kolb, 1997). Today, it is generally accepted that cytokine me-
diated beta-cell destruction is related to a Th1 associated cytokine
profile. However, in MLD-STZ induced diabetes reduction and up-
regulation of Th2-type cytokines were more strongly associated to
susceptibility and resistance, respectively, than upregulation of Th1-
type cytokine levels (Müller et al., 2002).

3.2.2. Functional changes induced by cytokine exposure 
in beta-cells
Rat islets exposed to cytokines were used in the initial in vitro
studies. Exposing rat islets to IL-1β as a single agent was initially
shown to:

– inhibit glucose stimulated insulin release (Mandrup-Poulsen et
al., 1986a), (pro)insulin as well as total protein biosynthesis
(Spinas et al., 1987)

– decrease oxidative metabolism (Sandler et al., 1987) and glucose
oxidation at the mitochondrial level and consequently decrease
ATP production and Ca++ uptake (Sandler et al., 1991)

– increase DNA damage and reduce DNA content (Sandler et al.,
1987; Johannesen et al., 1990; Delaney et al., 1993)
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leading to the destruction and death of the beta-cells. The IL-1 me-
diated beta-cell destruction has been proposed to be due to produc-
tion of toxic substances in the beta-cell (Thomas et al., 2002) and
released within islets from bystander cells (activated MØ and
endothelial cells) (Kroncke et al., 1991; Steiner et al., 1997). These
effects of IL-1 were intensified by IFNγ and TNFα (Mandrup-
Poulsen et al., 1987b; Eizirik, 1988). However, in purified single rat
beta-cells: IL-1 failed to destruct the beta-cells (Ling et al., 1993;
Hoorens et al., 2001) whereas a mixed cytokine exposure lead to de-
struction (Hoorens et al., 1999; Pavlovic et al., 1999b; Liu et al.,
2000; Hoorens et al., 2001; Liu et al., 2001).

Initially, most studies using human islets describe neither any
cytotoxic effect (Kawahara et al., 1991; Eizirik et al., 1993c; Rabino-
vitch et al., 1994a) nor decreased accumulated or glucose stimulated
insulin release after exposure of IL-1 (Mandrup-Poulsen et al.,
1987a; Vara et al., 1994). However, beta-cell destruction due to
direct IL-1 exposure alone has been indicated (Giannoukakis et al.,
2000) and glucose induced IL-1β production in human islets re-
duced stimulated insulin secretion and increased apoptosis in beta-
cells (Maedler et al., 2002). Finally, Zumsteg and co-workers have
shown IL-1 mediated inhibition of glucose stimulated insulin
release from human islets (Zumsteg et al., 1993), whereas other
studies have shown the need of cytokine mixture to induce beta-cell
destruction (Rabinovitch et al., 1994a; Delaney et al., 1997; Hoorens
et al., 2001). Using monolayer human beta-cells/single cell prepar-
ations enriched in beta-cells (FACS): IL-1 alone did not cause de-
struction (Hoorens et al., 2001) contradictory to the increased 51Cr
release following IL-1 exposure demonstrated by (Rabinovitch et al.,
1990), and contrasting the destructive effect of cytokine mixture
exposure (Delaney et al., 1997; Hoorens et al., 1999; Hoorens et al.,
2001).

Hence, evaluating beta-cell functional data after cytokine ex-
posure, the experimental setting needs to be taken into account, e.g.
(i) when comparing single beta-cell preparations from rats and
humans the purity in rats is reported as more than 92% (Hoorens et
al., 1999) contrasting 69-82% for the human enriched beta-cells
single cell preparations (Delaney et al., 1997; Hoorens et al., 1999),
and (ii) when comparing whole islets to single cell preparation as
the yield of single cells only represents a small fraction of the total
number of beta-cells (Pipeleers et al., 1985), and it should be con-
sidered that these pure beta-cells after FACS purification, might
represent a selected, resistant “survivor population” of beta-cells.
Furthermore, the Ca++ concentration of the culture media influ-
ences the effect of IL-1 in mouse islets (Helqvist et al., 1989). More-

over, islet isolation procedures vary slightly from laboratory to la-
boratory and from isolation of rat and human islets (accepting cold-
preservation hours) (Keymeulen et al., 1998). Obviously, the use of
single cell preparations has the advantage of studying beta-cell spe-
cific effects, however the experimental set-up might be too simple to
illustrate the pathology of the cytokine mediated beta-cell destruc-
tion in vivo.

In conclusion: In both rat and human islets, exposure to cytokine
mixture has been shown to impair beta-cell function demonstrated
as e.g. inhibited insulin release, destruction of DNA and induced
cytotoxicity. Within islets, beta-cells added bystander cells (MØ and
endothelial cells) or in single beta-cell preparations grown in high
density, the IL-1 mediated beta-cell destruction is suggested to be
due to high local production of toxic substances e.g. NO, contrasting
the failure of IL-1 induced beta-cell destruction in single cell prepa-
rations grown in low density. Furthermore, different experimental
settings and conditions as well as islet/beta-cell handling should be
kept in mind when comparing data. An altered proteome profile
within these settings may be demonstrated and associated to the
outcome.

3.2.3. Intracellular cytokine induced pathways
Cytokine receptors on beta-cells provide the basis of cytokine in-
duced signalling in beta-cells (Dinarello, 1997). A review of the sig-
nal transduction pathways for IL-1, IFNγ and TNF has been given
by Eizirik and Mandrup-Poulsen in (Eizirik et al., 2001b) and re-
cently in (Donath et al., 2003) (see Figure 4).

In short:
(i) IL-1: Binding of IL-1 to the IL-1R1 allowing docking of the IL-1
receptor accessory protein mediates signal transduction through
three major pathways: activation of (a) nuclear factor kB (NFκB),
(b) mitogen activated protein kinases (MAPK) and (c) protein
kinase C (PKC). However, involvement of G-proteins in IL-1 in-
duced NO release and subsequent demise of the pancreatic beta-cell
has been suggested (Tannous et al., 2002).

(ii) IFNγ: Interaction between IFNγ and IFNγ receptor 1 leads to the
activation of the Janus tyrosine kinases 1 and 2 (JAK1 and JAK2),
followed by activation of the signal transducer and activator of tran-
scription 1 molecules (STAT1). STAT1 being a transcription factor
translocating to the nucleus and through binding to gamma-ac-
tivated sites (GAS) initiates transcription of many (hundreds) genes.
Interferon regulatory factor 1 (IRF-1) a transcription factor as well,
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being one of the STAT1 activated genes is subsequently expressed
and binds to interferon-stimulated response elements (ISRE) in
other genes e.g. iNOS. Further, STAT1 regulates caspase expression
and thereby influence the cellular response to pro-apoptotic stimuli.

(iii) TNF: signals through the TNF receptor. TNF belongs to a large
family, also containing e.g. FasL. Two TNF receptors exists, p60 and
p80, the first containing the death domain (DD), that when ac-
tivated subsequently leads to activation of e.g. NFκB, MAPKs
and/or caspase mediated apoptosis. The effect of TNF will not be
discussed further as the selected signalling transduction candidate
gene (IRF-1) mainly operates in the IFN signalling cascade.

3.2.3.1. Nuclear Factor kappa Beta (NFκB) and 
Interferon Regulating Factor-1 (IRF-1)
In rat islets, activation of NFκB is required for IL-1 induced iNOS
expression (Saldeen et al., 1994; Bedoya et al., 1995; Flodstrom et al.,
1996a; Darville et al., 1998). In unstimulated cells, NFκB is located
inactively in the cytoplasma due to binding to the inhibitor IkB. IL-1
mediated signalling leads to phosphorylation and degrading of IkB
allowing NFκB to translocate to the nucleus (Gilmore, 1999), bind
and initiate or adjust the promoter activity of promoters containing
a NFκB binding sites (Pahl, 1999). Expression profiling studies also
detect an increased expression of NFκB after cytokine exposure
(Rieneck et al., 2000; Mose-Larsen et al., 2001; Cardozo et al., 2001a;
Cardozo et al., 2001b). Besides being implicated in the transcription
of iNOS, NFκB has been associated to other inflammatory response
genes (Tak et al., 2001) like: MnSOD (Darville et al., 2000), Fas
(Darville et al.), A20 (Grey et al., 1999) and IkB (Cardozo et al.,
2001a). Hence, NFκB regulates the expression of several response
genes which have been suggested to be stimulus and cell-type spe-
cific (Karin et al., 2000). A substantiation of the role of NFκB in
cytokine mediated beta-cell destruction came from a study, blocking
the NFκB translocation into the nucleus by infecting rat beta-cells
with a non-degradable mutated form of IkB. Cytokine induced
iNOS and Fas expression was inhibited and beta-cell survival was
significantly improved (Heimberg et al., 2001). Furthermore, in-
hibition of NFκB in insulin producing MIN6 cells provided partial
protection of IL-1β/IFNγ/TNFα induced apoptosis, indicating a role
of NFκB in apoptosis signalling (Baker et al., 2001). Finally, NFκB1
(p50) deficient mice are not susceptible to multiple low-dose strep-
tozotocin-induced diabetes (Mabley et al., 2002).

Inhibition of NFκB by pyrrolidine dithiocarbamate (PDTC) in
human islets treated with IL-1β/IFNγ/TNFα lead to inhibition of
nitrite production (Flodstrom et al., 1996a), suggesting a role of
NFκB in iNOS expression in human islets as well. However, IL-1
alone also enhanced NFκB activation, but failed to induce iNOS ex-
pression in human islets (Flodstrom et al., 1996a) indicating that
NFκB is a necessary but not sufficient factor in inducing iNOS ex-
pression. As blockage of general protein synthesis by cyclohexamide
has shown to inhibit iNOS mRNA transcription in insulin-produc-
ing RINm5F and HIT-cells (Eizirik et al., 1993b) activation of pro-
tein synthesis of another transcription factor seems necessary, since
activation of NFκB is not dependent upon active protein synthesis
(Grimm et al., 1993). As (i) IL-1 alone induces NFκB (Flodstrom et
al., 1996a) and IRF-1 (Johannesen et al., 2001b) in rat islets, (ii)
IRF-1 requires de novo protein synthesis and has been suggested to
play a role in IL-1 mediated NO production in rat islets (Akabane et
al., 1995), and (iii) macrophages from IRF-1 deficient mice did not
produce NO at immuno-stimulation (Kamijo et al., 1994), IRF-1
expression was suggested as the “missing link” in IL-1β exposed
human islets for iNOS expression and NO production (Eizirik et al.,
1996c). On the other hand, recent studies using islets from IRF-1-/-
mice in vitro and in vivo have provided conflicting results. In vitro
studies using both FACS purified beta-cells and whole islets from
IRF-1-/- mice suggested that IRF-1 expression, probably within the
non-beta-cells present in whole islets, was involved in cytokine

induced islets cell damage (Pavlovic et al., 1999b). Contradictory,
when islets from IRF-1-/- mice were allografted into alloxan in-
duced diabetic recipient mice, reduced graft survival time was ob-
served compared to IRF1+/+ control islets, suggesting a possible
protective role of IRF-1 in this in vivo model (Gysemans et al.,
2001). However, recently, Baker et al have demonstrated that cyto-
kine stimulated IRF-1 deficient islets express a T-cell chemotaxin
(inducible protein (IP)-10) in higher concentrations – possibly lead-
ing to homing of T-cells and higher local cytokine concentrations –
than wild type animals (Baker et al., 2003). This finding suggests an
explanation of the paradox between the ability of IRF-1-/- islets to
resist cytokine induced destruction in vitro and the observed accel-
erated graft failure in vivo.

Such experiments using single gene knock-out animals in very
exact experimental designs asking specific questions give equally
specific answers, illustrating that only very specific conclusions can
be drawn and that caution regarding extrapolation to more general
conclusions should be taken. However, IRF-1 seems to play a role in
the overall outcome of cytokine exposed beta-cells, and this possible
dual effect of IRF-1 is in line with data for NFκB, as this transcrip-
tion factor also has been shown to possess a role in both deleterious
and protective mechanisms mediated by cytokines (Heimberg et al.,
2001; Cardozo et al., 2001b). Such dual effect could limit the use of
knock-ins or knock-outs regarding any putative dynamic function
or critical time-window of action for the gene or protein in ques-
tion. 

3.2.3.2. Mitogen Activated Protein Kinase (MAPK)
As suggested above, cytokine mediated NO-independent beta-cell
destruction exists in which MAPK signalling has been involved and
suggested to lead to apoptosis mediated beta-cell destruction (Man-
drup-Poulsen, 2001). The IL-1β induced MAPK activity in rat islets
has shown to be synergistically increased by TNFα and IFNγ (An-
dersen et al., 2000). The following members of the MAPK family
have been identified in beta-cells (Welsh, 1996; Larsen et al., 1998):
(i) extracellular regulated signal-kinase (ERK) mainly activated by
mitogens, growth factors and cellular stress, (ii) p38, and (iii) c-jun
N-terminal kinase (JNK) both activated by cellular stress: e.g. cyto-
kines and irradiation (Widmann et al., 1999). 

JNK has been identified as a MAPK mediator to induce apoptosis,
as inhibition of JNK reduces IL-1 mediated apoptosis in beta-cell
lines (Ammendrup et al., 2000; Bonny et al., 2001). Activation of
JNK may be regulated by Ca++ influx through high voltage-activated
(HVA) Ca++ channels, as blockage of HVA channels has been found
to significantly reduce IL-1 stimulated JNK activity in beta-cells
(Størling et al., 2001). Activation of the caspase cascade has been
suggested to be MAPK mediated in beta-cells (Eizirik et al., 2001b)
and by IFNγ induced ICE expression (caspase 1) in rat and human
islets (Karlsen et al., 2000). Caspases are present as inactive pre-
cursors, which when activated leads to cleavage of many proteins re-
sulting in dismantling of the cell (Thornberry et al., 1998).

Cross-talk between MAPK signalling and NO mediated beta-cell
destruction has been described as the induction of iNOS – mainly
being dependent upon NFκB – also was shown to be regulated by
p38 and ERK (Larsen et al., 1998; Bellmann et al., 2000). Further-
more, cytokine produced NO may positively feed-back the MAPK
signal (Binzer et al., 2001), possibly explaining the protracted acti-
vation of MAPK in cytokine exposed beta-cells (Larsen et al., 1998).

In conclusion: In beta-cells cytokines elicit a variety of different
signalling pathways, some leading to NO production resulting in
necrotic as well as apoptotic cell death. Elucidating the functional
relevance of a single factor e.g. NFκB or IRF-1, caution needs to be
taken regarding (i) the efficacy and specificity of chemical blocking
of the factor, and (ii) the read-out (usually being a parameter fur-
ther downstream in the pathway) due to redundancy in such com-
plex pathways.
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3.2.4. Protective mechanisms
That the beta-cell is not a passive bystander cell to its own destruc-
tion is illustrated by the various defence mechanisms activated by
the beta-cell when exposed to toxic stimuli – a race between the
deleterious and protective mechanisms is induced. However, a re-
duced stress-induced defence capacity in the beta-cell has been
demonstrated (Welsh et al., 1995b; Lenzen et al., 1996; Burkart et
al., 2000) and this may lead to higher susceptibility for destruction
of the beta-cell compared to other cell-types (Andersen, 1999) –
hence, reduced protective capacity may add to the fact, that in beta-
cells the deleterious mechanisms prevail. Concordant results have
been provided from a clinical setting, as the total antioxidant status
was lower in ICA-positive compared to ICA-negative first degree rel-
atives to T1DM patients (Rocic et al., 1997), and the total antioxi-
dant activity was lower in T1DM patients compared to healthy con-
trols (Maxwell et al., 1997).

From the expression profiling studies various cytokine or NO
protective gene-transcript and/or proteins have been demonstrated,
e.g. catalase, ceruloplasmine, GADD-153, Gas 5, –6, gluthathione S-
transferase, gluthathione peroxidase, glutamine –γ glytanyl trans-
ferase, heme oxygenase, HSP 27, –40, –70, metallothionein, MnSOD,
MX 1, SOD-B (for references see Chapter 3.1.1. “Expressing profil-
ing”). Only a selection – those that specifically have been evaluated
in insulin producing cells or in islets – will be further described here.

Heat shock proteins have been demonstrated as being one of the
protective molecules in islets exposed to cytokines. The function of
HSP70 in general has been associated to chaperoning (Bukau et al.,
1998; Nollen et al., 1999) and in cellular defence HSP70 has been
proposed to participate in repair of damaged nuclei as most HSP70
is found in the nuclei after heat shock (Welch et al., 1991). HSP70
has also been suggested to protect mitochondrial function against
oxidative injury, as heat shock induced HSP70 prevented H2O2 in-
duced mitochondrial damage (Polla et al., 1996). Finally, HSP70 has
been shown to provide cellular protection by interfering with apop-
tosis induction (Buzzard et al., 1998; Jaattela et al., 1998) possibly by
inhibition of JNK and p38 (Gabai et al., 1997; Mosser et al., 1997).

