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INTRODUCTION 
Congestive heart failure (CHF) is a disabling disease with consi-
derable morbidity and mortality rates, despite great advances in 
heart failure treatment (1;2). 
The number of patients with congestive heart failure is rapidly 
increasing in the western world with a prevalence estimated at 1–
2 % and an incidence close to 5–10 per 1000 persons per year (3).  
The mounting congestive heart failure incidence is closely related 
to the increasing number of patients with hypertension and 
diabetes (4). The worldwide estimated number of adults with 
hypertension was 972 million in 2000; 639 million live in develop-
ing countries. By 2025, the total number is expected to increase 
to 1·56 billion (5). The risk of developing CHF in a hypertensive 
cohort is about 2-fold in men and 3-fold in women as compared 
to normotensive individuals (4). Also in population based studies, 
hypertension is significantly related to development of CHF, ac-
counting for 39 % of cases of CHF in men and 59 % in women (4). 
A similar exponential increase in type 2 diabetes incidence is 
evident. According to numbers from the WHO, there will be up to 
366 million individuals with type 2 diabetes in 2030. 
The prevalence of CHF in a diabetic population is 5-8 fold higher 
compared to a non-diabetic population (6;7), and the risk of heart 
failure hospitalization in the UKPDS study was equal to that of 
non-fatal myocardial infarction, stroke or renal failure (8). 
Unfortunately, a large number of patients with diabetes mellitus 
have coexisting hypertension, which significantly increases the 
risk of heart failure dramatically (9;10).  
Hypertension and diabetes are both characterized by long asymp-
tomatic periods, where patients are unaware of their subclinical 
diseases and thereby remain untreated (11). Recent data derived 
from the VALUE study showed that hypertensive patients with 
new-onset diabetes had significantly higher cardiac morbidity, 
especially increased congestive heart failure incidence, compared 
to hypertensive patients without diabetes (hazard ratio of 1.43 
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(95% CI: 1.16 to 1.77))(12). These findings emphasize that hyper-
tensive patients with newly diagnosed diabetes have added mor-
bidity and would benefit considerably from treatment. 
However, it is evident that only few of these patients receive 
recommended treatment, and only a fraction will achieve ade-
quate blood pressure control and normoglycemia (13). For that 
reason, a large part of these patients are prone to have high 
incidences of cardiovascular complications, including congestive 
heart failure (14). 
The initial effect of elevated blood pressure, insulin resistance, 
and hyperglycemia on the left ventricular (LV) function is only 
sparsely studied, and there may be cardiac functional and struc-
tural changes, which support the existence of a subclinical stage 
of LV dysfunction in patients with hypertension or diabetes. 
Recent developments in cardiac imaging techniques, based on 
tissue Doppler echocardiography, seem able to detect early sub-
clinical changes in LV systolic function in various cardiac diseases. 
These new echocardiographic modalities may provide an impor-
tant tool to detect and understand what effects hypertension and 
diabetes induce on the left ventricular function in the earliest 
stages of the disease. 
The traditional evaluation of left ventricular dimensions and 
function has been based on 2-Dimensional echocardiography 
(15). Assessment of systolic function has rested on 2D- modalities 
like fractional shortening, wall motion index or ejection fraction 
by Simpson’s method of discs (15;16). Whereas spectral Doppler 
modalities have been a cornerstone in the assessment of diastolic 
function (17;18).  
However, in recent years new imaging modalities have refined 
non-invasive evaluation of the heart and provided new know-
ledge about the mechanisms involved in left ventricular function. 
These new observations have been focused on the fiber orienta-
tion of the cardiomyocytes and regional changes in LV function, 
dependent on different conditions’ influence on cardiomyocyte 
function. 
The fiber orientation in the left sided myocardium consists of long 
axis oriented fibers on the outer and inner layer, whereas the 
midwall consists of radial oriented fibers. This observation was 
first described by the famous Danish anatomist Niels Steensen 
(Observationes Anatomicae, 1662) three centuries ago and re-
launched by Streeter in an experimental study on dogs (19). 
By the introduction of advanced Magnetic Resonance Imaging 
(MRI), it became possible to demonstrate the components of 
systolic and diastolic movement of the left sided myocardium, 
and to visualize the myocardial fibers structure in humans and 
document changes in fiber orientation and function in the failing 
heart (20-22). 
Systole consists of a counter directed rotational movement (sys-
tolic torsion), a radial shortening combined with a baso-apical 
long axis shortening (21;23;24), whereas the diastole consists of a 
counter clockwise rotation and lengthening. This combined 
twist/untwist provides an efficient function of the left sided myo-
cardium at very low energy expenditure (25;26). 
The long axis oriented fibers significantly contribute to the rota-
tion and the baso-apical long axis shortening, whereas the radial 
and oblique oriented fibers  primarily contribute with radial and 
circumferential shortening (25-27). Consequently, long axis func-
tion is not directly evaluated by use of fractional shortening (FS) 
or LV ejection fraction (LVEF), which primarily depends on the 
function of the radial oriented fibers (25-27). 
However, long axis oriented fibers in the endocardium seem more 
susceptible to changes in cardiomyocyte function than the radial 
oriented fibers located in the midwall (28-30). Factors like left 

