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ABSTRACT
INTRODUCTION: Fractures of the tibial shaft are relatively 
common injuries. There are indications that tibial shaft 
fractures share characteristics in terms of site, type and 
local fracture mechanisms. In this study, we aimed to set up 
a mathematical, computer-based model using finite elem-
ent analysis of the bones of the lower leg to examine if such 
a model is adequate for prediction of fracture locations and 
patterns. In future studies, we aim to use these biomechan-
ical results to examine fracture prevention, among others, 
and to simulate different types of osteosynthesis and the 
process of bony healing. The biomechanical results are the 
basis for fracture healing, biomechanical fall analysis and 
stability analysis of osteosynthesis.
MATERIAL AND METHODS: A finite element model of the 
bony part of the lower leg was generated on the basis of 
computed tomography data from the Visible Human 
Project. The data consisted of 21,219 3D elements with a 
cortical shell and a trabecular core. Three types of load of 
torsion, a direct lateral load and axial compression were 
applied.
RESULTS: The finite element linear static analysis resulted in 
relevant fracture localizations and indicated relevant 
fracture patterns.
CONCLUSION: In the present study, we have successfully 
simulated fracture mechanisms, obtained adequate fracture 
locations and achieved an indication of the fracture 
morphology. The method of fracture simulation employed 
showed good agreement with known clinical data and data 
from prior mechanical testing. This substantiates the 
validity of fracture simulation for future studies examining 
tibial fractures, fracture healing and prevention.

Fractures of the tibial shaft are relatively common 
injuries, when e.g. front seat occupants are involved in 
frontal crashes [1]. Although the fracture mechanism is 
predominantly caused by axial compression of the leg, a 
substantial bending moment develops in the tibial shaft 
due to its natural curvature and to transverse loading 
when the tibial shaft collides with the dashboard [2]. 
This can lead to tibial shaft fractures [3]. In general, 
experimental crash tests have shown that tibial fractures 
may be expected when the sum of the normal stresses 
due to axial compression and the resultant bending 
moment exceed the strength of the tibial cortical bone 
(tibia index) [4]. In a review study of tibial shaft 

fractures, 88.9% were located in middle third or distal 
third part of the shaft [3]. These fractures were caused 
by a variety of occurrences including falls, various sports, 
pedestrian crashes, etc. All the studies referred to above 
gave an indication that tibial shaft fractures share a 
number of features in terms of site, type and local 
fracture mechanisms.

In this study, we aimed to set up an advanced, 
mathematical computer-based model using finite elem-
ent (FE) analysis of the bones of the lower leg to exam-
ine whether an adequate computer model for predicting 
lower leg fracture initiation could be generated. We 
wanted to substantiate the validity of the model by pre-
dicting the fracture location to get an indication of the 
morphology of tibial shaft fractures for various common 
mechanical fracture loads (axial compression, torsion 
and bending). 

MATERIAL AND METHODS 
Finite element model
FE analyses were performed using the finite element 
code COSMOS/M. The three-dimensional “lower leg” FE 
model (LL FE model) used included the tibia and the 
fibula. The bony structures were generated by segmen-
tation of a data set of computed tomographies from the 
Visible Human Project [5]. Segmentation is a data 
reduction tool used to simplify the geometrical shape of 
the bony structures of the structure without losing 
accuracy. Segmentation was necessary for the FE code 
to handle the large amounts of data involved. The 
cortical bone was simulated using tetrahedral elements 
(TETRA 4). The LL FE model comprised a total of 21,219 
volumetric elements. The material property for 
trabecular bone was a uniform distribution of Young’s 
modulus of 100 MPa and a Poisson’s ratio of 0.2. 
Correspondingly, Young’s modulus for cortical bone was 
12,000 MPa and a Poisson’s ratio of 0.3 [6]. The 
thicknesses of cortical and trabecular bone were taken 
from the Visible Human. The interosseos membrane and 
the tibiofibular joints were simulated using binding of 
the proximal and distal contact areas of the bones. 