In rat islets expression of a cytokine induced protein with a mol-
ecular weight of approximately 72 kDa was initially demonstrated
by Helqvist et al. (Helqvist et al., 1989), and subsequently the iden-
tity of HSP72 was confirmed in IL-1 exposed mouse and rat islets
(Eizirik et al., 1990; Helqvist et al., 1991a; Welsh et al., 1991b). The
HSP72 expression was exclusively found in FACS sorted beta-cells
and not in alfa-cells (Strandell et al., 1995). A protective role of
HSP72 against the deleterious effect of IL-1 in islets was shown by
liposomal delivery of HSP72 into rat islets (Margulis et al., 1991).
Heat shock treatment induced increased resistance in rat islets
against NO, oxygen radicals and STZ toxicity in vitro (Bellmann et
al., 1995), and over-expression of HSP70 conferred resistance
against NO induced (NO-donor) cell lysis (approximately 50% re-
duction) in RINm5f cells (Bellmann et al., 1996). In contrast, when
HSP70 over-expressing RIN cells were stimulated with cytokines an
enhanced p38 MAP kinase dependent increase in nitrite production
was seen (Bellmann et al., 2000). This apparent paradox of HSP70
possessing chaperone as well as cytokine properties has been sug-
gested to be due to intracellular vs. extracellular actions of HSP70, as
extracellular acting HSP70 has been shown to stimulate cytokine
production (Asea et al., 2000).

Another stress protein, heme oxygenase (HSP32), has also been
found to be upregulated selectively in IL-1 stimulated rat islets beta-
cells (Helqvist et al., 1991a; Strandell et al., 1995). Heme oxygenase
has been shown to be induced and cause cytoprotection of beta-cells
and other cells exposed to NO (Motterlini et al., 1996).

Besides induction of stress proteins, low expression of the antioxi-
dant enzymes MnSOD, catalase and gluthathione peroxidase (GSH)
in rodent islets (Lenzen et al., 1996; Tiedge et al., 1997) have been
associated with increased susceptibility to free radicals, as anti-
oxidant administration or over-expression of antioxidant enzymes

reduced cytokine induced beta-cell function and/or destruction in
rodent and human islets (Sumoski et al., 1989; Welsh et al., 1994;
Tiedge et al., 1997; Tiedge et al., 1998; Tiedge et al., 1999; Lortz et
al., 2000; Moriscot et al., 2000). Selective increase in MnSOD was
found in FACS purified beta-cells and not in alfa-cells contrasting
identical levels in both cell types when unstimulated (Strandell et
al., 1995). In RIN cells, IL-1 elicited a parallel time-dependent iNOS
and MnSOD mRNA expression (Bigdeli et al., 1994). Blockage of
IL-1 induced iNOS expression by aminoguanidin (AG) did not in-
hibit MnSOD mRNA expression, and the NO-donor SNP did not
induce MnSOD mRNA expression (Bigdeli et al., 1994) indicating
MnSOD being upregulated by IL-1 independently of NO. Inhibited
gene transcription by actinomycin D blocked the expression of both
iNOS and MnSOD in contrast to inhibition of protein synthesis by
cyclohexamide blocking only iNOS expression (Bigdeli et al., 1994)
– indicating different mechanisms or pathways controlling the ex-
pression of iNOS and MnSOD. This was confirmed by the observa-
tion that MnSOD expression was independent of NFκB activation
(Bedoya et al., 1995). However, over-expression of MnSOD reduced
cytokine-induced activation of NFκB by more than 80% associated
with iNOS activity at basal/unstimulated level and a significantly re-
duced iNOS protein expression compared to control (Azevedo-Mar-
tins, 2003). Generally, this low antioxidant defence capacity of beta-
cells has been considered to be an important aspect of oxygen free-
radical induced damage leading to beta-cell death (Ho et al., 1999).

Differences in the protective capacity between human and rodent
islets have been demonstrated. Human islets have been shown to be
more resistant than rodent islets to damage from NO (Eizirik et al.,
1994c) alloxan, hydrogen peroxide and stretozotocin (Eizirik,
1996b). Moreover, the basal content of HSP70 and the activity of
catalase and SOD have been demonstrated to be higher in human
islets compared to rat and mouse islets (Welsh et al., 1995b; Burkart
et al., 2000). Other protective factors may influence the observed
species differences as (i) the degree of resistance to NO, alloxan and
streptozotocin has been described as highest in human, less in
mouse and lowest in rat, (ii) the expression of HSP70 demonstrated
to be highest in human, less in rat and mouse, and finally (iii) the
activity of catalase and SOD observed to be highest in human, less in
rat and lowest in mouse (Eizirik, 1996b).

In cytokine stimulated FACS purified beta-cells and RINm5F
cells, HSP70 has been demonstrated to up- and down-regulate by
use of 2D-gel protein and mRNA array analyses, respectively (Rie-
neck et al., 2000; Mose-Larsen et al., 2001; Cardozo et al., 2001a).
Increased expression of MnSOD was identified in cytokine treated
RINm5F cells, whereas blockage of NFκB reduced both the expres-
sion of HSP70 and MnSOD as well as iNOS in FACS purified rat
beta-cells replicating the finding of NFκB being involved in destruc-
tive as well as protective signalling pathways (Cardozo et al., 2001b).
Moreover, beside the up-regulation of MnSOD and HSP70 in cy-
tokine exposed primary rat beta-cells, downregulation of gas6 and
glutathione peroxidase both representing defence/repair genes was
demonstrated in beta-cells (Cardozo et al., 2001a).

Taken together, the beta-cell possess a variety of different protect-
ive capacities. These can be activated (i) directly by cytokine signal-
ling pathways and (ii) indirectly by cytokine mediated formation of
free radicals. Species and possibly strain dependent protective cap-
acities seem to exist, although beta-cells in general seem to have low
basal antioxidant levels.

Conclusions from cytokine beta-cell destruction: Since the first ver-
sion of “The Copenhagen Model” of cytokine mediated beta-cell de-
struction was proposed, the effects of cytokine exposure to beta-cell
have been extensively studied. New technologies have been used and
have generated much new information. However, although the under-
standing of the complexity of the involved processes and their interac-
tions has expanded significantly but has not yet been fully depicted, the
initial proposed idea of a cytokine mediated race between deleterious
and protective mechanisms within the beta-cell still stands.
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3.3. SELECTION OF PROTEINS/GENES 
USING “THE COMBINED CANDIDATE GENE APPROACH”
On the basis of the above described “Selected candidate gene ap-
proach”: (i) “The Copenhagen Model”, (ii) the functional derived
expressional data thereof and (iii) various genome scans, three pro-
teins have been selected for evaluation in this thesis: inducible nitric
oxide synthase (iNOS), interferon regulating factor 1 (IRF1), and
mortalin.

– The iNOS was chosen since:
– NO was the first major cytokine mediated effector molecule 

identified in rat islets leading to selective beta-cell destruction
– the possibility to further characterise the role of iNOS in two 

rat strains previously identified as being differently sensitive 
to IL-1β, and

– the un-revealed impact of iNOS/NO in human beta-cell de-
struction/T1DM.

– As IRF1 has been shown to be involved in the cytokine mediated
activation of iNOS lead to genetic characterisation of IRF1 and a
descriptive role of IRF1 in the rat strains, and finally,

– Mortalin being newly identified at the 2D protein gels and hy-
pothesized to play a role in “The Copenhagen Model” of T1DM
due its role in senescence and mitochondrial function. Further-
more, the gene encoding for mortalin was located to a genetic
region shown to be linked to other autoimmune diseases.

Much information regarding the role of iNOS and NO in cytokine
mediated beta-cell destruction was awailable at the time of selection
– less information was available for IRF-1 and none for mortalin.
This differentiated knowledge prior to initiation of the studies for
each of the selected proteins was also considered in order to demon-
strate all parts of the genetic and functional characterisation – al-
though not necessarily for the same protein (Table 4).

In order to evaluate candidate genes for association to T1DM, it is
necessary to obtain information of the DNA sequence of the selected
gene in order to identify testable genetic variations within the col-
lected population. Secondly, to examine and understand a func-
tional relevance of these genetic variants in-depth knowledge of
regulatory mechanisms becomes mandatory.

Hence, the selected proteins were characterised in the following
way:

– The gene encoding the protein was evaluated for genetic poly-
morphisms and these were tested for linkage using (E)TDT ana-
lyses in a nationwide Danish T1DM family collection. Re-
garding IRF-1, a previously described polymorphism was exam-
ined within the family collection.

– In an attempt to compare the protein and mRNA response in two
genetically different rats – expression of selected transcripts in
cytokine exposed isolated islets from two rat strains (not

spontaneously developing diabetes) was characterised. After gen-
etic characterisation of the rat iNOS promoter from both strains,
the iNOS promoters were functionally tested and associated to
the expressed iNOS level.

– Ideally, over-expressing of the selected protein in a beta-cell line
followed by cytokine exposure is warranted to further character-
ise the effect of the protein in cytokine mediated beta-cell de-
struction. However, the rat mortalin over-expression studies
performed in a mouse-fibroblast cell line (NIH-3T3) illustrated
the effect of high mortalin expressional levels per se and allowed
for comparison to over-expression studies of human and mouse
mortalin.

3.4. METHODS
Within the genetic orientated papers: cloning, screening for and
verification of polymorphisms as well as establishing typing assays –
generally accepted techniques and methodology were used and are
not discussed further. The genetic analyses have concentrated upon
association and linkage to T1DM in a Danish nationwide collection
by methods previously described. Papers focusing on islet respon-
siveness to cytokines and functional evaluation of expression of se-
lected proteins were also based upon classical and accepted method-
ology. However, promoter activity assays and real-time PCR have
been introduced in the laboratory and used according to the manu-
facture’s description and guidelines. Naturally, the use of promoter
assay in cell lines comprises confounders: in cell lines – not fully re-
sembling the relevant naïve cell type – possibly employment of dif-
ferent signalling transduction pathways might affect the regulation
of the promoter in question. The systematic confounding factors in
reporter assays being inter- and intra-assay transfection efficacy,
inter-assay differences in reporter signal due to e.g. variation in
plasmid DNA constructs and quantification, have been controlled to
the extent possible in the studies.

Conclusion from Chapter 3
“The combined approach to select candidate genes” has the strength
of employing multi-string identification of susceptibility genes –
one being the response of the target organ to cytokine exposure.
Three candidate genes have been selected. The following chapter
presents the evaluation in terms of (i) association to T1DM in a
nationwide Danish T1DM family collection preceeded by a seach for
genetic variants within the genes, (ii) expression of these genes in
cytokine exposed islets from two rat strains in order to study inter-
strain target organ responses of cytokine mediated beta-cell destruc-
tion. Finally, (iii) an over-expression study of rat mortalin demon-
strates the effect of mortalin per se and allowed for comparison to
over-expression studies for human and mouse mortalin, although
over-expressing of the selected protein in a beta-cell line followed by
cytokine exposure is warrented to further characterise the effect of
the protein in cytokine mediated beta-cell destruction.

Table 4. The selected candidate genes.

Chromosome Genetic
Identified at Putative relevance in assignment in Linked region association
2D gels “The Copenhagen Model” Characterization in rats humans in T1DM GS to T1DM

iNOS No* Beta-cell cytotoxic Strain dependency: Yes 17q11.2 Yes Yes
Over expression studies: Yes (isolated 
Promoter assays: Yes population)

Mortalin Yes Involved in cellular fate/ Strain denpendency: Yes 5q31.1 No
apoptosis? Over expression studies: Yes

IRF-1 No* TF involved in cytokine Strain denpendency: Yes 5q31 No
signalling (iNOS) Over expression studies: No

The statements in bold represent the main findings of the studies included in this thesis.
*) iNOS and IRF-1 have subsequently been identified using mRNA array technology (Rieneck et al., 2000; Cardozo et al., 2001a; Cardozo et al., 2001b;

Kutlu et al., 2003).
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4. GENETIC AND FUNCTIONAL ANALYSIS 
OF THE SELECTED CANDIDATE GENES
In this chapter the selected candidate genes – iNOS, IRF-1 and mor-
talin – will be reviewed. As most of the papers contributing to this
thesis describe aspects of rat and human iNOS in cytokine mediated
beta-cell destruction as a model for T1DM, the review of the iNOS
gene and protein comprises the majority of this chapter. Hence, the
section “Modes of cytokine mediated beta-cell destruction” has
been included here as the chapter has special focus on iNOS/NO in
beta-cell destruction. Genetic characterisation of iNOS, IRF-1 and
mortalin within the Danish nationwide T1DM collection will be
demonstrated, descriptive evaluation of the expression in cytokine
exposed islets from two rat strains, as well as functional evaluations
of the candidate genes expressed in the rat.

4.1. THE INDUCIBLE NITRITE OXIDE SYNTHASE (iNOS)
Nitric oxide (NO) formation is generated by the enzymes of nitric
oxide synthase (NOS) family converting L-arginine to citruline and
NO. It is a potent biologic mediator of diverse physiologic and
pathophysiologic effects. It has been implicated in blood pressure
regulation, neurotransmission, antimicrobial defence mechanisms,
modulation of inflammatory response (Moncada et al., 1991) and
autoimmunity (Bogdan, 1998; Singh et al., 2000) in part by modu-
lating the Th1/Th2 response (Taylor-Robinson et al., 1994; Nukaya
et al., 1995; Wei et al., 1995; Kolb et al., 1998; Niedbala et al., 1999).
The NOS family comprises: neuronal NOS (nNOS or NOS1), the
inducible NOS (iNOS or NOS2), and endothelial NOS (eNOS or
NOS3). The nNOS and eNOS are constitutively expressed (cNOS),
named after the cells in which they were originally discovered, syn-
thesise NO dependent on calmodulin (CaM) and Ca++ (Nathan et
al., 1994), function in signal transduction cascades by linking tem-
poral changes in Ca++ level to NO production, and serves as activa-
tors of soluble guanylate cyclase (Ignarro et al., 1995). Both cNOS
isoforms participate in homeostatic cell to cell signalling and are
regulated independently of the inflammatory responses (Bredt et al.,
1991; Sessa et al., 1992). Induced NO production was initially iden-
tified in LPS stimulated MØ (Stuehr et al., 1985), and iNOS expres-
sion requires de novo protein synthesis following cellular stimula-
tion by LPS or cytokines (Hughes et al., 1990; Eizirik et al., 1991).
The enzyme is predominantly soluble (Hevel et al., 1991), and binds
CaM tightly even in absence of Ca++, hence being Ca++ independent
(Cho et al., 1992). Furthermore, the enzyme produces much larger
amounts of NO when stimulated than the cNOS’s (Cho et al., 1992).
Once produced, NO quickly (T1/2 are seconds) undergoes spontane-
ous oxidation to the inactive metabolites nitrite and nitrate (NO2

–

and NO3
–). iNOS has been implicated in numerous human diseases,

including neurodegenerative, autoimmune, cardiovascular, inflam-
matory and a number of human cancers, for review see (Kröncke et
al., 1998). Even though iNOS expression appears to have many
beneficial roles in the acute septic response (e.g. hepatoprotection
(Taylor et al., 1998)), over-expression can be detrimental (Szabo et
al., 1994; Cobb et al., 1996).

4.1.1. Modes of cytokine mediated beta-cell destruction
In general, cytokine mediated beta-cell destruction involves the tox-
icity of generated free radicals (FR) e.g. reactive oxygen species
(ROS), which have the capacity to oxidize and thereby damage cel-
lular components (Chapple, 1997). Besides the toxic effect of ROS,
oxidation of proteins may turn them into autoantigens thereby in-
itiating/continuating the immune reaction toward the beta-cell
(Karlsen et al., 1998). In rat islets, the majority of the inhibitory
effects and toxicity of cytokines are believed to be mediated by ex-
pression of free radicals generated in the beta-cells – e.g. the nitrous
oxide radical formation – by expression of the inducible form of ni-
tric oxide synthesis (iNOS) and consequently the synthesis of nitric
oxide (NO) (Southern et al., 1990), reviewed by (Nerup et al., 1994;
Mandrup-Poulsen, 1996; Eizirik et al., 1996c; Eizirik et al., 1997).

The toxic effects of cytokines exposed to beta-cells have been
shown to lead to necrosis as well as apoptosis. This chapter will
demonstrate that NO can lead to both forms of cell deaths. Besides
the induction of ROS – mainly leading to necrosis, the transcription
factors JNK and NFκB have been demonstrated to be essential regu-
lators of cytokine signalling leading mainly to apoptotic cell death
(See 3.2.3 “Intracellular cytokine induced pathways”). Furthermore,
cytokines have been shown to activate Ca++ channels and caspases
inducing apoptotic cell death (for review see also (Bergholdt et al.,
2003)).