ventricular hypertrophy, fibrosis, endo- and subendocardial 
ischaemia or metabolic changes are all common in patients with 
hypertension and diabetes, and may all primarily influence func-
tion of the long axis oriented fibers in the endocardium. 
Therefore, assessment of the systolic function in the long axis 
plane might be an interesting marker of early deterioration of 
systolic function in this patient category, which is undetected by 
conventional echocardiographic methods. 
Tissue Doppler echocardiography (TDI), which is a new echocardi-
ographic modality, enables detection of myocardial function in 
the long axis plane, and provides new information on myocardial 
function and haemodynamics, which is not possible to obtain by 
traditional echocardiography. This makes TDI an excellent sup-
plement to traditional measures of left ventricular function.  
For that reason, TDI may provide valuable information about 
subclinical myocardial dysfunction and the relation to common 
pathophysiological factors seen in asymptomatic patients with 
hypertension or diabetes.  

STUDY AIM 
The specific aims of the present thesis were: 
 
To characterize the left ventricular systolic long axis function by 
tissue Doppler echocardiography in normal subjects, to study 
the influence from age, gender, and blood pressure, and to 
assess preload dependency of tissue Doppler derived measures 
of systolic function. 
 
To examine left ventricular systolic long axis function in patients 
with essential hypertension and preserved ejection fraction. 
Furthermore to assess left ventricular systolic long axis and 
diastolic function in patients with hypertension, suffering from 
an acute myocardial infarction. 
 
To investigate left ventricular systolic long axis function in pa-
tients with diabetes and preserved ejection fraction, and assess 
the influence from coexisting hypertension, left ventricular 
hypertrophy and chronic hyperglycemia as well as the effects of 
blood pressure reduction and improved glycemic control. 

METHODOLOGICAL ASPECTS 

Participants 
Studies I and II consist of 85 normal unmedicated individuals.  
Studies III and IV consist of 78 patients with arterial hypertension 
(40 and 38 patients, respectively), and 38 control patients with 
myocardial infarction. 
Studies V-VIII consist of 143 patients with diabetes mellitus (123 
patients with type 2 diabetes and 20 with type 1 diabetes). 
Thirty-seven of the patients from study VI also chose to partici-
pate in study VII. 