The fracture locations for this particular FE model 
were determined as the superficial areas of maximal 
Von Mises stress (σVon Mises) in the cortical bone. 
Moreover, the σVon Mises were compared with a ratio of 
failure (RF) between σVon Mises and ultimate stress (σlim ) as 
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in Scheilo et al [7]. The RF had to exceed 1 (RF > 1) for 
failure. The RF was determined as:

RF = σVon Mises /σlim

The σlim was determined in a linear relationship with the 
ash density in accordance with Keyak et al [8]:

σlim = 137 × ρash1.88

Two different ash densities were determined from two 
different density-elasticity relationships between the 
apparent density by Carter and Hayes [9] and Scheilo et 
al [7]. Ash density was obtained from a ratio of 0.6 
between ash and the apparent density, within the range 
0.55-0.63 identified in the literature [8, 10]. The two 
density-elasticity relationships were specific for the hip 
region, but the results for both density-elasticity 
relationships with regard to the ultimate stress were 
similar (106 and 110 MPa, respectively). These results 

coincide with experimental results for ultimate stress for 
the tibial cortical bone, which is approximately 110 MPa 
for the tibia cortical bone with a yield stress amounting 
to 100 MPa [11]. 

Loading and boundary conditions
Three types of load were applied to the LL FE model:

1. Axial compression load. A total load of 800 N was 
distributed on the upper surface of the lower leg FE 
model. The compression load was applied as 60% to the 
medial side and 40% to the lateral side [12], as the knee 
contact force is not uniformly shared between the con-
dyles of the tibia [13]. The lower end of the lower leg FE 
model was completely immobilized in all directions.

2. Torsional load. Torsional loads of 1,000 N in exter-
nal rotation were applied to the upper and lower ends of 
the LL FE model. We were not able to obtain data with 
values for the torsional loads by which fractures to the 
tibia are known to occur, so the loads were assumed to 
be an adequate rotational moment (for the sake of con-
venience). The middle part of the tibial shaft was immo-
bilized in the axial direction for analysis stabil ity.

3. Transverse load. Bending load was applied as 
nodal loads to the middle parts of the tibial and fibular 
shafts. A 5,000 N load was applied to the tibia and 2,500 
N was applied to the fibula. The upper and lower ends of 
the LL FE model were completely immobilized in all dir-
ections.

Static analyses were performed for all three loading 
cases. Fracture locations and patterns were estimated 
by evaluating the maximal nodal Von Mises stresses as 
described previously. The LL FE model is illustrated in 
Figure 1.

Convergence test for the FE model was performed 
to ensure that the FE model had an appropriate number 
of elements. During this test, the number of elements in 
the FE model was increased until the point at which the 
calculated results converge to one exact solution, thus 
yielding the appropriate number of elements for in the 
FE model. 

RESULTS
The distribution of Von Mises stress of the torsional load 
is illustrated in Figure 2. 

Maximal Von Mises stress was located in the distal 
third of the lower leg, and Von Mises stresses were dis-
tributed in a spiral pattern. The RF was 0.46.

The distribution of Von Mises stress of the axial 
load is illustrated in Figure 3. 

Maximal Von Mises stress was located in the middle 
third of the lower leg, and Von Mises stresses were dis-
tributed in an oblique pattern. The RF was 0.26.

The distribution of Von Mises stress of the lateral 
load is illustrated in Figure 4. 

Dan Med Bull /   May 

A. The finite element model of the lower leg with an axial load. B. The 
finite element model of the  lower leg wit h a torsional load. C The finite 
element model of the lower leg with a transverse load.

FIGURE 1

A B C

A. Von Mises stress of a torsional load zoomed in. B. Von Mises stress of 
a torsional load zoomed out.

FIGURE 2

A B
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Maximal Von Mises stress was located in the middle 
third of the lower leg, and Von Mises stresses were dis-
tributed in a transverse pattern. The RF was 0.46.