4.1.2. Nitric Oxide – necrosis and apoptosis – 
in cytokine mediated beta-cell destruction
Necrosis is usually the result of acute cellular dysfunction in response
to massive cell injury caused by sudden severe ischemia, chemical,
physical or thermal injury, leading to loss of the selective permeabil-
ity of the cell membrane (Majno et al., 1995). Due to disruption of
membranes, cellular content and material are released to the ex-
terior triggering an acute inflammatory response by attracting pro-
inflammatory cells (Gores et al., 1990; Haslett, 1992). Necrosis is
generally considered a passive, non-energy dependent process asso-
ciated to rapid cellular ATP depletion. In islets exposed to IL-1 a
down-regulation of an ATP- syntheses subunit has been observed
(Mose-Larsen et al., 2001; Sparre et al., 2002), however, whether this
is a primary or secondary effect is unknown.

As previously described, NO was the first effector molecule iden-
tified to mediate the deleterious effects of cytokine mediated beta-
cell destruction as a pathogenetic model for T1DM (Southern et al.,
1990). This has further been substantiated by:

– exposure of NO donors to rat islets (Kroncke et al., 1993; Cun-
ningham, 1994; Sjöholm, 1996; Eizirik et al., 1996a) and beta-
cells (Dimatteo et al., 1997) leading to beta-cell destruction

– over-expression of the iNOS gene under the RIP (Takamura et
al., 1998) mimicking IL-1 mediated beta-cell destruction, and

– blockage of NO production (Andersen et al., 1996) protecting
IL-1 exposed beta-cells. Moreover,

– using the mRNA display technique in cytokine exposed insulin
producing cells up-regulation of iNOS and AS (see below) was
observed (Rieneck et al., 2000; Cardozo et al., 2001a; Cardozo et
al., 2001b; Nielsen et al., 2004).

As iNOS catalyses the reaction arginine to citrulline and NO, the
amount of generated NO depends upon availability of arginine.
Transportation of arginine has been demonstrated to cross the cell
membrane into the cell by use of the transport system y+CAT and
being synthesised intracellularly from citrulline by argininosuc-
cinate synthase (AS) (citrulline-NO cycle) or by protein degradation
(Morris et al., 1994). IL-1 has been shown to increase the expression
of AS (Flodström et al., 1995), to inhibit the enzyme arginase con-
verting arginine to arnithine and urea (Cunningham et al., 1997),
and to increase the transport of arginine into rat beta-cells (Flod-
strom et al., 1999a). All these IL-1 mediated effects increase iNOS
substrate availability securing the NO production.

NO has been identified to:
– nitrosylate the Fe-S center of the aconitase enzyme in the Krebs

cycle thereby inactivating its function (Welsh et al., 1991a) and
– induce DNA strand breaks in mitochondrial DNA (Wilson et al.,

1997), probably contributing to the initially described IL-1 medi-
ated reduction of glucose oxidation and mitochondrial organelle
dysfunction. Furthermore, NO has been shown to

– induce nuclear DNA strand breaks in rat islets (Delaney et al.,
1993), a process activating the enzyme poly(ADP-ribose) poly-
merase (PARP), participating in DNA repair process but con-
suming nicotinamide adenine nucleotide (NAD) thereby further
depleting the cell of energy. In rat and man, nicotinamide, an in-
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hibitor of PARP activation, has been shown to reduce cell loss in
islets exposed to NO donors (Radons et al., 1994; Eizirik et al.,
1996a). Finally, PARP deficient mice have been shown to be less
sensitive to NO and FOR mediated cell death (Heller et al., 1995).

Besides the functionally inhibitory and deleterious effects of NO it-
self, reaction between NO and superoxide leads to the toxic radical
peroxynitrite (ONOO–) reported to be an even more potent oxidant
and cytotoxic mediator than superoxide or nitric oxide (Szabó,
1996). Peroxynitrite has been identified in NOD mice infiltrated by
mononuclear cells (Suarez-Pinzon et al., 1997) and inhibition of
iNOS and scavenging peroxynitrite prevented diabetes development
in NOD mice (Suarez-Pinzon et al., 2001) as well as in the multiple
low-dose streptozotocin induced diabetes model (Mabley et al.,
2004). Peroxynitrite has also been identified in human islets exposed
to cytokine mixture (Lakey et al., 2001). Human islets exposed to
peroxynitrite display acute DNA strand break and decreased glucose
metabolism leading to cell death (Delaney et al., 1996).

In addition to the direct tissue damage mediated by NO, a report
has suggested that NO may enhance and/or preserve the Th1 cyto-
kine profile in the NOD mouse. The Th1 response is activated by IL-
12, a MØ cytokine, and suppression of the IL-12 production in
NOD may inhibit the progress of the initial benign Th2 insulitis to
the destructive Th1 insulitis process, reduce iNOS mRNA expres-
sion and decrease diabetes incidence, for review see (Rothe et al.,
1999). Thus it seems that NO production facilitates and maintains
the destructive Th1 insulitis process. Finally, it has been shown that
activated MØ facilitates islet destruction by CD8+ T-cells through a
NO synthesis-dependent pathway (Gurlo et al., 1999).

Hence, NO or derivatives thereof lead to acute cellular dysfunc-
tion depleting the cell of energy. Results from iNOS -/- transgenic
mice have suggested that NO is predominantly involved in necrosis
and not apoptotic cell-death (Liu et al., 2000). However, the same
study also recognised the existence of NO-independent effector
mechanisms as beta-cell destruction was only partly protected in the
iNOS -/- beta-cells following cytokine exposure.

Apoptosis or programmed cell death is an energy requiring pro-
cess (Cummings et al., 1997), naturally occurring during embryo-
genesis and in normal tissue turnover and constitutes a common
mechanism of cell replacement, tissue remodelling and removal of
damaged cells (DeLong, 1998). Morphologically, apoptosis is char-
acterised by condensation and margination of the chromatin
towards the nuclear membrane, cellular shrinkage, detachment
from neighbouring cells, inter-nucleosomal DNA fragmentation
and formation of “apoptotic bodies”. These apoptotic bodies are al-
most immediately phagocytosed, preventing exposure of cellular
content to the exterior and thereby inflammatory response.

In line with the original concept proposed in “The Copenhagen
Model” suggesting that cytokine exposure induces a race between
deleterious and protective mechanisms, (Nerup et al., 1994) it fol-
lows that cytokine exposure initiates many different responses
within the beta-cell. Besides, as indicated from the different signal-
ling pathways activated by IL-1β, INFγ and TNFα it would seem un-
likely that only one cytokine mediated effector arm should exist.

Indeed, apoptosis can be demonstrated in beta-cells: in the post-
partum pancreas (Scaglia et al., 1995), in the neonatal pancreas
(Scaglia et al., 1997), in response to hyperinsulinemia induced by
transplantation of an insulinoma (Blume et al., 1995) and in islets
where glucose promotes survival of rat pancreatic beta-cells by ac-
tivating synthesis of proteins which suppress a constitutive apop-
totic program (Hoorens et al., 1996). 

In the literature, reports suggesting NO independent apoptosis
exist in islets, as:

– blocking NO-production does not fully inhibit cytokine me-
diated apoptosis (Eizirik et al., 1994a; Rabinovitch et al., 1994a;
Delaney et al., 1997; Hoorens et al., 2001), and

– apoptosis has been detected in cytokine exposed islets from
iNOS-/- mice (Liu et al., 2000; Zumsteg et al., 2000)

It has been suggested that cytokines can induce Fas expression upon
the cell surface of the beta-cell (Stassi et al., 1997). Consequently,
Fas/FasL interaction between the beta-cell and T-cell (CD4+ and
CD8+) present in the insulitis infiltrate may activate caspases leading
to apoptosis of the beta-cell. This initial finding has subsequently
been challenged, and the involvement of Fas/FasL as effector mol-
ecules for beta-cell destruction in T1DM remains controversial, for
review see (Eizirik et al., 2001b). Furthermore, cytokines have (i)
shown to induce MAPK (Larsen et al., 1998) and caspase 1 (ICE)
(Karlsen et al., 2000) in beta-cells, and (ii) been suggested to medi-
ate beta-cell apoptosis, which lead to focusing at related signalling
pathways and apoptotic effector mechanisms as putative mediators
of beta-cells death.

However, apoptosis in islets/beta-cells has been identified follow-
ing exposure to NO, peroxynitrite or cytokine mediated NO-effects
(Mabley et al., 1997; Hadjivassiliou et al., 1998; Saldeen, 2000).

Moreover, other reports suggest NO influence on the apoptotic
process, as:

– blocking NO synthesis leads to reduced PARP-cleavage (indi-
cator of apoptosis) after 24h exposure of islets to IFN/TNF/IL-1,
and reduced number of necrotic and apoptotic cells in the islets
significantly (Saldeen, 2000)

– NO/oxidative stress decreased redox function modifying the
cytokine-induced apoptotic pathway (Stamler, 1994; Dimatteo et
al., 1997; Hampton et al., 1998)

– NO induced DNA strand breaks may induce apoptosis per se
(Ankarcrona et al., 1994; Kaneto et al., 1995) or through activa-
tion of the tumour suppressor protein p53 (Messmer et al., 1994)

– Endoplasmatic reticulum stress (perturbations leading to accu-
mulation of malfolded proteins in that compartment) has been
suggested to activate JNK in non-beta-cells, however this coupl-
ing is not understood (Urano et al., 2000), and NO induced ER
stress could be coupled to the pro-apoptotic JNK pathway,

– NO is needed to induce apoptosis in FACS purified rat beta-cells
by combinations of viral products and cytokines (Liu et al.,
2001), and finally

– NO induces ER depletion of Ca++ leading to ER stress and subse-
quent induction of apoptosis by the CHOP apoptosis (a C/EBP
homologous protein, induced by ER stress and plays a role in
growth arrest and cell death) (Oyadomari et al., 2001),

Hence, it seems that beta-cell destruction involves NO as well as
non-NO-dependent effector arms leading to both necrosis as well as
apoptosis. As both forms of beta-cell destruction have been dem-
onstrated, factors influencing the outcome are of interest. Different
study designs may help identify such factors – however, the mode of
destruction may be influenced by the study design, e.g. beta-cell
single cell suspensions versus islet studies. In rat single cells, both
apoptosis and necrosis occur, and full apoptotic effect and necrotic
index were observed at relatively low cytokine mix concentrations,
possible due to limited numbers of cytokine receptors (Eizirik et al.,
2001b). In contrast, in rat islets exposed to cytokine mixture a
higher increment in necrosis than in apoptosis was seen (Saldeen,
2000), possibly due to higher intra-islet concentrations of NO pro-
duced by both beta-cells and non-beta-cells. A study combining ex-
posure of IL-1 and doubled stranded RNA (dsRNA), imitating virus
exposure/infection induced NO-dependent apoptosis in contrast to
IFNγ + dsRNA exposure leading to NO-independent death of un-
known pathways (Liu et al., 2001), illustrating that different agents
can trigger various destructive pathways. Further, the potency of the
“hit” versus the defence properties may influence the destructive
pathway taken as more severe attack tends to lead to necrosis, as the
cell depletes from energy to fulfil the apoptotic program (Lemasters
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et al., 1999). This may partly explain the finding of apoptosis being
more pronounced in human than in rodent islets (Delaney et al.,
1997; Hoorens et al., 1999; Hoorens et al., 2001) as (i) human islets
are better protected against oxidative stress (see elsewhere) partly
due to higher cellular amounts of HSP70 (Welsh et al., 1995b;
Burkart et al., 2000) serving an anti-apoptotic effect (Jaattela, 1999),
and (ii) a better capacity to continue glucose oxidation resulting in
higher ATP-production (regarding human islets, see (Eizirik et al.,
1994a) and mouse islets, see (Cetkovic-Cvrlje et al., 1994)), neces-
sary to fulfil the apoptotic program, despite similar amounts of NO
are produced (Eizirik et al., 1997). Heterogeneity within beta-cells
may also contribute to the outcome. Heterogeneity has been de-
scribed in FACS purified rat beta-cells (Pipeleers, 1992) – (i) diverse
sub-population of beta-cells differently responding in insulin secre-
tion at identical glucose concentration, (ii) high glucose sensitivity
associated to high general protein synthesis – could serve as an ex-
ample of the impact of beta-cell phenotype or functional state. High
glucose sensitivity has been proposed to provide a better anti-apop-
totic protein response due to the general induced protein synthesis
of glucose in beta-cells (Hoorens et al., 1996). On the other hand, is-
lets exposed to high glucose concentrations and high insulin secre-
tion were more sensitive to the deleterious effects of IL-1 exposure
compared to low glucose concentrations – suggesting the beta-cell
to be “a moving target” (Helqvist, 1994) – a phenomenon not only
related to high insulin secretion, as the IL-1 sensitivity were depend-
ent upon the stimulus leading to insulin secretion (Johannesen et
al., 1990). This is in line with higher iNOS expression in “high glu-
cose-responsive FACS-purified beta-cells” indicating intercellular
differences of beta-cell responsiveness to IL-1 related to the beta-cell
glucose-responsiveness (Ling et al., 1998) supporting the existence
of variation in beta-cell phenotype. Finally, IL-1 has been demon-
strated to induce beta-cell adaptation shown as a reduced cellular
sensitivity to conditions that cause necrosis but not to cytokine in-
duced apoptosis (Ling et al., 2000). This adaptation seemed to be in-
dependent of NO production as these findings were confirmed in
arginine free conditions as well as independent of heme oxygenase
and HSP70 as these proteins were not elevated in arginine free con-
dition (Ling et al., 2000).

Lessons from the BB-rat have demonstrated necrosis being the
predominant type of islet cell death during development of insulin-
dependent diabetes (Fehsel et al., 2003).

Taken together: In beta-cells, NO and NO-independent induced
necrotic and apoptotic destruction takes place following cytokine
exposure. Whether the necrotic or the apoptotic process – or both –
are effectuated may be influenced by e.g. the potency of the “hit”
versus the defence properties. Hence, the beta-cell destructive pro-
cess is dependent upon e.g. (i) the stimuli exposed to the beta-cell
and (ii) the functional state of the beta-cell and (iii) possibly influ-
enced by beta-cell heterogeneity. The mode of beta-cell death is still
controversial and hence, further studies into these areas e.g. illu-
mination of intercellular, -species or -individual differences – are
needed to develop testable preventional actions to diminish cyto-
kine mediated beta-cell destruction.

4.1.3. Intercellular, -species and -individual differences 
affecting cytokine cytotoxicity
Differences in cytokine sensitivity have been described between sin-
gle cells and isolated islets. Moreover, heterogeneity among FACS
purified rat beta-cells regarding glucose sensitivity has been sug-
gested to be associated with pro-apoptotic protein response (Hoo-
rens et al., 1996) – suggesting that variation in sensitivity to cyto-
kines in beta-cells may depend upon the beta-cell itself and other
cell types in the islet. Only very few phenotypic characteristics are
available regarding beta-cell age. In 2001, Bonner-Weir speculated
whether the secretory and biosynthetic heterogeneity of FACS pur-
ified beta-cells was influenced by the age of the beta-cells (Bonner-
Weir, 2001) – hence, the age of the beta-cells could influence cyto-

kine susceptibility. Furthermore, differences in cytokine susceptibil-
ity have been demonstrated comparing a beta-cell line to a pre-beta-
cell line, the former being the most sensitive (Nielsen et al., 1999).
Finally, induction of cardiac iNOS expression increases with age in
rats (Rosas et al., 2001). However, no difference in cytokine sensi-
tivity was demonstrated in vitro using neonatal versus adult islets
(Mandrup-Poulsen et al., 1987).

As previously described, inter-species differences exist between
human and rat islets regarding:

– the ability of IL-1 vs cytokine mix capable of leading to beta-cell
destruction, initially associated to IL-1 not being able to induce
iNOS and NO in human islets, in contrast to human hepatocytes
(Geller et al., 1995) where IL-1 can induce iNOS expression indi-
cating tissue differences as well,

– different defence capacities, and
– different capacity to continue glucose oxidation leading to higher

ATP concentrations possibly favouring apoptosis being the lead-
ing destructive process in human beta-cells in contrast to necro-
sis in rat beta-cells.

Moreover, different sensitivity towards NO has been proposed as it
was previously shown that inhibition of iNOS expression failed to
protect human islets against the deleterious effects of cytokine mix-
ture exposure (Eizirik et al., 1994a; Delaney et al., 1997). However,
the evidence of the toxic effect of peroxynitrite in human beta-cells
argues for a role of NO in human beta-cell destruction, as inhibition
of iNOS did not abolish peroxynitrite formation, possible due to an
unchanged basal NO production, and did not prevent beta-cell de-
struction (Lakey et al., 2001). Besides, NO donors are able to destroy
beta-cells in human islets (Eizirik et al., 1996a), and as iNOS in-
duction is detected in human beta-cells (Arnush et al., 1998) and by
neighboring non-beta-cells (Pavlovic et al., 1999), it might be
speculated that cytokines can lead to deleterious local intra-islet
concentrations of NO. Furthermore, equal susceptibility towards
NO-donors in human islets and rat beta-cells has been demon-
strated (Delaney et al., 1996; Hoorens et al., 2001).