Patient characteristics 
The patients were recruited from the out-patient clinics at the 
departments of internal medicine in Aarhus, Viborg and Silkeborg, 
as well as from their general practitioners. Patients with essential 
hypertension were all recruited from Aarhus Hospital (NBG), 
whereas patients with hypertension and myocardial infarction 
were taken from the RESCUE-study (31). 
Non-diabetic patients with hypertension fulfilled the criteria’s of 
arterial hypertension according to the JNC VII report (32) or the 
2003 ESH guidelines (33). 
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Antecedent hypertension was defined as such, if the diagnosis 
was known by the patient, or if the general practitioner or refer-
ring cardiologist had indicated a history of hypertension in the 
admission note (34). 
All patients with diabetes mellitus (types 1 and 2) fulfilled the 
recommended WHO criteria for diabetes (35) upon entering the 
studies. Patients were classified as normotensive, if their arterial 
blood pressure from the time of the diabetes diagnosis, had been 
below 130/85 mmHg at all examinations and they never had been 
treated with antihypertensive medication. 
Diabetic patients with hypertension also fulfilled the hypertension 
criteria according to the JNC VII report (32) or 2003 ESH guide-
lines (33). 
Albuminuria was classified by assessment of the urine-albumin-
creatinine ratio (UACR. Patients were classified as normo-
albuminuric, when at least 2 out of 3 urinary UACR’s were < 2.5 
mg/mmol (men) and < 3.5 mg/mmol (women); as microalbumi-
nuric when their UACR’s were between 2.5 and 25 mg/mmol 
(men) and between 3.5 and 35 mg/mmol (women), and as 
macroalbuminuric when the UACR’s were > 25 mg/mmol (men) or 
> 35 mg/mmol (women) or dip stick positive proteinuria in at 
least 2 out of 3 samples)(36). Urinary albumin concentration was 
determined by an immunoturbidimetric method (Roche Diagnos-
tics, Basel, Switzerland). 
All patients were free of any cardiac symptoms (chest pain, dysp-
noea) had normal resting ECGs and had no prior history of cardiac 
disease, except patients from study IV, who all had suffered from 
a large myocardial infarction. 

Measures of glycosylation 
In the present studies, the following 3 measures of glycosylation 
were used.  

Fructosamine 
Fructosamine was estimated by a commercially available kit, (ABX 
Pentra fructosamine Montpellier France) based on the tetrazo-
lium method. Serum samples were immediately frozen at -80°C 
until analysis. Data presented are mean of triplicates and all 
samples were analyzed in one batch. The intraassay coefficient of 
variance was less than 5 %. Analyses were done in-house. 

Carboxymethyllysine 
Carboxymethyllysine- bovine serum albumin (CML-BSA) was 
prepared according to Reddy et al.(37). The monoclonal anti-CML 
antibodies (CML-2F8AxB) were identical to the ones described in 
a previous study (38) supplied by Novo Nordisk A/S (Bagsværd, 
Denmark). The serum levels of CML were determined by pre-
viously published methods using competitive immunoassays with 
the DELFIA-system (Wallac, Turku, Finland )(38). One CML unit 
was defined as the competitive activity of 1 µg of CML-BSA stan-
dard. Serum samples were immediately frozen at -80°C until 
analysis. Data presented are mean of triplicates. All samples were 
analyzed in one batch. The intra-assay coefficient of variation of 
the CML-assay was 6-12%. The analyses were done at Aker Uni-
versity Hospital, Oslo 

Glycosylated hemoglobin (HbA1c) 
Glycosylated hemoglobin (HbA1c) was measured, by HPLC (High 
Pressure Liquid Chromatography). Analyses were performed at 
each visit by the central lab at Aarhus University Hospital, Den-
mark. 