DISCUSSION
The purpose of the present study was to evaluate the 
use of the maximal Von Mises stress calculated by finite 
element analysis as a measure for examination of the 
fracture mechanisms of the lower leg. We included 
experimental material data and geometric data of the 
bones of the lower leg and were able to simulate 
adequate fracture localizations and to obtain an 
indication of fracture morphology of the most common 
lower leg fractures [3]. We applied adequate fracture 
loads with regard to direction and were able to generate 
fractures located in the middle and distal third of the 
lower leg, as expected. Moreover, the fracture patterns 
generated by the Von Mises stress distribution showed 
adequate spiral, transverse and oblique type patterns 
for torsional, lateral direct and axial loads, respectively. 
While static analysis may not be the best way to obtain 
true predictions of fracture patterns, the von Mises 
stress distribution method, on the other hand, yields 
clinically correct locations of fracture initiations prior to 
initial failure. After a fracture, stress redistribution at the 
fracture site would be expected, which would influence 
subsequent fracture patterns. Static FE analysis gives an 
estimate of the location of the fracture onset and the 
level of fracture risk. In this study, RF values for the 
various loads were somewhat lower than expected, 
which is presumably so because the estimated loads 
were too small. To the best of our knowledge, no in vivo 
data are available on this subject. However, certain in 
vitro mechanical test data on the whole tibia bone 
indicate that we have probably underestimated the 
loads – at least for axial compression (which had the 
smallest RF) – by a factor 4 [11]. Furthermore, studies 
have indicated that other mechanical signals, such as 
maximal principal strain or distorsion energy [7, 14], 
may be better suited for fracture analysis. This may also 

explain some of the discrepancy in RF values. However, 
the generated FE results were substantiated by known 
clinical and experimental studies with regard to 
locations and patterns [2, 3], thereby indicating that 
simulation of tibial shaft fractures is a valid path for 
further research, i.e. in fracture prevention, simulation 
of different types of osteosynthesis and the process of 
bony healing. We acknowledge the need for further 
improvement of the LL FE model as outlined above. To 
summarize, we have performed a general evaluation of 
the FE model and the computed results of a reaction 
force balance and the performed convergence tests, but 
have not correlated the computed results with an 
experimental cadaver test. The present LL FE model was 
based on geometrical data from one test subject (from 
The Visible Human Project) and we acknowledge that 
the computed stress results, and thus the fracture 
morphology and site, may be influenced by anatomical 
variation, i.e. the curvature of the tibia. 

In this study, a linear analysis was chosen since the 
aim was not to investigate the whole fracture process, 
but to examine if we could reproduce mechanisms of 
fracture at onset. The use of static analysis is justifiable, 
because bone has been observed to have a quasi-brittle 
failure mode when tested experimentally [7]. Earlier 
studies have also indicated that even if bone is con-
sidered to be of anisotropic or orthotropic nature, it is 
justified to use isotropic material properties for maximal 
Von Mises stress analysis for long bones and also for 
uniaxial yield strain for the lower leg [15, 16]. However, 
the assumption of isotropic behaviour may have influ-
enced the computed maximal Von Mises stress distribu-
tion, and thereby the fracture estimation. All in all, when 
considering the relative crudity of the LL FE model and 
the estimated loads, the use of isotropic material prop-
erties instead of anisotropy seems justifiable taking into 
account the lack of overall knowledge of anisotropic 
fracture properties of bone in FE models [14].

In this study, we excluded the effects of lower leg 
muscles. It has been demonstrated that the calf muscles 
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A. Von Mises stress of a lateral load zoomed in. B. Von Mises stress of a 
lateral load zoomed out.

FIGURE 4

A B

A. Von Mises stress of an axial load zoomed in. B. Von Mises stress of 
an axial load zoomed out.

FIGURE 3
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influence the forward bowing (bending) of the tibia, thus 
affecting fracture development [17]. However, the mus-
cles were not included, since – in the context of a frac-
ture – the effects caused by muscles are currently un-
known. The tibiofibular joints and the interosseos 
membrane were simulated by binding the tibiofibular 
joints. Again, appropriate mechanical properties have 
not been reported, hence justifying the crude simulation 
of these parts. In conclusion, we acknowledge that we 
would need to address the above mentioned consider-
ations in future studies. However, in the present study 
we have been able to simulate fracture mechanisms, ob-
tain adequate fracture locations and get an indication of 
fracture morphology. This indicates that the LL FE model 
may be used to examine e.g. fracture prevention and to 
simulate different types of osteosynthesis and the pro-
cess of bony healing in future studies. 
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