Comparing human and bovine islets – bovine islets being less sus-
ceptible to damage by human cytokines compared to human islets
(Piro et al., 2001) – demonstrates inter-species differences.

Besides inter-species differences in islet and beta-cells, alveolar
macrophages from rat, hamster, monkey and man have been exam-
ined under identical experimental conditions. Clear differences
between rodent and the primate species were demonstrated in iNOS
expression and nitrite production after LPS and IFNγ stimulation
(Jesch et al., 1997).

The different phenotypic characteristics within species may be in-
fluenced by genetic variation, as exemplified by the different iNOS
regulation in macrophages from chicken of different genetic back-
grounds (Hussain et al., 1998). Finally, the islets from diabetes-re-
sistant BB rats have been shown to mount a HSP70 response after
heat stress in contrast to the diabetes-prone BB rat. (Bellmann et al.,
1997). The lack of a protective stress response in islet cells from dia-
betes-prone BB rats could be important for initiation or propaga-
tion of the disease process.

In vivo as well as in vitro, strain-dependent differences in cytokine
responsiveness have been demonstrated between two rat strains,
Brown Norway and Wistar Kyoto (Reimers et al., 1996). This differ-
ence has been found to be associated to different IRF-1, iNOS and
HSP70 expression levels, whereas no difference in IL-1R1 expression
could be demonstrated (Johannesen et al., 2001b). The study de-
sign, however, did not allow the conclusion that a causal relation be-
tween IRF-1 and iNOS exists, but it was speculated that polymor-
phisms in the IRF-1 gene, as well as quantitative differences in the
transcriptional regulation could be involved.

In conclusion: Inter- and intra-individual differences and hetero-
geneity among beta-cells may potentially influence the cytokine sen-
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sitivity and might correlate to defence capacities and the level of the
induced oxidative stress. These differences could e.g. be influenced
by genetic factors hence, a genetic evaluation of involved proteins
could increase our understanding of some of the inter- and intra-in-
dividual differences.

4.1.4. Genetic structure of the rat iNOS gene
The remaining part of this chapter will describe the structure and
functional regulation of the rat and human iNOS gene. The iNOS
gene regulation in insulin producing cells and different iNOS
promoter sequences within the BN and WKY rat strains will be in
focus. Furthermore, in order to understand the genetic impact of
iNOS in T1DM an evaluation of the human iNOS gene sequence
becomes mandatory as identification of sequence variations are
needed to test for genetic association – here illustrated by transmis-
sion disequilibrium within the Danish T1DM family collection.

In 1993, Nunokawa was the first to clone the coding sequence of
rat iNOS gene (Nunokawa et al., 1993) and in 1996 the first part of
the rat iNOS promoter was cloned first by Eberhardt (Eberhardt et
al., 1996). The structure of the rat iNOS gene is outlined in Figure 5.

4.1.4.1. The rat iNOS: promoter region
In the rat iNOS promoter, more than 20 transcription-binding fac-
tor (TFB) sites are known and represent (i) LPS-related response
elements (NF-IL6 and NFκB (Lowenstein et al., 1993)), (ii) IFNγ-
related response elements (IRF-1 and STAT1 (Lowenstein et al.,
1993) (Teng et al., 2002)) and (iii) IL-1β-related response elements
(NFκB and C/EBP (Teng et al., 2002)). Homology of the rat iNOS
promoter from different strains is high: >95% (Johannesen et al.,
2003), see Figure 6, but decreasing when comparing the rat iNOS
promoter to the iNOS promoter of mouse and human (73% and
55% homology, respectively) (Zhang et al., 1998).

Whether the observed sequence differences represent tissue-de-
pendent or intra-strain-dependent differences or “simple sequence
inconsistency” is unknown. Two studies using different tissue
sources have compared the iNOS promoter from different rat

strains, and independently identified a GT-repeat polymorphism in
position –1685 to –1634 from the transcription start site (Deng,
1998; Johannesen et al., 2003) – suggesting the difference to be
strain and not tissue-dependent. Comparing the BN-rat to WKY-
rat, a polymorphism in position +222 within exon 1 was identified
(Johannesen et al., 2003).

In Table 5 “Rat iNOS promoter cloning and function”, the struc-
tural and functional findings of different rat iNOS promoters cloned
from different tissues and tested in various cell-types are listed.

Expressional control of the iNOS promoter has been shown to be
tissue and/or cell as well as species specific. The mouse MØ iNOS
promoter organisation are characterised by two distinct regions of
importance, Region I and Region II, in the initial 1.2 kb of the pro-
moter conferring full promoter activity (Lowenstein et al., 1993).
Within the rat and the human iNOS promoter, 3.2 kb and 16 kb,
respectively, are needed for the highest promoter activation (Vera et
al., 1996a; Zhang et al., 1998). Further, the JAK/STAT pathway me-
diates the LPS/IFNγ induced iNOS expression in mouse RAW294.7
cells (Gao et al., 1997), whereas inhibition of the JAK/STAT pathway
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Figure 5. Rat iNOS gene structure. The riNOS gene has been localized to chromosome 10 in rat genome (Deng et al., 1994; Deng et al., 1995), spanning
approximately 36kb, containing 27 exons and 26 introns (Keinanen et al., 1999). The promoter region: Homology between the published rat iNOS promoters
is >98% (Zhang et al., 1998; Johannesen et al., 2003). The counterparts of the rat promoter to the murine promoter Region I {(position –48 to –209 in mouse
Mø) contain LPS-related response elements: NF-IL6 and NFκB (Lowenstein et al., 1993)} and Region II {(–919 to –1029 in mouse Mø) contains IFNγ-related 
response elements: IRF-1 and STAT1 (Lowenstein et al., 1993)} show 90% identity, despite overall homology of rat and mouse iNOS promoters is 77% (Kei-
nanen et al., 1999). The analogous regions in the rat promoter contain more than 20 putative transcription binding factor sites within the first 2.6 kb of the
5’UTR as in the mouse gene (Keinanen et al., 1999). cDNA size: (ORF) 3441 bp encoding 1147 AA (Iwashina et al., 1996). Inter-species comparisons reveal
close structural homology among iNOS cDNA isoforms: the homology between murine or rat and human iNOS cDNAs is approximately 80% (Keinanen 
et al., 1999).
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Figure 6. Alignment of cloned rat iNOS promoters.
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Table 5. Rat iNOS promoter – cloning and function.

Author/references Promoter size/position Structural findings Functional findings Functional test tissue

Beck et al., 1996 –497 bp (rat liver) Identification of NFκB, +IL-1β/TNF : NFκB and RMC (Sprague Dawley
GB: Z69839.1 oct-1 and TATA oct-1 binding in EMSA rats)

Eberhardt et al., 1996 –1.8 kb (rat liver) More than 30 TFBS +IL-1β: CAT↑ × 2 Swiss 3T3 fibroblast
GB: X95629 (see ref. for details) cAMP↑: CAT↑ × 2

Niwa et al., 1997 –480 bp (rat spleen) Identification of γ-IRE, Not tested Not specified
NF-IL6, TNF-RE, TATA

Kinugawa et al., 1997 1111 bp (Neo. rat cardiac Homology to Eberhardt Identification of various TFB Neo. rat cardiac 
myocytes) GB: D88768 (1996) >99% sites being important for myocytes

LPS induced CAT activity

Kuo et al., 1997 Not specified Oxidative stress (BZT) Rat hepatocytes
enhances IL-1β stim. 
CAT activity

Beck et al., 1998 –1.8 kb Superoxide (xanthine Rat mesangial cells
(Eberhardt, 1996) oxidase/DMNQ) co-stimulate/

enhance IL-1β luc. activity

Darville et al., 1998 –1514 bp (rat liver) Identification of at least CM induced luc. activity RINm5F
Based upon five TFB sites dependent upon length/ FACS sorted alfa-
Eberhardt, 1996 number of various TBF and beta-cells

withhin iNOS promoter
Cell specific activity

Deng, 1998 –2.2 kb (rat liver) Identification of GT repeat Not tested
GB: U85270 (D10Mco42)

Eberhardt et al., 1998 –1.8 kb IL-1β and cAMP use distinct Rat mesangial calls
as well as overlapping sets 
of transcriptional activators 
to modulate CAT activity

Pahan et al., 1998 1.5 kb (based upon Inhibition of PP1/2A enhance/ Rat astrocytes
Eberhardt, 1996) abolish LPS mediated CAT Rat MØ

activity in astrocytes and rat
MØ, respectively

Saura et al., 1998 –388 & –720bp Identification of γ-IRE, DX abrogates the stim. luc. RMC
(rat gDNA) NF-IL6, TNF-RE, Oct-1, TATA activity of LPS/TNFα
GB: U61282 DX leads to IkB↑

Schroeder et al., 1998 Not specified IL-1β induced CAT activity Rat hepatocytes
abolished in the presense of 
anti-IFNγ or antisense IFNγ

Zhang et al., 1998 –0.32 to –5.1 kb More than 30 TFBS LPS or cyt. mix: max. luc. RASMC
(rat gDNA) GB: AF042085 (see ref. for details) activity for -3.2kb construct

Keinanen et al., 1999 –2.6 kb More than 20 TFBS –
GB: AJ230461 (see ref. for details)

Pahan et al., 1999 1.5 kb Activation of NF B and in- C6 glial cells
(based upon Eberhardt, 1996) hibition of PI 3-kinase needed Rat primary astrocytes

for LPS/IL-1β CAT activity

Punzalan et al., 1999 1.8 kb Oxidative stress (H2O2) HepG2
(based upon Eberhardt, 1996) enhance IL-1 mediated CAT

expression via ARE (–1347)

Bellmann et al., 2000 –1002 bp Not described HSP70 over-expression RINm5F
Promoter gifted from increases IL-1 induced luc. (WEHI)
Darville 1998 activity via p38 (MAPK)

Inoue et al., 2000 1.4 kb Hypoxia (not via HRE) and Hepatocytes
(based upon Eberhardt, 1996) heat abrogates the stim. luc. 

activity by interfering with 
NF B/DNA interaction

Kuo et al., 2000 –1.8 kb Identification of ARE at Enhancing affect of BZT of Hepatocytes
(Eberhardt 1996) position –1347 IL-1β mediated CAT expression

Deletion constructs id. ARE 

Oda et al., 2000 –1042 bp PAO abrogates the stim. luc. Hepatocytes
activity p50/p65 (NF B) 
stimulation in hepatocytes

Pahan et al., 2000 1.5 kb Mutated p21ras abrogates the Primary astrocytes
(Based upon Eberhardt, 1996) stim. luc. activity of LPS and 

cytokines in astrosytes
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in RASMC enhance iNOS induction by LPS / IFNγ (Marrero et al.,
1998). The latter could also be explained by cell-specificity, as IL-1β
alone is able to induce iNOS expression in cultured RASMC (Kanno
et al., 1993; Koide et al., 1994), but neither in rat pulmonary SMC
(Nakayama et al., 1992) nor in the SMC cell-line A7r5 (Spink et al.,
1995). Further, testing the same mouse iNOS promoter clone in
three different cell-types – RAW264.7, VSMC and RASMC, the two
first systems by LPS and the latter by cytokine mix – demonstrated
that different TBF sites were of importance. In RAW264.7 and
RASMC, the lower NFκB site was indispensable whereas it was the
upper NFκB site in VSMC (Xie et al., 1994; Spink et al., 1995; Per-
rella et al., 1996). Finally, a 1.7 kb rat iNOS promoter in RASMC
gave a 13 fold induction by cytokines (Zhang et al., 1998), whereas
in Swiss3T3 cells only 3-4 fold induction was observed for the same
promoter sequence and stimulation (Eberhardt et al., 1996). In
2001, Zhang demonstrated that the iNOS promoter activity of the
initial 3.2 kb rat iNOS promoter was only negative feed-back regu-
lated by NO within the MØ, in contrast to findings within the
RASMC (Zhang et al., 2001).

Much work has focused upon cytokine induced iNOS expression
and modulation hereof in insulin producing cells (see previous
chapters). Only few studies have explored iNOS promoter gene regu-
lation in insulin producing cells using promoter activity assays. Early
studies using deletional constructs of the rat iNOS promoter to
identify significant TFB sites revealed that NF-κB, GAS, ISRE bind-
ing-sites were crucial in the cytokine mediated NO-dependent path-
way (Darville et al., 1998). Again, cell specificity was observed, as

IFNγ (inducing the transcription factors STAT1α and IRF-1, bind-
ing to GAS and ISRE, respectively,) enhanced IL-1β mediated iNOS
promoter activity in RINm5F cells whereas in primary rat beta-cells,
IFNγ neither increased the iNOS promoter activity nor iNOS
mRNA expression, but did induce a two-fold increase in NO (Dar-
ville et al., 1998). Bellmann showed that over-expression of HSP70
led to enhanced IL-1β induced rat iNOS promoter activity (testing 1
kb of the promoter) in RIN cells through an increased activity of
MAPK p38 (Bellmann et al., 2000). Further, based upon the model
of viral induced beta-cell destruction, a synthetic dsRNA (PIC) in
combination with IFNγ was able to induce NFκB dependent iNOS
promoter activity in primary rat beta-cells (Liu et al., 2001). Finally,
two studies describe abrogation of cytokine induced iNOS promoter
activity: (i) the suppressor of cytokine signalling-3 (SOCS-3) abro-
gated the rat iNOS promoter activity (1.8 kb) in rat INS-beta-cells
(Karlsen et al., 2001) and (ii) the pituitary adenylate cyclase-activat-
ing polypeptide (PACAP) abrogated the mouse iNOS promoter
activity (1.6 kb) in the mouse beta-cell line, βTC cells (Sekiya et al.,
2000).

As depicted above, structural features within the iNOS promoter
as well as the cellular environment in which the iNOS promoter op-
erates influence iNOS promoter activity. In an attempt to by-pass
the influence of cellular environment, Johannesen et al. tested the
rat iNOS promoters from two different rat strains (BN and WKY),
in the same test-cell system (Johannesen et al., 2003). Previously,
isolated islets from these rat strains were identified as having IL-1
mediated strain-dependent nitrite, iNOS mRNA and protein ex-

Table 5. Continued.

Author/references Promoter size/position Structural findings Functional findings Functional test tissue

Teng et al., 2000 –1.4 kb “Reverse NFκB site” in position RASMC
(Zhang 1998) –901 to –892 binds NFκB

Influence upon luc. activity

Wen et al., 2000 –1.1 kb (rat liver) More than 20 TFBS +IL-1/IFNγ: –1037 to –786 bp
GB: D84101 (see ref. for details) (NFκB site) hybridize in EMSA

Zhang et al., 2000 –3.2 kb Upstream NF B site has higher RASMC
(Zhang 1998) effect upon CM induced luc.

activity than downstream 
NFκB site.
Non-NFκB sites: –1.0 to –1.37
and –2.0 to –2.5

Karlsen et al., 2001 –1.7 kb (based upon SOCS-3 abrogates the stim. luc. INS-1 ± SOCS-3 over-
Johannesen, 2003) activity of IL-1β. expression

Liu et al., 2001 –1.0 kb PIC/IFNγ stim. luc activity to FACS primary 
(Darville, 1998) similar levels as IL-1β beta-cells

PIC acts via NFκB

Syapin et al., 2001 –526 bp Ethanol abrogates the stim. luc. C6 glial cells
(Eberhardt, 1998) activity of LPS/IFNγ
–1846 bp IFNγ RE is not involved in this
(Eberhardt, 1996) inhibitory effect

Zhang et al., 2001 –3.2 kb NO abrogates the stim. luc. RASMC
(Based on Zhang, 1998) activity of IL-1β in MØ, but MØ (NR8383)

enhance activity in RASMC
P50:p65 ratio highest in RASMC

Guo et al., 2002 –1.8 kb Id. of HNF-4α/PC4 protein Oxidative stress induced ANA-1 and
(Eberhardt, 1996) complex binding to ARE HNF-4α/PC4 augments IL-1β rat hepatocytes

(–1340) stimulation of iNOS activity

Teng et al., 2002 –1.4 kb Mutational analysis: IL-β via NFκB and C/EBP RASMC
(from Zhang, 1998) ∆GAS:-950 IFNγ via IRF-1 and STAT1

Johannesen et al., –1.8 kb Identification of putative WT-1 increases the stim. luc. RINm5F
2003 (Leukocytes from WT-1 (-KTS) site in BN activity of IL-1  leading to a

BN & WKY rats) strain dependent difference

The origin of the rat promoter characterized is seen in the column “Promoter size and position”. E.g.: “–1.8 kb” indicates the 1.8 kb of the promoter 5’ to
the transcribed part of the gene has been characterized, in contrast to e.g. “1111 bp” indicating that the specific position within the promoter region 
has not been specified. Insulin producing cell lines are bolded.
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pression profiles (Johannesen et al., 2001b). Cloning and sequenc-
ing of the iNOS promoters identified two polymorphisms within
the promoter region spanning –1744 bp to +333 bp. The upper GT-
repeat polymorphism gave rise to a WT-1 (–KTS) TFB site (Bick-
more et al., 1992) in the BN rat strain approximately 1650 bp
upstream the promoter. For details regarding Wilm’s Tumor, please
see Table 6).