Echocardiography 
To obtain dimensions and conventional measures of systolic and 
diastolic function, a standard echocardiography was performed in 
all patients,  
Echocardiograms in studies I, V-VIII were performed on a GE Vivid 
Five (GE Healthcare, Horten, Norway) using a 2.5 MHz transducer.  
The remaining echocardiograms were performed on the GE Vivid 
Seven (GE Healthcare, Horten, Norway) using a similar transduc-
er. All echocardiograms were done in the resting stage by one 
observer, except from some of the echocardiograms in studies III 
and IV. 
Left ventricular dimensions were assessed by M-Mode echocardi-
ography and LV ejection fraction was obtained by Simpson’s 
method of discs (16). In studies II and IV, LV ejection fraction was 
assessed by a 3D rotational device (39). Wall motion index as-
sessment was also performed in patients from study IV. 
Assessment of left ventricular diastolic function 
At present, the ESC recommends to base the echocardiographic 
assessment of diastolic dysfunction on tissue Doppler recordings 
of the mitral ring displacement velocity during diastole (E’) and 
relate this velocity to the mitral inflow velocity, assessed by spec-
tral Doppler (E) in the E/E’ ratio (40). This measure seems very 
robust, and correlates well with invasive measures  of pulmonary 
capillary wedge pressure (41;42) and the left ventricular end-
diastolic pressure (43). 
However, there is no consensus about, where the E/E’ ratio 
should be obtained (40), which leaves the observer to a choice 
between the lateral (42) and medial (41) mitral annulus, which 
can give different results (44). 
Assessment of diastolic function, should be combined with an 
assessment of the left atrial dimensions, either by measuring the 
left atrial diameter or by obtaining left atrial volume measure-
ments indexed to body surface area (40). 
In the present thesis the diastolic function is mainly assessed by 
spectral Doppler supplemented by color M-mode flow propaga-
tion recordings of the inflow in the LV cavity (45;46), which was 
the recommended method at that time. In the most recent stu-
dies (IV, VIII) assessment of diastolic function is based on the E/E’ 
ratio, due to recent recommendations (40). 
There are strengths and weaknesses to all assessment of diastolic 
dysfunction and a combined assessment using different methods 
is often advisable.  

Tissue Doppler imaging 
Tissue Doppler is derived from the traditional Doppler technique.  
By filtering high velocities from the blood pool Doppler, it is poss-
ible to obtain velocity information from a spectrum of lower 
velocities, which will involve myocardial deformation. 
As any other Doppler modality, Tissue Doppler is angle depen-
dent, which requires an optimal insonating angle (47;48). Record-
ings with high frame rates in narrow sectors improve tissue Dopp-
ler data and reduce signal noise (47;48). 
Apical views enable assessment of the global LV long axis func-
tion, whereas radial contraction can be visualized in the paraster-
nal views. However, the number of measuring points with TDI is 
limited in the parasternal views compared to the apical views. 
Spectral tissue Doppler vs. color-coded tissue Doppler 
At present, two different TDI-modalities are available; 1) Spectral 
tissue Doppler and 2) Color-coded tissue Doppler.  
At first, it was only possible to obtain regional spectral tissue 
Doppler curves (pulse-wave Doppler) by TDI. By placing the region 
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of interest (ROI) in a specific area like the mitral ring, velocity 
recording could immediately be obtained. 
Spectral TDI has excellent temporal resolution (<4 ms) and pro-
vides instantaneous velocity recordings of myocardial deforma-
tion in a specific region. This modality was initially introduced, 
both as a new measure of systolic and diastolic function 
(41;42;49), but could also provide information about cardiac time 
intervals and myocardial velocity gradients (50;51).  
By the introduction of color-coded tissue Doppler echocardiogra-
phy, it became possible to obtain velocity information from the 
whole scanning sector and to digitally store myocardial velocity 
data for off-line analyses (52).  
Temporal resolution in color-coded TDI is lower than spectral 
Doppler, which means that absolute values derived from myocar-
dial velocities using off-line tissue Doppler are lower than if ac-
quired with spectral tissue Doppler techniques (53;54). This is 
caused by color coded TDI’s autocorrelation analysis, where it is 
only possible to compute one velocity for each sample volume at 
each point in time. Therefore, the velocities derived by color 
coded TDI are only mean values of all velocity components found 
within the same sample volume (54). Thereby peak values are lost 
in the sampling and the absolute value becomes lower (53;54). 
However, the introduction of color-coded tissue Doppler made 
image acquisition less demanding and enabled calculation of 
several different TDI modalities from the same heart cycle. This 
also facilitated assessment of global LV function, which was not 
possible with spectral TDI. 
All TDI data in the present thesis are derived from color-coded 
tissue Doppler. 