Strain-dependent and IL-1 dose-response of the tested iNOS pro-
moter sequence spanning –1744 to +267 was demonstrated in a
luciferase assay co-expressing the transcription factor WT-1. The
promoter activity assay revealed higher iNOS promoter activity of
the BN than of the WKY iNOS promoter (Johannesen et al., 2003),
whereas data generated in vitro from rat islets culture IL-1 dose- and
time dependently revealed higher iNOS mRNA and protein expres-
sion levels and nitrite production from WKY islets (Johannesen et
al., 2001b). This apparent controversy needs to be evaluated in the
light of: (i) not full length rat iNOS promoter was tested and hence,
additional promoter differences between these two rat strains may
exist – indirectly evidenced by the fact that probably due to se-
quence variations it was not possible to construct a common upper
cloning primer further 5’ upstream than the one used. (ii) Informa-
tion regarding the role of the 3’ UTR in mRNA stability should be
explored, and finally (iii) indeed, the differences in BN and WKY
intracellular milieu may influence the respective promoters as il-
lustrated by the findings of Darville (Darville et al., 1998).

4.1.4.2. The rat iNOS: cDNA/gDNA region
In Table 7 “Rat cDNA/gDNA iNOS cloning” studies characterizing
the iNOS cDNA are listed.

As seen, the homology between the various iNOS clones from dif-
ferent cell-types is very high (>99%), as is the homology of iNOS
between rat and mouse MØ, (approximately 92%). The cytokine in-
duced iNOS gene sequence in rat islets is identical to other rat iNOS
sequences from other tissues (Karlsen et al., 1995). The translation
initiation codon has been located in exon two (Keinanen et al.,
1999), as in the mouse and in the human gene (Chartrain et al.,
1994). The stop codon is placed in e27 leaving a 3’UTR of 495 bp in
length (Keinanen et al., 1999). Sporadic base-pair mutations/mis-
matches have been identified between the separate clonings when
compared to each other, some leading to amino acid changes. None
so far have involved known co-factor binding sites. Whether any
functional relevance exists for these variations is unknown at
present. Co-factor binding sites as depicted in the figure “Rat iNOS
gene structure” include CaM, FMN, FAD, NADPH, Heme. Each
binding site appears to lie in separate exons, except for CaM, span-
ning e13 and e14 (Keinanen et al., 1999).

In conclusion: The studies regarding the rat and mouse iNOS
promoters have revealed (i) intra- and interspecies differences in
genomic sequence, (ii) a complex regulatory mechanism controlling
the promoter activity involving various transcription binding sites,
and (iii) an intra- and interspecies dependent functional regulation.
These differences might influence the different levels of iNOS ex-
pression demonstrated within the islets from BN and WKY rats,
hence being of importance to the different response of cytokine ex-
posure between these two rat strains.

4.1.5. Genetic structure of the human iNOS gene
The human iNOS cDNA was initially cloned from LPS and cytokine
stimulated hepatocytes by Geller at al. (Charles et al., 1993; Geller et
al., 1993; Sherman et al., 1993; Hokari et al., 1994). Subsequently, a
variety of human cell-lines and cell-types have been shown to ex-
press iNOS, including human pancreatic islet cells (Flodstrom et al.,
1996a; Corbett et al., 1996b; Flodstroem et al., 1997; Arnush et al.,
1998; Scarim et al., 1998; Pavlovic et al., 1999; Karlsen et al., 2000;
Chen et al., 2001; Heitmeier et al., 2001) – each of these cDNAs
shows >99% homology to the human hepatocyte sequence, for re-
view see (Taylor et al., 2000).

The genetic structure, chromosomal localisation including the
promoter region are outlined in Figure 7.

4.1.5.1. The human iNOS: promoter region
A number of different groups have cloned and functionally tested
various parts of the human promoter region. Promoter activity has
been identified as far as 16kb upstream of the transcription start site
(Vera et al., 1996a). 

The existence of several transcription-binding factor (TBF) sites
(cytokine-response elements (CRE)) have been shown (Vera et al.,
1996a). More than 30 putative TBF sites are identified within the
first 1.5 kb, although this region does not exhibit any significant
activity in promoter activity analysis probably due to nucleotide ex-

Table 6. Wilm’s tumor.

Gene
• Cloned: 11p13 (Call et al., 1990; Gessler et al., 1990). 10 exons. 
• Promoter contains sites for: WT1, Egr1 PAX2 PAX8, SP1, SP2, SP3, AP2

and AP4; GAGA and GGAGG motifs (Hofmann et al., 1993). 
• Two translation initiation sites leading to two MW’s 52-54kDa (Scharn-

horst et al., 1997).
• Alternative spliced: exon 5 (17aa) and exon 9 (± KTS), hence multiple 

isoforms exsist (Haber et al., 1991).
• All four proteins appear to excist in temporally, spatially and evolution-

ary stable ratio with respect to each other (Haber et al., 1991), predom-
inantly during the development of the urogenital system and WT1 
exhibits highly tissue-specific pattern of expression during development
(Pritchard-Jones et al., 1990).

• Expressed in urogenital, pericardium, spleen, spinal cord, somites (em-
bryonal) and podocytes, Sertoli cells, granulosa cells and uterus (post-
natal) (Pritchard-Jones et al., 1990; Armstrong et al., 1992).

Pathophysiology
• Mutations demonstrated in 10% of all sporadic Wilm’s tumor (Little 

et al., 1997).
• Mutational role in following syndromes: WAGR, Denys-Drash Syndrome,

Frasier Syndrome and AML (Little et al., 1997).

Plurifunctional protein (Davies et al., 1999; Little et al., 1999).
• Initially suggested to be a tumour suppressor, subsequently shown 

to possess pro- and anti-apoptotic properties (Algar et al., 1996; Menke
et al., 1997). WT1 can regulate the expression of Bcl2, c-myc and c-myb. 

• Cell type dependent transcription activity of WT1 isoforms may explain
the bidirectional effects of WT1 on apoptosis (Menke et al., 1998).

Mode of action
• (i) Transcription factor due to the similarity of the ZF to EGR1 (Madden

et al., 1991): EGR1 as an activator and WT1 as a repressor: proved too
simple.

• Review of transcription binding sites and in-vitro reporter assays: (Reddy
et al., 1996; Menke et al., 1998):
– WT1 as an activator and repressor (Maheswaran et al., 1993) – cell

type dependent (Little et al., 1999).
• (ii) RNA metabolism/interaction: WT1 contains a N-terminal RNA recogni-

tion motif (RRM) in all known isoforms (Kennedy et al., 1996). mRNA in-
teraction seems dominant for the WT1 isotypes (+KTS) (Zhai et al., 2001)
whereas -KTS appears to co-localise with transcription factors such as Sp1
and Pax6 (Little et al., 1999), but non-overlapping as well as overlapping
functions of ± KTS are described (Hammes et al., 2001; Hastie, 2001).

• (iii) Protein partners: These may dictate the overall outcome of WT1 ac-
tion: explaining different roles of WT1 at different times during devel-
opment, different actions in various cell types and tissues – e.g.: p53,
WT1, UBC9, par-4, Ciao 1, Hsp70, SF1 (Little et al., 1999).

WAGR: (Wilm’s Tumor, Aniridia, Genitourinary syndrome, mental Retar-
dation): 11p deletion, WAGR-region: contain WT1; (Call et al., 1990), PAX6
(Ton et al., 1991) and reticuloalbin (Kent et al., 1997).
Denys-Drash Syndrome: (i) XY genital anomalities (mild to XY pseudo-
hermaphroditism) (ii) early onset renal failure (mesangial sclerose) and
Wilm’s tumor (Denys et al., 1967; Drash et al., 1970). Intragenic WT1 point
mutations leading to aa substitutions (Pelletier et al., 1991), not able to
bind protein (Little et al., 1995). 
Frasier Syndrome: (Barbaux et al., 1997) (i) XY pseudohermaphroditism, (ii)
end stage renal failure (glomerulonephropathy), (iii) NO Wilm’s Tumor. Con-
stitutional intronic mutations of one copy of WT1 that prevents production
of the KTS-containing isoform from that allele (Barbaux et al., 1997). Shift
in isoform ratio.
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changes within the LPS/IFNγ-responsive region leading to hypo-re-
sponsiveness of LPS/IFNγ (Zhang et al., 1996; Spitsin et al., 1997).
However, putative cytokine response elements are identified within
the interval –3.8 kb to –16 kb: AP-1, NFκB, γIRE, NF-IL6, GAS,
IRF-E, ISRE, TNF-RE Oct-1 and STAT1 (Vera et al., 1996a; Linn et
al., 1997; Chu et al., 1998).

Functional analysis of the promoter region: The initial studies elu-
cidating the transcriptional control of iNOS used murine MØ. Two

regions of importance were identified within the first 1.0 kb up-
stream from transcription start site (Lowenstein et al., 1993; Xie et
al., 1993): an NF-KB site at –85 to –76 (Xie et al., 1994a) and an
IRF-E/ISRE at –923 to –913 (Martin et al., 1994), the latter serving
as an enhancer site, as IFNγ or LPS exposure to this site alone could
not induce promoter activity (Lowenstein et al., 1993). In contrast,
the proximal 16kb from transcription start site of human NOS2
cloned from hepatocytes was needed to show maximal activity when
tested in the human hepatocyte cell line AKN-1 (Vera et al., 1996a).

Table 7. Rat cDNA/gDNA iNOS cloning.

Author/references GenBank Cloning size Source Structural findings

Wood et al., 1993 Not specified 3610 bp Rat hapatocytes 94% identical to mouse MØ cell line, 
1147 AA / 131 kDa                                                          RAW264.7: sporadic AA substitutions

Nunokawa et al., D14051 3441 bp Rat, VSMC 93% homology for AA sequence to MØ
1993 1147 AA/131 kDa

Galea et al., 1994 Not specified 3444 bp ORF Rat 92% homology at DNA level and 93% homology at
1147 AA Astrocytes AA level to mouse MØ iNOS

99% homology to rat VSMC and hepatocyte iNOS

Geng et al., 1994 X76881 3440 ORF Rat aortic 92% homology at DNA level and 93% homology at 
1147 AA SMC AA level to mouse MØ iNOS

80% homology to human hepatocyte iNOS

Karlsen et al., 1995 U26686 131 kDa Cytokine exposed >99% homology to rat hepatocyte and 
rat islets and RIN cells VSMC iNOS at both bp and AA level

Iwashina et al., 1996 Not specified 3441 bp Rat aortic 92% homology at DNA level to mouse MØ iNOS
1147 AA endothelial cells

Garban et al., 1997 Not specified 4.1 kb construct Rat, 13 bp differences and 6 AA differences comparing 
penile iNOS Nunocawa (1993), Geng (1994) and Garban (1997).

Deng, 1998 Not specified cDNA Rat liver 92% homology at DNA level to mouse MØ iNOS
(Dahl salt-resistant) Variation in gDNA at e25; in kidney only one form 

(identical) is expressed
Gene localized to rat chromosome 10

Keinanen et al., 1999 Not specified gDNA Rat genomic cosmic 27 exons
spanning 36 kb library (No 961502, 99.7% homology to astrocyte iNOS-DNA: 12 bp 

Stratagene) and 8 AA differences
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Figure 7. The human iNOS gene maps to chromosome 17q11.2 (Marsden et al., 1994), spanning 37 kb (Chartrain et al., 1994) and comprises 27 exons and
26 introns (Xu et al., 1996). The promoter region functionally divides into a basic region: 0-1.5 kb and an enhancer region: –8.8 to –10.6 kb comprising 
various potential transcription factor binding sites – activated in response to either IFNγ (IRF-1, STAT1) or IL-1β (AP-1, IRF-1) (Vera et al., 1996a). At Figure 7,
only the TBF sites within in the initial 1.7 kb of the human iNOS promoter region are illustrated. For localisation of the remaining TBF sites further upstream,
see (Spitsin et al., 1996; Linn et al., 1997). Alternative transcription start sites (OPF) have been identified at pos.: –221, –36, +191 (Chu et al., 1995). cDNA 
size 4145 bp; homology to human constitutive NOS’ approximately 50% (Janssens et al., 1992; Marsden et al., 1992; Nakane et al., 1993) and 80% to murine
iNOS (Geller et al., 1993). The hiNOS protein has a MW of 131 kDa, function as a homodimer and contains recognition sites for co-factors: FMN, FAD, NADPH,
heme, biopterin and calmodulin.
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Based on several different promoter activity assays (luciferase and
CAT assays) various central areas have been identified:

– –3.8 kb to –16 kb, especially –7.0 kb to -16 kb: no identification
of specific elements (Vera et al., 1996a)

– NFκB site at position –115 to –106 (Nunokawa et al., 1996)
– –10.7 to –8.7 kb, potential transcription factor binding sites

identified: 2xOct-1, 3xIRF-1, 4xSTAT1, 3xAP-1 and 2NF-κB
(Linn et al., 1997)

– 5xNF-KB sites important in –7.2 to –4.7 kb, especially at –5.8kb
verified by site-directed mutagenesis (Taylor et al., 1998)

– an area of inhibition at –7.3 to –6.8 kb (Chu et al., 1998), and
between –351 and –632 (Pance et al., 2002)

– importance of the AP-1 sites (-5301 and –5115) and the NF-KB
site (–115 and –8283) (Marks-Konczalik et al., 1998), and

– synergistic regulation of promoter activity of NFκB (–115 to –
106) and of the A-activator-binding site (AABS: an CCAAT/
enhancer binding protein (C/EBP)-binding site)(–192 to –184)
(Sakitani et al., 1998). C/EBP is also found to be important in
murine iNOS promoter regulation (–153 to –142bp upstream:
NF-IL6 binding site) (Dlaska et al., 1999) as well as in human
iNOS promoter regulation (–205/+88 bp region) along with the
NFκB site (Kolyada et al., 2001).

– Finally, two repeat polymorphisms (CCTTT)n and (TAAA)n have
been demonstrated to influence the human iNOS promoter ac-
tivity (Warpeha et al., 1999; Morris et al., 2002). The functional
mechanism of these findings is presently unknown.

The latter two repeat polymorphisms influencing the human pro-
moter activity have been tested in diseases, where iNOS have been

proposed to influence the pathogenetic process, see Table 8. Addi-
tionally, an iNOS promoter sequence variation search might identify
nucleotide substitutions involving known or unknown TFB sites of
functional relevance.

4.1.5.2. The human iNOS: exon organisation
cDNA has been cloned from hepatocytes (Geller et al., 1993),
chrondrocytes (Charles et al., 1993; Maier et al., 1994), DLD-1 cells
(Sherman et al., 1993), fibroblast (Chartrain et al., 1994), a human
glioblastome cell line (A-172) (Hokari et al., 1994) two human
cosmid DNA libraries (Xu et al., 1996), heart and skeletal muscle
(Adams et al., 1998). The cDNA sequence obtained from hepato-
cytes (Geller et al., 1993) reveals 4145 bp, an open reading frame of
3459 bp encoding 1153 amino acids and has an estimated mass of
131kDa. The gene spans approximately 38kb and comprises 27
exons. Unprocessed pseudogenes (Park et al., 1997) have been de-
scribed. iNOS is distinct from the other human NOS genes nNOS
(Kishimoto et al., 1992) and eNOS (Marsden et al., 1993) located at
chromosomes 12q24.2 and 7q35-36, respectively.

Taken together: The human iNOS gene possesses a long promoter
region comprising several transcription binding factor sites and
promoter activity has been identified as long as 16kb upstream of
the transcription start site. Repeat sequences within the human
iNOS promoter influencing the promoter activity have been dem-
onstrated. Furthermore, the coding region spans approximately 38
kb and comprises 27 exons.

4.1.6. Expressional control of iNOS 
Initially, it was believed that the iNOS activity was regulated pre-
dominantly at the transcriptional level (Cho et al., 1992), which

Table 8. iNOS promoter polymorphisms in human diseases.

Association

Disease Author/references Population Polymorphism case/control TDT

Astma                                       (Gao et al., 2000) British (TAAA)n No

Atopy (Konno et al., 2001) Japanese (CCTTT)n Yes

Chagas disease (Calzada et al., 2002) Peruvian (CCTTT)n No

CAD (Morris et al., 2001) Anglo-Celtic/ (TAAA)n No
Northern European

Dementia (DLB) (Xu et al., 2000) Caucasian (CCTTT)n Yes 

T1DM (Johannesen et al., 2000b) Danish (TAAA)n No
Caucasian (CCTTT)n No

T1DM (Johannesen et al., 2000a) Danish (CCTTT)n Yes
retinopathy/ Caucasian
nephropathy (Warpeha et al., 1999) Nothern Ireland (CCTTT)n Yes, functional testing1

T2DM, retinopathy (Kumaramanickavel et al., 2002) Indian (CCTTT)n Yes
(Morris et al., 2002) Caucasian (British) (TAAA)n Yes, functional testing2

Arterial hypertension (Glenn et al., 1999) Anglo-Australian (TAAA)n No
Caucasian (CCTTT)n

(Rutherford et al., 2001) Caucasian (British) (TAAA)n Yes

Malaria (Kun et al., 1998) Gabon –954 G/C Yes
(Kun et al., 2001) Gabon –954 G/C Yes
(Levesque et al., 1999) Tanzanian –954G/C No

(CCTTT)n No
(Ohashi et al., 2002) Thai –954 G/C Not tested 

(CCTTT)n Yes
(Hobbs et al., 2002) Tanzanian –1173 C/T Yes, functional implications3

Migraine (Lea et al., 2001) Caucasian (TAAA)n No

RA (Pascual et al., 2002) Spanish –954 G/C No
(TAAA)n No
(CCTTT)n No No

Parasitic diseases (Martin et al., 1999) Peruvian –954 G/C No, only wild type occurred

Regarding the functional testing: 1) Promoter activity was most effective in constructs carrying the 14-repeat allele. 2) The longest repeat conferred the
highest iNOS expression in a promoter assay, and finally 3) The genotype C/T was associated with increased fasting urine and plasma NO metabolite con-
centrations.
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partly were based upon the high number of transcription binding
sites within the promoter region (Vera et al., 1996a). Subsequently,
increasing evidence points towards the importance of both 5’ and 3’
UTRs being implicated in the regulation of gene expression (Kozak,
1992; Altmann et al., 1993). Vodovotz was the first to show that
post-transcriptional mechanisms such as decreasing mRNA stabil-
ity, reducing mRNA translation and increasing degradation of iNOS
protein influenced NO production in TGFβ exposed mouse peri-
toneal MØ (Vodovotz et al., 1993; Vodovotz, 1997).

In summary:
– Various stimuli increase promoter activity by different TBF (see

Figures in promoter sections). The intensifying effect by using
cytokine mix compared to single cytokines suggests interaction
of signal transduction pathways (Taylor et al., 1998). HSR atten-
uated the iNOS promoter activity (De-Vera et al., 1996; Vera et
al., 1996)

– Structural diversity in the 5’UTR in mRNA isolated from stimu-
lated cells (freshly isolated alveolar MØ, bronchial epithelial cells
and several types of cultured cells) has suggested alternative
splicing as an additional way of regulating the expression of the
gene (Chu et al., 1995)

– Tissue specificity exists: expressed transcription binding factors
vary in different cells types (Chu et al., 1995; Kolyada et al.,
1996), and the transcription of the human iNOS gene has shown
tissue specific regulation using human cell-lines from pulmonary
and hepatic biliary epithel (Mellott et al., 2001).

– Alternative splicing at the mRNA level (Eissa et al., 1996; Park et
al., 2000), in exon 8 and exon 9 (Park et al., 1996; Eissa, 1998).
This could explain the finding of Adams and co-workers (Adams
et al., 1998) only showing 79% homology both at the protein and
nucleotide level when cloning iNOS cDNA and protein from car-
diac and skeletal muscle.

– Effect of 3’UTR region at expression: 1.1 kb of the iNOS pro-
moter and approximately 1.5 kb of the 3’UTR inserted in luci-
ferase constructs showed lower basal activity and hence relatively
higher stimulated activity compared to the construct without
3’UTR (Nunokawa et al., 1997), suggesting that the 3’UTR region
may alter the mRNA stability (Geng et al., 1995; Belin et al., 2000).

Several promoter activity studies have shown low levels of promoter
activity in the absence of cytokine stimulation (Vera et al., 1996a),
and in vivo, Kobzik et al. have demonstrated iNOS expression with-
out cytokine stimulation in epithelial cells and alveolar MØ lining
the larger airways of humans by immunochemistry (Kobzik et al.,
1993). It is speculated that low grade basal expression of iNOS
mRNA takes place in many tissues, but these transcrips are highly
unstable in the absence of cytokines – a putative effect of iNOS
3’UTR. Cytokines may stabilize iNOS mRNA, hence transcription
increases (Nunokawa et al., 1996). Finally:

– Post-translatory events: Cytokine stimulation of DLD-1 cells in-
dicates a >20 fold steady-state of iNOS mRNA (Salzman et al.,
1996), which is in contrast to iNOS promoter activity (luciferase
activity of 13.1 kb) where only 2-4 fold increase was observed
(Linn et al., 1997) – could be due to 3’UTR effects

– The activity of the iNOS enzyme requires binding of many co-
factors (FAD, FMN, NADPH, tetrahydrobiopterin and calmodu-
lin) (Marletta, 1993; Fossetta et al., 1996)

In conclusion: iNOS seems to be under tight expressional control at
various levels which seems adequate as iNOS possess many different
beneficial functions in various cellular systems in normal physi-
ology, however leads to detrimental effects when expressed inade-
quately. Hence, an understanding of the various ways the expression
of iNOS is controlled becomes essential, when searching for and
evaluating genetic variation within the gene that might influence its

expressional control.

4.1.7. Genetic variations in the human iNOS gene
Within the human iNOS promoter region, four polymorphisms have
been described (i) G/C (position –969, subsequently corrected to
position –954) (Kun et al., 1998; Kun et al., 2001), (ii) (TAAA)n (po-
sition –754 to –739) (Bellamy et al., 1997), (iii) (CCTTT)n (position
–2662 to –2608) (Xu et al., 1997) and (iv) C/T (position –1173)
(Hobbs et al., 2002). The (CCTTT)n repeat polymorphism has been
functionally tested in vitro, associating the 14 repeat allele to high
promoter activity (Warpeha et al., 1999). 

Different allelic frequency of the (CCTTT)n repeat polymorphism
has been observed between ethnically diverse populations (Africa,
Europe, Asia and Caribbean) (Xu et al., 2000) and China (Lu et al.,
2002). The G/C (position –966) (Kun et al., 1998) has not been
identified in any Caucasians tested so far (Kun et al., 1998) (Johan-
nesen et al., 2000b).

In Table 8 “iNOS promoter polymorphisms in human diseases”
publications are listed examining the above polymorphisms within
various diseases, in which iNOS mediated NO production has been
suggested to have a possible pathogenical role.

It appears from the table that in most diseases tested no asso-
ciation has been found, though some inconsistent findings within
hypertension (Glenn et al., 1999) (Rutherford et al., 2001) and ma-
laria (Levesque et al., 1999; Kun et al., 2001; Ohashi et al., 2002) are
seen. Regarding T1DM, no genetic association/linkage was identi-
fied (Johannesen et al., 2000b). However, association to the iNOS
promoter has been reported in a subset of T1DM patients suffering
from nephropathy/retinopathy (Warpeha et al., 1999; Johannesen et
al., 2000a; Kumaramanickavel et al., 2002; Morris et al., 2002).

The coding region of the human iNOS gene has been characterised
by (Xu et al., 1996) identifying intron/exon splice sites. Three papers
have identified polymorphisms within the exons (Johannesen et al.,
2001a; Shen et al., 2002; Levecque et al., 2003). The paper of Johan-
nesen et al. tested the identified polymorphisms for linkage to
T1DM. In total, 10 polymorphisms were identified from a complete
iNOS gene scan of all exons. The four most common polymor-
phisms (in exon 1, 8, 16 and 20) were tested for linkage using the
TDT analysis. Linkage was identified for T1DM among HLA DR3/4
positive individuals having a T at the C/T polymorphisms in exon
16. Furthermore, haplotypes were constructed and tested by ETDT
although no increase in genetic information of disease susceptibility
could be demonstrated. However, the C/T polymorphism in exon 16
gave rise to an amino acid shift Ser608Leu only six amino acids from
a region identified as being of importance to the Ca++ independency
of iNOS (Daff et al., 1999; Johannesen et al., 2001a). As this poly-
morphism may have functional implications it would be interesting
to test this polymorphism in other autoimmune diseases, in which
iNOS mediated NO-production has been proposed in the patho-
genesis (Singh et al., 2000). 

In the genome scans of T1DM, the region in which human iNOS
is located (17q11) has not been demonstrated to be in linkage with
T1DM (see Chapter 2) with the exception of Vaessen demonstrating
linkage of 17q24 to T1DM in a small genetically isolated Dutch
population (Vaessen et al., 2002). Furthermore, a genome scan of
Crohns Disease in a Jewish population demonstrated linkage to the
chromosomal regions 17q21-23 (Ma et al., 1999). The distances be-
tween 17q11 (NOS2, position 50.6 cM at http://research.marshfield-
clinic.org) and 17q24 (D17S2059, position 93.3 cM at http://re-
search.marshfieldclinic.org) and 17q21 (D17S787, position 75.0 cM
at http://research.marshfieldclinic.org) are 42.7 cM and 24.4 cM, re-
spectively. Hence, these distances do not support the iNOS gene
being an obvious candidate gene within these regions in the respect-
ive populations.

In conclusion: Polymorphisms within the iNOS gene promoter
region have been tested for association to several different diseases.
However, only the studies within diabetic retinopathy/nephropathy,
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arterial hypertension and malaria have been replicated, and the
association has only been reproduced for diabetic retinopathy/ne-
phropathy. No association to T1DM of the iNOS promoter poly-
morphisms has been shown; however linkage for the exon 16 poly-
morphism was demonstrated in high risk HLA T1DM individuals.
Despite recent findings from a genome scan of possible T1DM link-
age to the iNOS gene region in a genetic isolate, testing of associa-
tion and linkage of the iNOS gene to T1DM should be replicated in
other populations to confirm or reject the present findings.

4.1.8. Critical transcription factors for iNOS transcription
Only the genetics of IRF-1 and NFκB in T1DM will be briefly re-
viewed, as these genes have been examined in relation to T1DM.
Furthermore, interaction of IRF-1 and NFκB during activation of
iNOS transcription has been illustrated (Saura et al., 1999), as well
as a NFκB binding motif in the IRF-1 gene has been demonstrated
(Miyamoto et al., 1988)

4.1.8.1. IRF-1
Interferons involved in antiviral defence, cell growth regulation and
immune activation, elicit their effects through transcriptional ac-
tivation of the target genes, e.g. iNOS which possesses specific con-
sensus DNA-binding recognition sites for IRF-1 in their promoters.
These interferon-regulated genes are regulated through the JAK-
STAT pathway and the interferon regulatory factors (IRFs). Addi-
tionally, the IRFs also act as transcription factors for the IFNs. The
IRF family is rapidly expanding in number and covers a broad range
of activities, for review see (Mamane et al., 1999).

In IRF-1-/- mice, the gene has been shown to be involved in T-cell
selection and maturation, as these mice are 90% deficient of mature
CD8+ T-cells (Matsuyama et al., 1993). In disease models of autoim-
munity in mice lacking IRF-1-/- was shown to be protected against
the mortality mediated by TNF and IFN-γ, possibly due to the im-
paired production of TNF and IFNγ, as IRF-1-/- mice have similar
mortality to coinjections of TNF and IFNγ as wild type mice (Sen-
aldi et al., 1999). Furthermore, mice lacking IRF-1 in a model of
EAE demonstrate higher Th2-type cytokine responses thereby pro-
tected from severe autoimmune brain inflammation (Buch et al.,
2003). This observation is in line with the previous finding of IRF-1
deficient mice having an impaired Th1 and enhanced Th2 response
(Lohoff et al., 1997). Finally, IRF-1 along with TGF-β and STAT-1
have been implicated in refining the regulation of class II MHC
genes through differential control of class II transactivator (CIITA)
promoters (Piskurich et al., 1999).

Indeed, IRF-1 may possess an important regulatory role regarding
cytokine mediated iNOS expression: IFN-γ induced binding of IRF-
1 to the ISRE sequence of the RAW264.7 iNOS promoter – this
binding activity was reduced in cells pre-treated with IL-4. More-
over, IL-4 down-regulated the IFN-γ induced IRF-1 mRNA expres-
sion (Coccia et al., 2000). Finally, IL-4 has also been shown to sup-
press IFN-γ stimulated iNOS transcription by elevating the level of
IRF-2 which, through competition, prevents IRF-1 from binding to
ISRE in the iNOS promoter (Paludan et al., 1999).

The role of IRF-1 and NFκB in IL-1 mediated beta-cell destruc-
tion has been discussed in a previous chapter.

The IRF-1 gene has been assigned to chromosome 5q31.1 by
fluorescent in situ hybridisation (Willman et al., 1993). The gene is
7.72 kb in length and comprises 10 exons (Cha et al., 1992). Several
genetic polymorphisms within the gene have been identified:

– promoter –300G/T, 4396 A/G, 6355 G/A (Noguchi et al., 2000),
were identified by SSCP in order to test for association to asthma
using TDT. The 6355G/A polymorphism was very rare. The –
300G/T polymorphism was in nearly complete linkage disequi-
librium with the 4396A/G which by TDT did not show signifi-
cant transmission to atopy- or asthma-affected children. Recent
studies from patients with chronic hepatitis C have identified as-

sociation to the –300A allele (Promrat et al., 2002), and Saito and
colleagues demonstrated that in chronic hepatitis C patients be-
ing –300A/A the Th1-type CD4+ cell population was significantly
increased by IFNβ administration (Saito et al., 2002). Promoter
assay studies of the IRF-1 promoter (Saito et al., 2001) suggest
that the single nucleotide polymorphisms identified contribute
to determining responses to interferons.

– GT-repeat in intron 7 (Kroef et al., 1993). This polymorphism has
been tested by Johannesen et al. without finding any association
to T1DM (Johannesen et al., 1997), but has been demonstrated
to associate to childhood atopic asthma in a Japanese population
(Nakao et al., 2001).

– A C/T polymorphism in intron 6 of the IRF-1 gene has in a gene-
gene (to p21 and p53) and gene-environmental testing been as-
sociated to cervical cancer susceptibility in Korean women (Park
et al., 2003).

– HinfI polymorphism in the 3’UTR, position 1688 with reference
to EMBL sequence HSIRF1 (Donn et al., 2001) showed asso-
ciation to juvenile idiopathic arthritis. Seegers et al studied this
polymorphism in Celiac Disease by use of TDT without finding
any distorted transmission from parents to affected offspring
(Seegers et al., 2003).

Finally, genetic variations within the IRF-2 gene have been exam-
ined in atopic dermatitis with contradictory results (Nishio et al.,
2001) and (Hosomi et al., 2002).

4.1.8.2. NFκB
Only two studies have tested a polymorphism within the NFκB in
different T1DM populations. Hegazy et al demonstrated association
of alleles to T1DM (Hegazy et al., 2001) which could not be con-
firmed in a Danish T1DM collection (Gylvin et al., 2002).

Recently, a new gene (SUMO4, a IκBα modifier) has been identified
in the IDDM5 region at chromosome 6q25 being associated to T1DM
(Guo et al., 2004). This study demonstrates that fine mapping of a
chromosomal region linked to T1DM can successfully lead to identifi-
cation of new genes possibly modifying the genetic risk of T1DM.

In conclusion: Obviously, genes encoding transcription factors
being of importance to a candidate gene may themselves be candi-
date genes. However, only a limited number of studies have been
performed testing association of iNOS related genes in T1DM –
hence, no genetic predisposition to T1DM for IRF-1 and NFκB can
be confirmed or rejected and further studies are needed.