Color-coded TDI assessment of systolic function 
Systole can be defined as the time span between aortic valve 
opening and closure. By tissue Doppler imaging, opening and 
closure of the aortic valve can be defined by a curved anatomical 
M-mode recording, placed through the aortic valve leaflets in the 
apical long axis view (event timing). This technique ensures a very 
precise assessment of the systolic phase in the cardiac cycle. 
From tissue velocity recordings, it is possible to compute other 
tissue Doppler modalities: By numerical integration of the velocity 
curves, it is possible to create myocardial displacement curves 
(Tissue Tracking, see below). 
Strain rate, which is the rate of change of deformation, can be 
derived as a spatial derivative of velocity, whereas temporal 
integration of strain rate can be used for calculating regional 
strain. The following will provide in detail information about the 
most commonly used systolic tissue Doppler modalities. 

Tissue velocities 
Tissue velocities provide an estimate of the myocardial deforma-
tion velocity during both systole and diastole. The systolic veloci-
ties are often presented as S’ (peak systolic velocity), E’ (early 
diastolic velocity), and A’ (peak velocity during atrial systole). 
The maximum systolic long axis velocities are found in the mitral 
ring and in the basal segments and lessen gradually through the 
myocardium to the apex, where minimal or no myocardial short-
ening is found (55-59). The normal spectrum of systolic mitral ring 
displacement velocities (S’) are 7-10 cm/s and in the apex 2-4 
cm/s (55) (Figure 1). 
The advantage of tissue velocity imaging is the broad applicability 
of the modality. 
Assessment of peak systolic velocities supplements traditional 
estimation of systolic function in a broad spectrum of diseases 

(31;60;61), and is an important tool in event timing in cardiac 
resynchronization (62;63). In addition, it seems that tissue veloci-
ty assessment of diastolic dysfunction has simplified a somewhat 
difficult discipline (40-43). Moreover, tissue velocity imaging 
upholds prognostic information about patients with cardiovascu-
lar disease (64). 
The downside of tissue velocities is the influence from tethering 
by adjacent segments, which can give misleadingly high tissue 
velocities in specific segments. Due to stretching motions from 
bordering segments around the ROI, it is not possible to distin-
guish translational motion from actual contraction which will 
result in false overestimation of the velocities (65;66). 
A second issue is reproducibility, where inter-observer variations 
can vary from below 10 percent in some studies (56;67), to over 
15 percent in others (68).  
In experimental and clinical settings, tissue Doppler velocities are 
considered relatively heart rate independent (55;69;70), but 
dependent on systolic blood pressure and age (55). However, 
there are no gender differences in humans (55). 
Preload changes within a clinical spectrum do not seem to influ-
ence systolic velocities. Influences like nitroglycerine and leg 
elevation (71), a 500-mL blood donation (72) or fluid retraction 
from uremic patients undergoing hemodialysis (73) do not alter 
tissue velocities. 
A single study, made in more advanced settings using progressive 
reductions of preload, obtained by “Lower Body Negative Pres-
sure” during parabolic flight, was able to demonstrate some 
preload dependence (74). However these findings may have 
limited value. 

Isovolumetric acceleration 
The isovolumetric acceleration (IVA) is basically a velocity meas-
ure. It reflects the systolic displacement velocity of longitudinally 
or spirally arranged fibers in the subendocardial and subepicardial 
layers of the myocardium. These fibers alter the shape of the 
ventricular cavity into a sphere during the isovolumetric contrac-
tion period, thereby enhancing force of contraction (75-78). 
The acceleration curve is measured as the slope of the presystolic 
velocity curve and expressed in centimeters per second

2
. In nor-

mal subjects the IVA derived from the lateral mitral ring is approx-
imately 1.5 m/s

2
 (71) (Figure 2). 