4.2. MORTALIN
Mortalin was initially identified as a 66-kDa protein of pI 5.9 in
mouse embryonic fibroblasts (MEF) (Wadhwa et al., 1991), later
shown to be a member of the mouse HSP70 family (Wadhwa et al.,
1993a). Its presence in the cytosol was correlated to the normal
mortal phenotype, in contrast to its absence in the cytosolic fraction
of immortal cells (Wadhwa et al., 1993a). Microinjection of anti-
mortalin antibodies into senescent mouse cells led to transient
stimulation of cell division, suggesting an anti-proliferative function
of the protein (Wadhwa et al., 1993a), hence the name mortalin.
Subsequently, an isoform of mortalin in mouse was identified in im-
mortalized cells as well as in the perinuclear space (Wadhwa et al.,
1993b). The isoform associated to the normal mortal phenotype has
a uniform pancytosolic distribution (mot-1) and the immortal
phenotype located perinuclarly (mot-2) only differs at two amino
acids. It was shown later that in the mouse the mot-1 and mot-2
genes segregated in two mouse generations (Kaul et al., 2000a),
which illustrates that the mot-1 and mot-2 genes are allelic in mice,
and were assigned to mouse chromosome 18 (Kaul et al., 1995;
Ohashi et al., 1995). Transfection of mouse mot-1 cDNA (pan-
cytosolic form) induced cellular senescence in NIH 3T3 cells,
whereas mot-2 cDNA (perinuclear form) did not impart any
equivalent effect (Wadhwa et al., 1993c).
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In the rat, a homologue protein named Grp75 (glucose regulated
protein, 75kDa) was identified (Mizzen et al., 1989; Massa et al.,
1995), a resident mitochondrial matrix protein, mediating the
import of translocation-competent proteins into the mitochondria
and subsequent assembly of proteins within this organelle (Mizzen
et al., 1991). In normal rat tissue, expression studies on mortalin
have revealed functional in vivo characteristics: non-dividing tissues
and cells are observed to have higher levels of expression than the
ones with division potential, supporting an anti-proliferative
function of mortalin in normal tissue. However, in samples of brain
tumour tissue the expression was dysregulated and non-pancytosolic
distributed, suggesting its involvement in pathways leading to  ma-
lignant  transformation  (Kaul  et  al.,  1997).  Hence:  mouse mot-1
cDNA and pancytosolic distribution of mortalin are associated to
mortality in normal cells (“mot-1 effect”) – contrasting perinuclear
localisation associated to immortality/malignancy (“mot-2 effect”).

In 1993, the human counterpart to the mouse mortalin gene was
cloned from B-lymphoblastomas under the name PBP74, a new
member of the HSP70 family, suggested to be involved in antigen
processing, however not inducible by heat (Domanico et al., 1993).
In 1995 it was cloned under the name mitochondrial-HSP75
(mthsp75) due to its subcellular fraction (Bhattacharyya et al.,
1995). Mortalin cDNA isolates from normal and immortalized
human cells showed differential localisation patterns by staining
(Wadhwa et al., 1995a) but identical sequences, implying that (i)
cellular distribution rather than the presence or absence of the pro-
tein marks cellular mortal and immortal phenotypes, and (ii) the
differential distribution of the protein in human cells is due to e.g.
protein modifications and does not originate from distinct cDNA’s
as in mouse cells. Similar to the mouse mot-2 cDNA, human morta-
lin induced malignant transformation of NIH 3T3 cells (Kaul et al.,
1998a), and stable transfected human lung fibroblast with human
mortalin underwent extended population doublings in vitro (Kaul
et al., 2003). Further, it has been shown that differentiation of HL-
60 promyelocytic leukemia cells was accompanied by a decreased
level of human mortalin expression (Xu et al., 1999), whereas over-
expression of mortalin impaired the growth advantage of the leuke-
mia cells and attenuated their differentiation (Xu et al., 1999).
Recently, targeting mortalin using RNA-helicase-linked hybrid
ribozymes successfully suppressed the expression of mortalin in
transformed human cells, which resulted in growth arrest (Wadhwa
et al., 2003). Transient transfection of cells with human mortalin
cDNA led to a delay in the development of apoptosis after serum
deprivation (Taurin et al., 2002), and finally, over-expression of
mot-2 resulted in reduced level of Ras and phosphorylated ERK2,
involved in the apoptotic pathway (Wadhwa et al., 2003). All these
studies support a “mot-2” effect of human mortalin in various ex-
perimental settings.

4.2.1. Mortalin expression
Mortalin has been shown to be expressed in all cell types and tissues
studied so far, including pancreas and islets of Langerhans (Wadhwa
et al., 1995a; Kaul et al., 1997; John et al., 2000; Mose-Larsen et al.,
2001; Johannesen et al., 2004). Expression levels of mortalin have
been correlated to muscle activity (Ornatsky et al., 1995), mitochon-
drial activity (Ibi et al., 1996) and biogenesis (the accepted theory
that life can originate only from pre-existing life and never from
non-living material) (Takahashi et al., 1998). Various stimuli can
induce mortalin expression:

– glucose deprivation (Mizzen et al., 1989)
– calcium ionophores (Resendez-E. et al., 1985)
– ischemia (Massa et al., 1995)
– hyperthyroidism (Craig et al., 1998)
– ozone (Wu et al., 1999)
– IL-1/nitric oxide (John et al., 2000; Mose-Larsen et al., 2001; Jo-

hannesen et al., 2004)

Furthermore, mortalin has been demonstrated to interact with and
inhibit the function of the tumour suppressor p53 (Wadhwa et al.,
1998; Wadhwa et al., 1999; Kaul et al., 2001; Wadhwa et al., 2002d),
which partly can explain why mortalin is able to induce immortality.
The mortalin – p53 interaction can be abrogated by MKT-077 (a lipo-
philic cationic dye possessing anti-tumour effect) which binds to
mot-2 and lead p53 translocate to the nucleus, followed by growth ar-
rest of the tumour cells (Wadhwa et al., 2000a). Mortalin-p53 com-
plexes have also been detected in mitochondria during p53–induced
apoptosis, implicating a role of mortalin in apoptosis (Marchenko et
al., 2000). This indicates that mortalin may possess a role in cell fate
determination (Rivolta et al., 2002). Besides binding to p53, mortalin
has also been shown to bind (i) fibroblast growth factor-1 and aiding
in its intracellular trafficking (Mizukoshi et al., 1999; Mizukoshi et al.,
2001), (ii) and the IL-1RI and mortalin have been suggested to take
part in IL-1RI internalisation (Sacht et al., 1999).

Increasing evidence supports a role of mortalin in mitochondrial
function. Previously, it has been shown in yeast that the distribution
of mitochondria changes in response to heat shock treatment (Col-
lier et al., 1993) and recently, mortalin has been proposed to be es-
sential for optimizing the functions of as-yet-unidentified heat-
labile proteins in the mitochondrial matrix in controlling the mito-
chondrial morphology (Kawai et al., 2001). These studies suggest
that mortalin may play an important role regarding mitochondrial
function and that the differentiated distributions of mortalin in im-
mortal versus mortal cells, at least in part, may be related to altered
mitochondria morphology and function. That mortalin is involved
in mitochondrial function can also explain the associations of mor-
talin to cellular energy supply, regulation of calcium levels, apopto-
sis, cellular localisation and cellular immortality (Wadhwa et al.,
2002a).

In line with these observations are the findings of Johannesen et al
of inter-individual expression of mortalin in isolated islets of
Langerhans from two rat strains, the strain being most susceptible to
the cytotoxic effect of IL-1 having the highest expressing of mortalin
(Johannesen et al., 2004).

In summary: Being a protein involved in cell fate determination
possibly by its involvement in mitochondrial functioning mortalin
has been demonstrated to be upregulated in cytokine exposed islets
of Langerhans. Hence, mortalin is a relevant protein/gene to study
further in cytokine mediated beta-cell destruction.

4.2.2. Human mortalin gene
The human mortalin is encoded as a large protein containing a 46
residue pre-sequence which is not present in the mature protein
purified from cells (Domanico et al., 1993). This pre-sequence
shares features common to other mitochondrial targeting sequences
(Bhattacharyya et al., 1995). Mitochondrial targeting proteins serve
as facilitators for mitochondrial proteins to target and enter the
mitochondria (Hartl et al., 1989). In accordance, the mitochondria
are a central localisation of mortalin – but not unique – in human
immortalised cell lines (Ran et al., 2000).

As described above, mortalin can be induced by various forms of
cellular stress and is associated to the determination of cell fate. Fur-
thermore, rat mortalin expression was:

– identified in IL-1 exposed/NO-treated islets of Langerhans (John
et al., 2000; Mose-Larsen et al., 2001), and

– associated to different IL-1 sensitivity in two rat strains (Johan-
nesen et al., 2004). Moreover,

– NIH3T3 cells over-expressing rat mortalin induced decreased
cellular survival (Johannesen et al., 2004), and finally

– human mortalin has been localised to chromosome 5q31 (Kaul
et al., 1995) – see Table 9

– thus,  the  human  mortalin  gene  qualify  as  a  T1DM  candidate
    gene.
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Table 9: “Diseases associated to chromosome 5q31”, reflects papers re-
porting genome scan data that positively identifies 5q31 as a
genomic region of interest. It is not the aim of this review to
specifically compare to other studies within each of the diseases that
either can or cannot confirm the findings listed in the table. The list
simply illustrates that this genomic region possibly may enhance
susceptibility of several immune mediated diseases.

The study of Johannesen et al (Johannesen et al., 2004) is the first
paper to identify polymorphisms in the human mortalin gene.
Three nucleotide polymorphisms were identified within the coding
region, however none of them led to amino acid substitutions.
Neither the tested polymorphisms, the D5S500 dinucleotide marker
located close to the gene nor constructed haplotypes were identified
to be linked to T1DM in this Danish Caucasoid collection (Johan-
nesen et al., 2004). These identified polymorphisms are obvious
SNPs to be tested within other of the diseases listed in the Table 9,
Diseases associated to chromosome 5q31.

In the study of Johannesen et al (Johannesen et al., 2004) overlap-
ping PCR-products based on cDNA sequence were used to screen
the coding sequence for polymorphisms. Our cDNA sequencing
data were 100% identical to the published mRNA-based sequences
except for the identified SNP’s. When initially establishing typing
assays for the identified polymorphisms, the use of the cDNA de-
signed primer pairs in genomic DNA revealed only 97 to 99 percent
identity between the cDNA and genomic DNA sequences within the
same individual, the variation depending upon the primer set used.
This inconsistency led us to initiate a NCBI BLAST search for gen-
omic sequences that could possibly explain the deviating sequence
results using cDNA versus genomic DNA material (pseudogenes?).
At www.ncbi.nlm.nih.gov/LocusLink/ mortalin has been given the
Locus ID 3313 and symbol HSPA9B. Two loci links are given: 5q31.1
and 2q36.1 – corresponding to the mRNA sequences L11066 and
L15189, respectively. These mRNA sequences show 99% identity. A
BLAST search in NCBI of L15189 (chromosome 2) identified a BAC
clone, RP11-71J24 (GenBank accession number AC009302) located
at the human chromosome 2 (227M, GenBank) where a part of the
BAC clone showed 94% homology to the full length published
L15189 mortalin cDNA sequence. The nucleotide sequence we ob-
tained in genomic DNA material using the cDNA based primers
showed 100% similarity to this specific BAC clone and hence, was
not identical to the published cDNA sequences or the sequences we
obtained in cDNA material. Subsequently, the gDNA material based
typing assays of the polymorphisms were based upon the human se-
quence of chromosome 5 (AC011385) at the time it was available to
the public. Using this sequence to design primers, a 100% sequence
homology was obtained between cDNA and gDNA sequence for
each tested individual, see Figure 8.

However, should the mortalin gene be located at chromosome 2,
then the marker D2S339 is located less than 1.3 cM (230.1-228.8
cM) from the putative localisation of HSPA9B at chromosome 2. We
have previously tested the D2S126 marker (a marker of the IDDM13
locus at 2q33) (Larsen et al., 1999) without finding any evidence of
linkage or association to T1DM in the Danish population, and since
no recombination between D2S339 and D2S126 has been demon-
strated the lack of linkage of mortalin to T1DM in the Danish popu-
lation seemed substantiated.

In 2000, Xie et al published (Xie et al., 2000) the exon/intron or-
ganisation of the HSPA9 (human Mortalin) gene as part of their
search for variations in the human mortalin gene. This was per-
formed using a BAC-clone (15L17) as template, not available to
the public. They used intron-based primer sequences to amplify
the 17 identified exons followed by direct sequencing of amplified
PCR products. They identified a C to T substitution in the BAC-
clone 15L17 corresponding to position 1933 in the human morta-
lin gene. As Xie et al used a BAC clone as template in contrast to
full genomic DNA in our design, they were not in a position to
identify putative pseudogenes. In future studies it should be of no
difference whether to use the primer pairs designed by Xie et al or
by Johannesen et al.

In conclusion: Mortalin (i) is a protein induced by various forms
of cellular stress, associated to determination of cell fate, and func-
tionally involved in e.g. mitochondrial function; (ii) has been lo-
cated to chromosome 5q31, a region of putative interest in immune
mediated diseases and, (iii) has been identified and demonstrated to
be up-regulated in cytokine exposed rat islets of Langerhans – used
as a model for beta-cell destruction in T1DM. Hence, mortalin was
considered a candidate gene in the pathogenesis of T1DM. Further-
more, the inter-individual expression of mortalin was associated to
different IL-1 sensitivity in two rat strains suggesting inter-individ-
ual expressional control of this candidate gene being of importance
in cytokine mediated beta-cell destruction. However, the precise
pathogenitical involvement of mortalin needs further exploration.
In a Danish national wide collected T1DM family collection, the
mortalin gene could not be demonstrated to be in linkage to T1DM.
In order to finally exclude the mortalin gene as a susceptibility gene
in T1DM, additional screenings for polymorphisms in the 5’ UTR
and the 3’UTRs are requested, as well as the identified polymor-
phisms in the gene should be tested in other T1DM collections.

Conclusion from Chapter 4
By means of a combined candidate gene approach based upon an
experimentally testable pathogenetic model of cytokine mediated
beta-cell destruction, three genes were selected: the iNOS, the IRF-1
and the mortalin genes. These genes were examined for sequence

Table 9. Diseases associated to chromosome 5q31.

Chromosome
Disease Author/references Population Putative gene localization Association Linkage

ADLD (Coffeen et al., 2000) American-Irish family Not specified 5q31 Yes

Asthma (Los et al., 1999) (review) – β-adrenergic R 5q31-33 Yes/ (No) Yes
(Heinzmann et al., 2000) British and Japanese IL-13 (Gln110Arg) 5q31 Yes
(Yokouchi et al., 2000) Japanese 5q31-33 Yes

Celiac disease (Naluai et al., 2001) Swedish and Norwegian 5q31-33 Yes

Crohn’s disease (Ma et al., 1999) Jewish 5q33-35 Yes 
(Rioux et al., 2000) Toronto area (including 5q31-33 Yes

Jewish families)

Schizophrenia (Crowe et al., 1999) Workshop data worldwide 5q23.3-31.1
5q31.3-35.1 (Yes)*

Rheumatoid arthrisis (Cantagrel et al., 1999) French IL-4 (RP1 allele) 5q31-33 Yes

Schistosoma Manisoni (Marquet et al., 1999) Brazilian Not specified 5q31-33 Yes

ADLD: Adult-onset autosomal dominant leukodystrophy.
*) “(Yes)” indicates that concensus has not been achived in all populations studied.
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variation and tested for association to diabetes in a population based
nationwide Danish T1DM collection. The expression patterns of the
selected genes were examined in a rat model using two different rat
strains showing different sensitivity to cytokine exposure as defined
by different insulin release from cytokine exposed islets in vitro.

In beta-cells, NO and NO-independent induced necrotic and
apoptotic destruction takes place following cytokine exposure.
Whether the necrotic or the apoptotic processes – or both – are ef-
fectuated may be influenced by e.g. the potency of the “cytokine hit”
versus the defence properties of the beta-cell. iNOS is expressed in
cytokine exposed human beta-cells/islets and the evidence of the
toxic effect of peroxynitrite and NO donors argues in favour of a
role of NO in human beta-cell destruction. Furthermore, inter-indi-
vidual expression levels of iNOS in the rat model and its association
to riNOS promoter polymorphism, and the genetic association of
the human iNOS gene to T1DM is a further substantiation of a role
of NO in T1DM pathogenesis. However, a polymorphism in the
IRF-1 gene (a transcription factor of the iNOS gene) was not dem-
onstrated to be associated to T1DM in a Danish collection.

Mortalin expression – associated to determination of cell fate as
demonstrated by decreased cellular survival when over-expressed
in NIH-3T3 cells – was differentially expressed in the rat model
suggesting an inter-individual expressional control of this candi-
date gene. However, in a Danish nation-wide T1DM family collec-
tion the mortalin gene could not be demonstrated to be in linkage
to T1DM.

5. CONCLUDING  REMARKS AND FUTURE ASPECTS
5.1. SUMMARY
This thesis has aimed at identifying predisposing T1DM genes with
special reference to those genes selected upon a functional basis of
the target organ in accordance with the hypothesis of this thesis:

Target organ candidate genes are identified from an experimentally
testable pathogenetic model of cytokine mediated beta-cell destruc-
tion. Such candidate genes may show inter-individual sequence
variation, conferring a genetic risk of or protection against T1DM –
alone or in combination. Functional characterisation of such gene
variants might show correlation between genetic risk of or protec-
tion against T1DM development and beta-cell function.

By means of a combined candidate gene approach based upon an
experimentally testable pathogenetic model of cytokine mediated
beta-cell destruction, three genes were selected: the iNOS, the IRF-1
and the mortalin genes. These genes were examined for sequence
variation and tested for association to diabetes in a population
based nationwide Danish T1DM collection. The expression patterns
of the selected genes were examined in a rat model using two differ-
ent rat strains showing different sensitivity to cytokine exposure as
defined by different insulin release from cytokine exposed islets in
vitro.

In beta-cells, NO and NO-independent induced necrotic and ap-
optotic cell death takes place following cytokine exposure. Whether
the necrotic or the apoptotic processes – or both – are effectuated
may be influenced by e.g. the potency of the “cytokine hit” versus
the defence properties of the beta-cell. iNOS is expressed in cytokine
exposed human beta-cells/islets and the evidence of the toxic effect
of peroxynitrite and NO donors argue in favour of a role of NO in
human beta-cell destruction. Furthermore, inter-individual expres-
sion levels of iNOS in the rat model and its association to riNOS
promoter polymorphism, and the genetic association of the human
iNOS gene to T1DM development among HLA DR3/4 positive in-
dividuals further substantiate a role of NO in T1DM pathogenesis.

The expression patterns of the selected genes were examined in a
rat model using two different rat strains showing different sensitiv-
ity to cytokine exposure, and strain dependent differences were
demonstrated for iNOS expression in the pancreatic islets correlat-
ing with IRF-1 and HSP70 expression. Hence, high cytokine sensi-
tivity of the islets, as defined by inhibited insulin release in response
to cytokine exposure, correlated to high iNOS, IRF-1 and HSP70
expressions in both dose – and time responses, hypothesize a role of
IRF-1 in cytokine mediated iNOS expression. However, no associ-
ation to the tested IRF-1 polymorphism was demonstrated in the
present Danish T1DM collection.

Mortalin (i) is a protein induced by various forms of cellular
stress, functionally involved in e.g. mitochondrial function, and
associated to determination of cell fate, and; (ii) has been located to
chromosome 5q31, a region of putative interest in immune medi-
ated diseases and, (iii) has been identified and demonstrated to be
up-regulated in cytokine exposed rat islets of Langerhans. In the rat
model, high mortalin expression correlated with increased cytokine
sensitivity. Furthermore, over-expression of mortalin in the
NIH3T3 cell-line was performed demonstrating decreased cellular
viability suggesting a senescence effect of rat mortalin, indicating a
pathogenetical role of mortalin in T1DM, despite no association to
the mortalin gene was demonstrated in the present Danish T1DM
collection.

5.2. FUTURE ASPECTS
Genetics of T1DM
Of the three selected candidate genes, only the iNOS gene demon-
strated association to T1DM the tested Danish T1DM collection.
Replication studies in independent and large population based
collections are needed to substantiate these findings. However, an
extension of the examined regions of the gene could be of relevance,
if the screening for genetic variation within the genes has been in-
complete, e.g. only a previous identified gene polymorphism in the
IRF-1 gene has been tested in the present study. Naturally, not all
selected candidate genes will influence the genetic risk of T1DM,
however the encoded protein may still be of pathogenical relevance
in T1DM.

Linkage-designed studies are efficient in the case of rare variants
with major effect whereas association designed studies are more ef-
ficient in the case of common variants with modest effect (Hir-
schhorn, 2003). Hence, an approach to select robust candidate genes
seems essential – here demonstrated as a multiple string based can-
didate gene selection including a functional selection bias. Further-
more, the presented strategy for the evaluation of the selected candi-

Figure 8. Mortalin at chromosome 5 and/or chromosome 2? Boxed illu-
strations represent published sequences. The oval illustrations represent
sequences obtained in our hands using various combinations of cDNA or
gDNA as template and cDNA or gDNA based primers. Similarity from align-
ment is expressed in percentages. As seen using cDNA based primers in
gDNA identified 100% similarity to the BAC clone RP 11-71324 – a putative
pseudogene as this genomic sequence contains no introns in contrast to
AC011385.

Chromosome 5 2

L11066 L1518999%

100%

100%*

100% 100%

94%

gDNA 
[gDNA primers]

gDNA 
[cDNA primers]

cDNA 
[cDNA primers] BLAST

AC011385 BAC clone RP 11-71324

* L11066-AC011385: 17 exons equalling data of Xie et al., 2000, Leukemia.
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date gene and protein has been demonstrated to be plausible. How-
ever, in order to further characterise a pathogenetic role of the
selected candidate genes in cytokine mediated beta-cell destruction,
a functional characterisation of the human gene variants should be
examined – e.g. the iNOS E16 variants in expressional studies. In
addition, the effect of rat mortalin expression should be replicated
in insulin-producing cells with and without cytokine stimulation.

Besides testing susceptibility genes in T1DM, the non-model
based, intra-familiar association designed studies provide the pos-
sibility of identifying T1DM protective genes when including data
from non-affected offspring. The approach of identifying protective
genetic association to T1DM is in accordance with the idea of a
cytokine induced race between deleterious and protective mech-
anisms in the beta-cell and is strongly recommended for future
studies.

Despite the limited power of linkage-designed studies to detect
common variants with modest effect and the sparse outcome from
these studies so far, the search for genomic areas being linked to
T1DM should be continued. A genom scan using SNP’s or haplo-
type Tag SNP’s in order to reduce the number of SNP’s tested in the
entire genome could be an innovative approach. A putative benefit
from such studies is the possibility of excluding low-risk susceptibil-
ity genomic regions.

Furthermore, the undertaken analytical methods for examining
the genetic data should be optimised and new analytical methods
including gene to gene and gene to environmental interaction
should be introduced.

Finally, as described below, an increasing focus on the T1DM
phenotype should be encouraged, as non-stratified phenotypic mix-
ing naturally will blur the genetic picture.

Pathogenesis of T1DM
The rat model has demonstrated that destructive as well as protect-
ive mechanisms are activated in cytokine exposed islets. This race
between protective and destructive processes needs to be further ex-
plored in order to develop intervention strategies that may lead to
the favour of the protective responses.

An important aspect of studying these destructive and protective
mechanisms is the understanding of inter-individual differences in
cytokine response and responsiveness. Such differences may even
lead to different phenotypic characteristics, e.g. a strong destructive
capacity combined to a weak protective response may be seen in
patients characterised by an absent remission phase. Furthermore, it
seems that different cytokine mediated pathways can lead to beta-
cell death. The determination of which pathway is taken could reside
within the target organ itself as beta-cell heterogeneity has been
described for e.g. glucose sensitivity as well as cytokine sensitivity.
These parameters may be influenced by age of the beta-cell as well as
the genetic make-up. Hence, the development of individual preven-
tion and/or curative strategies may be future aspects.

Such prevention strategies may include anti-cytokine therapy
(Prud’homme et al., 2001; Sharma et al., 2003), anti CD3mAb as
immunogenic modelling (Herold et al., 2003), over-expression gene
therapy altering e.g. the Th1/Th2 response, blockage of encoded
mRNA’s or disease prevention with islet autoantigens, (see (Eisen-
barth et al., 2004) for review of the latter). This concept has been
proven successful in animal studies, however not in DPT1; possibly
a matter of dose of the antigen.

However, in order to monitor such interventions it may be needed
to detect pathogenic T-lymphocytes in humans in order to evaluate
the influence of immunologic therapies on T-lymphocytes causing
beta-cell destruction as well as imaging of beta-cell mass in vivo.

Finally, curative initiatives may include improved islet transplan-
tation protocols and pancreas transplantations, however both, are
limitied because of the lack of available tissue. Genetic engineered
insulin secreting hepatocytes being more resistant than pancreatic
beta-cells to adverse effects of cytokines (Tabiin et al., 2001) or in-

sulinoma cell lines with resistance to IL-1β and IFNγ induced toxic-
ity (Giannoukakis et al., 2002) could be attractive alternatives in the
future.

ABBREVIATIONS

A20: TNFα induced protein 3 (inhibits NFκB activity)

AA: Amino acid
AABS: A-activator-binding site
ADLD: Adult-onset autosomal dominant leukodystrophy 

(mimicking chronic progressive MS)
AIR-1: Activator immune response gene 1 (encoding MHC class II 

transactivator factor)
AIRE: Autoimmune Regulator
AG: Aminoguanine
AGER: Advanced glucosylation end product receptor
AKN-1: Human hepatocyte cell line
AML: Acute myeloid leukaemia
ANA-1: Murine MØ
AP: Activating transcription factor(s)
ARE: Antioxidant-responsive element
AS: Arginino succinate synthase
ASP: Affected sib pair
ATP: Adenosine triphosphate
BAC: Bacterial artificial chromosome 
BAT2: HLA-B-asociated-transcript
BB rat: BioBreeding rat
Bcl2: Member of a family of oncogenes involved in tumor 

suppression
BF: Properdin factor B
BH4: Tetrahydrobiopterin
BN: Brown Norway
BZT: Benzenetriol (autocatalytic source of superoxide)
C4: Compliment C4
CIITA: Class II transactivator 
CAD: Coronary artery disease
CaM: Calmodulin
CAT: Chloramphenicol acetyltransferase (promoter activity assay)
CCR: CC-chemokine receptor
CD: Cluster of differentiation
C/EBP: CCAAT/enhencer binding protein
CFA: Complete Freuds adjuvance
CHOP: C/EBP homologous protein
Chr: Chromosome
cM: Centimorgan
CM: Cytokine mixture
cNOS: Constitutive nitric oxide synthase
CRE: Cytokine response element
CTLA4: Cytotoxic T lymphocyte-associated antigen 4
DAG: Diacylglycerol
DD: Death domaine
DEX/DX: Dexamethason
DIEGG: Danish Insulin-Dependent Diabetes Mellitus Epidemiology 

and Genetics Group
DLB: Dementia with Lewis Bodies
DLD-1 cells: A human colorectal adenocarcinoma cell line

DMB: HLA gene encoding class II-like α- and β-chains
DMNQ: 2,3 dimethoxy-1,4-naphthoquinone
DNA: Deoxyribonucleic acid
DSBD: Danish Society for Childhood and Adolescent Diabetes
dsRNA: Double stranded RNA
E16: Exon 16
EBP: Enhancer binding protein
Egr1: Estrogen receptor 1
EMSA: Electrophoretic mobility shift assay 
eNOS Endothelial nitric oxide synthase
ER: Endoplasmatic reticulum
ERK: Extracellular regulated signal kinase
ESR1: Estrogen receptor 1
EST: Expressed sequence tag
ETDT: Extended transmission disequelibrium test
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FACS: Flourescence-activated cell sorting
FAD: Flavin adenine nucleotide
FADD: Fas-associated death domain protein
Fas: Human Fas gene (tumor necrosis factor receptor superfamily,

member 6)
FasL: Fas ligand
FMN: Flavin mononucleotide
FSK: Forskolin
GAD: Glutamic acid decarboxylase
GADD: Growth arrest and DNA-damage inducible
GALN: Galanin
GALNT3: N-acetyl-galactosaminyltransferase-T3
Gas: Growth arrest specific
GAS: Gamma activated site
GB: GenBank
GC: Vit D binding protein
GCGR: Glycagon receptor
GCK: Glucokinase
Grp75: Glucose regulated protein, 75kDa
GSH: Glutathione peroxidase
Herb: Herbimycin

HERV-K(C4): A variable endogenous human endogenous 
retroviral element

HIT-cells: Hamster insulin producing tumor cell
HLA: Human leukocyte antigen 
HOX: Homeobox gene(s)
HSP: Heat shock protein
HSR: Heat shock response
HRE: Hypoxia response element
HVA: High voltage activate 
IA-2: Protein tyrosine phosphatase-2
ICAM: Intercellular adhesion molecule
ICE: Interleukin-1 converting enzyme
ICOS: Inducible co-stimulator
IDDMK1,222: The product of HERV-K18, possible a superantigen

IFNγ: Interferon gamma
IGFBP: Insulin like-growth factor binding protein
IGH: Immun-globulin heavy chain
IkB: Inhibitor kB
IL: Interleukin
IL-1AcP: Interleukin-1 accessory protein
IL-1Ra: IL-1 receptor antagonist
IL-1RI: Interleukin-1 type 1 receptor
IL-1RN: IL-1 receptor anatagonist
iNOS: Inducible nitrogen oxide synthase
INS: Insulin gene
INS-1: Insulin producing cell line
IRE: Interferon response element
IRF: Interferon regulating factor
IRS-1: Insulin receptor substrate-1 
ISRE: Interferon-stimulated response element
JAK: Janus tyrosine kinase
Kidd: Kidd blood group system
LCK: A lymphoid T-cell protein tyrosine kinase
LD: Linkage Disequelibrium
LMP: Large multifunctional protease
LOD: Logarithm of odds
LPS: Lipopolysaccharide
LST1: Leucocyte specific transcript-1
LUC: Luciferase
MAPK: Mitogen activated protein kinase
MHC: Major histcompatibility complex
MICA: MHC class I chain-related gene A
MLD-STZ: Multiple low dose streptozotocin
MLS: Maximum lod score
MnSOD: Mangan SOD
mot-1 and 2: Mouse mortalin gene 1 and 2
mRNA: Messenger ribonucleotide acid
myb: Oncogene, found to be rearranged in human colon 

and bone marrow tumors
myc: Oncogene, involved in the chromosome translocation

found in Burkitt’s lymphoma

MZ: Monozygotic
MX 1: Myxovirus resistance
MØ: Macrophage
NAD: Nicotinamide adenine nucleotide
NADPH: Nicotinamide adenine nucleotide phosphate hydrogen
NAT2: N-acetyltransferase
NCBI: National Center for Biotechnology Information

NeuroD/ β-cell E-box transactivator 2 (a transcription factor
BETA2: af the insulin gene)
NF B: Nuclear factor kappa beta
NHE1: Sodium/hydrogen exchanger
NHI-glu: Cell line derived from the glucagon-producing MSL-G2

culture
NHI-ins: Insulin-producing phenotype of the NHI-Glu after 

maturation in syngeneic NEDH rats
NIH-3T3: Mouse fibroblast cell line

NIK: NFκB inducing kinase

NO: Nitric oxide
NOD mouse: Non obese diabetic mouse
NOS: NO synthase
NQO1: NAD(P)H quinone oxidoreductase
NRAMP1: Natural resistance associated macrophage protein 1
OAS: 2’,5’ oligoadenylate synthetase
OCT-1: Octamer binding transcription factor-1
ORF: Open reading frame
p53: Tumor suppressor
PAI1: Plasminogen Activitor Inhibitor-1
PACAP: Pituitary adenylate cyclase-activating polypeptide

PARPγ: Poly(ADP-ribose) polymerase

PAX: Transcription activation domain-interacting protein 1
PDTC: Pyrrolidine dithiocarbamate
PAO: Phenylarsine oxide
PIC: Polyinosinic-polycytidylic acid (synthetic dsRNA)
PKC: Protein kinase C
PP: Protein Phosphatase

PPARγ: Peroxisome proliferator activated receptor gamma

PTPRN: The gene encoding for IA2, a transmembrane 
protein tyrosine phosphatase

RA: Rheumatoid Arthritis
RAW264.7: Murine macrophage-like cell line
RASMC: Rat aortic smooth muscle cell
RIP: Rat insulin promoter
RINm5F: Rat insulinoma cell line
RMC: Rat mesangial cells 
ROS: Reactive oxygen species
SEL1L: The human homolog of C-elegans sel-1SNP:Single nucleotide 

polymorphism

SOCS-3: Suppressor of cytokine signalling 3
SOD: Super oxide dismutase
SOX13: The ICA12 autoantigen gene
SSCP: Single stranded conformation polymorphism
STAT: Signal transducer and activator kinase
T1DM: Type 1 Diabetes Mellitus
TAP: Transporter associated with antigen processing
TCF7: Transcription factor 7
TCR: T-cell receptor
TDT: Transmission disequelibrium test
TFBS: Transcription factor binding factor sites
Th: T-lymphocyte, helper
TNF: Tumor necrosis factor
TNFR: TNF receptor
TRAF: TNF receptor assocated factor
UTR: Untranslated region
VDR: Vit D receptor
VNTR: Variable number of tandem repeats
VSMC: Vascular smooth muscle cell
WAGR: Wilm’s Tumor, Aniridia, Genitourinary syndrome, 

mental Retardation
WEHI: Mouse fibrosarcoma cell line
WFS1: The Wolframin gene
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WHO: World Health Organisation
WT: Wilms Tumor
ZF: Zink finger

y+CAT: Cationic amino acid transporter system
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