The IVA is a short-lived entity (< 0.1 sec) that does not appear in 
recordings at low frame rates (below approximately 140 fps). 
Therefore, it is often necessary to measure IVA through a narrow 
sector with frame rates above 200 per second. However, newer 
equipment can easily obtain high frame rates (> 200 fps) in nor-
mal sized scanning sectors, but in dilated hearts it is still neces-
sary to assess one myocardial wall at a time. 
Myocardial acceleration during the isovolumetric contraction 
period correlates well to invasive measures of intraventricular 
pressure but may also reflect late-diastolic events and possibly 
also represent wall oscillations, which are related to global LV 
function (79;80). 
The isovolumetric acceleration was for some time considered 
unaffected by changes in loading within a physiological range 
(79). This observation was mainly based on findings from experi-
mental settings (79;81), and these results have been disputed 
ever since (71;80;82-85). 
In a different setting in humans, using nitroglycerine to lower 
preload and leg-lifting to increase preload, the mean IVA obtained 
in the mitral annulus decreased significantly during increased 
preload (1.38 ± 0.50 vs.1.60 m/s

2
 ± 0.60, p< 0.01), whereas the 
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acceleration curve rises during preload reduction (2.18 ± 0.65 
m/s

2
 vs.1.60 m/s

2
 ± 0.60, p< 0.01) (71). 

These data clearly indicated that changes in preload had signifi-
cant influence on IVA. However, the set-up was criticized for its 
research design and results, mainly due to theoretical influence 
from catecholamines, released due to the nitroglycerine stimulus 
(83). However, two separate studies were later able to confirm 
these findings, when the IVA measure was tested under different 
kinds of load changes (80;85). In a study by Lyseggen et al., peak 
IVA was markedly load dependent and did not reflect impaired 
myocardial function during ischemia (80), and in a second study 
regarding patients with reduced LVEF, IVA also seemed signifi-
cantly dependent on preload (85). 
This issue remains controversial and is far from settled. A recent 
study has yet again claimed IVA to be load stable in healthy sub-
jects during saline infusion (82). Nonetheless, based on the di-
verse data in human settings, IVA seems to have limited potential 
in the assessment of myocardial function (71;80). 

Tissue tracking 
Tissue tracking (TT) displays the integral of myocardial tissue 
velocity during systole, which equals the distance of motion along 
the LV long axis. By this technique, up to seven color bands are 
visualized, which indicate different displacement amplitudes from 
the base of the heart to the apex. Depending on the LV function, 
the range of displacement displayed by the seven colour bands 
can be altered to stretch the color bands between the apex and 
the mitral annular level (Figure 1).  
When analyzing the left ventricle in apical views, the lowest dis-
tance of motion is at the apex and the greatest at the mitral 
annulus. In normal subjects, the displacement amplitude in the 
basal segments is 10 -12 mm and 2-4 mm in the apex (55). 
The major advantage of Tissue Tracking is the easy applicability 
of information about the LV systolic long axis function which is 
available to the eye at a glance, and can be analyzed within 
seconds (86). This will provide the observer with supplemental 
information about long axis function without major efforts in 
image acquisition. 
Tissue tracking analysis of mitral annulus displacement also corre-
lates well with LV ejection fraction in patients with heart failure 
(86;87) and is reproducible in a broad spectrum of patients (55). 
Intraobserver and interobserver variabilities have been deter-
mined to be 3 ± 2% and 4 ± 3% respectively (55). Tissue Tracking 
can also be used to detect subtle changes in LV function, which 
cannot be found by use of the LVEF estimate (88). 
Despite these advantages, Tissue Tracking has not earned general 
recognition and is not widely used for research purposes.  
As well as tissue velocities, tissue tracking is influenced by tether-
ing (55).This can be seen as presence of the same systolic dis-
placement amplitude (same colorband) in adjacent myocardial 
segments, which may reflect stretching e.g. presence of passive 
movement of the specific myocardial segment (55). Tissue Track-
ing seems equally influenced by age, blood pressure and heart 
rate as velocity assessment (55), but has not been preload vali-
dated. 

Strain and strain rate  
Strain and strain rate display myocardial deformation and have 
shown excellent correlations to tagged magnetic resonance strain 
measurements (89). Strain and strain rate are also derived from 
tissue velocity data and can only be assessed by colour-coded 
images off-line (Figure 1). 

Strain (ε) describes the relative change in length between two 
points over a given distance. This means that two adjacent myo-
cardial segments are either being stretched (diastole) or com-
pressed (systole) to a new length or remain unchanged. The strain 
value is dimensionless and can be presented as a fractional num-
ber or as a percentage: positive for lengthening, negative for 
shortening, and zero for no change in length (71;90;91). The 
spectrum of strain values derived from the basal myocardial 
segments range from 15 to 30 per cent in normal subjects (71). 
Strain values derived from the mitral ring are considerably lower, 
due to presence of fibrous tissue in the mitral annulus (71). 
Strain rate (SR) is the temporal derivative of strain. While strain 
indicates the amount of deformation, strain rate indicates the 
rate of deformation. The relation between strain rate and strain 
can be compared to the relation between velocity and displace-
ment (e.g. Tissue Tracking). 
Strain rate is also dimensionless and expressed with the unit per 
second or s

-1
. 

The strain rate values in the basal segments in normal subjects 
are approximately -2.5 s

-1
 and -1.5 s

-1
 in apical segments (55). 

Strain and strain rate only measure deformation. None are mea-
surements of contractility (stress / strain relation), which involves 
myocardial tension (stress). 
However, from invasive studies, systolic strain seems closely 
correlated to stroke volume, whereas systolic strain rate being an 
early systolic event seems more closely correlated to contractility 
(47;69;92). In experimental settings, strain and strain rate seem 
heart rate independent within the normal physiological spectrum 
(heart rate below 140 bpm) (69;70), and there is no correlation 
between heart rate and strain rate in humans examined in the 
resting stage (55). 
There is general consensus, that strain and strain rate seem supe-
rior, compared to other TDI derived measures of systolic function, 
when it comes to load independency (71;80). When different TDI 
modalities are compared under the same circumstances, strain 
and strain rate tend to be less load dependent, compared to 
velocity parameters like IVA or crude velocity recordings from 
either the free wall of the left ventricle or the mitral ring (71;93-
95). 
The reasons, why strain and strain rate remain relatively load 
stable in the normal myocardium, may be the fact that systolic 
strain quantifies regional systolic deformation of the LV and is 
mainly determined by the ejection performance (stroke volume, 
ejection fraction), which should be unchanged during preload 
changes (69;71) Similarly, peak strain rates are predominantly 
related to local contractile function and less on loading conditions 
(69). Compared to tissue velocities, both entities are uninfluenced 
by tethering and translational motion (96). However, there are 
several pitfalls related to these methods, especially when it 
comes to image acquisition (97-99). 

Image acquisition 
As in velocity imaging, low frame rates will result in under sam-
pling and loss of data (100). Signal noise should also be dimi-
nished by second harmonic imaging and curve smoothing modali-
ties, and reverberation artifacts should be avoided to obtain 
reliable strain and strain rate curves (47;101). 
The strain length (offset for calculating strain and strain rate) is 
crucial since strain and strain rate values are dependent on, how 
far the two measuring points are placed apart. The larger the 
strain length, the higher risk of missing important information or 
obtaining wrong values (47). The strain length is adjusted by 
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reducing the ROI, but strain length is rarely mentioned in TDI 
publications. In the present studies, strain and strain rate was 
calculated over an offset (strain length) of 6-9 mm. 
 

Figure 1. 
Four different tissue Doppler modalities from one cineloop. 
I) Tissue Velocities. II) Tissue Tracking. III) Strain. IV) Strain rate. 
Please notice the R-wave in the ECG (bottom of all images) and the dissimilar 
timing of the different TDI modalities. 

 
During off-line analysis, another problem appears which is called 
drift. Drift is a phenomenon in the integrated modalities of dis-
placement and strain. It results from the accumulation of small 
non random errors in velocity or strain rate values and can be 
upwards or downwards (47;102). Drift can be compensated in 
post-processing by numerous maneuvers, but it is questionable 
how or if drift compensation should be done, since image mod-
ulation may result in loss of information or actually “making” 
wrong values during drift compensation (47;102). 
Intra-observer variations of strain and strain rate are acceptable, 
but inter-observer variations are moderately high (55). In centers 

where more advanced software is available, the inter-observer 
variation is still 10-13 percent (103).  

 

Figure 2 
Notice the marked difference in the two different isovolumetric acceleration 
(IVA) curves obtained in from the same individual with different image acquisi-
tion. Above: Tissue velocity curved obtained through a standard size sector at 
177 fps. Below: Tissue Velocity curve obtained though a narrow sector at 239 
fps. 

Choice of tissue Doppler method 
Which systolic TDI parameter to choose must depend on the 
clinical question and the patient category. 
Tissue velocity imaging and Tissue Tracking will apply well in on-
line settings and provide a quick overview of the LV function as a 
supplement to LVEF or other 2D methods. In addition, assessment 
of the patient evaluated for cardiac resynchronization or patients 
suspected for diastolic dysfunction can easily be handled using 
tissue velocities.  
However, for research purposes a more refined assessment of 
both global and regional LV contraction may be needed, and here 
strain or strain rates are generally preferred, due to the relative 
load independency, heart rate independence, and lack of influ-
ence from tethering (98). The most immediate clinical application 
of strain and strain rate is to identify subclinical LV dysfunction, 
but barriers to the clinical implementations of these modalities 
include the requirement for significant understanding of complex 
methodology, technical challenges of image acquisition and ana-
lyses (98). 
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CLINICAL ASPECTS 

Hypertensive heart disease 
Arterial hypertension can have significant impact on the heart, 
involving both the cardiac structure and function. Especially ele-
vated systolic blood pressure and pulse pressure, seem directly 
related to increased incidence of congestive heart failure (104). 
Activation of neurohormonal mechanisms may as well have influ-
ence on the characteristics of the left sided myocardium (105). 
There is no specific hypertensive cardiomyopathy, but numerous 
characteristics that indicate influence from elevated blood pres-
sure on the myocardium. Factors like left ventricular hypertrophy 
and remodeling as well as myocardial stiffening and fibrosis all 
induce diastolic dysfunction and left atrial enlargement in hyper-
tensive patients (106-109). Presence of coexisting coronary heart 
disease will accentuate the condition (110).  
Hypertension is highly prevalent in patients with heart failure 
symptoms and preserved ejection fraction (111;112). Further-
more, many patients hospitalized with acute pulmonary edema 
have hypertension and apparently normal ejection fractions (113-
115), and the general conception is that diastolic dysfunction is 
the causal mechanism behind pulmonary congestion (115). 
However, Tissue Doppler imaging may contribute with informa-
tion about changes in systolic long axis function in hypertensive 
patients and can elucidate some of the primary interactions be-
tween hypertension and the left-sided myocardium. Moreover, 
TDI may also clarify some of the patophysiological mechanisms 
behind elevated blood pressure and LV dysfunction. The following 
sections will provide an overview of the most prevalent conse-
quences of hypertension on the heart and their relation to 
changes in long axis function.   

Left ventricular hypertrophy 
Left ventricular hypertrophy (LVH) is defined as thickening of the 
myocardium due to an increase in the size of its cells (116). Physi-
ological cardiac hypertrophy is often seen in response to exercise 
training, whereas pathological hypertrophy results from pressure 
overload, and neurohumoral stress (117). 
Left ventricular hypertrophy is mainly found in patients with 
hypertension (109), obesity (118), diabetes (119) aortic stenosis 
(76), and in more rare genetic diseases coding for various contrac-
tile proteins (120;121). 
In hypertension, LVH is a direct indicator of target organ damage 
and closely associated with increased cardiovascular morbidity 
and mortality from cardiovascular disease. The risk factor-
adjusted relative risk of cardiovascular disease in men is 1.49 
(1.20-1.85) for each increment of 50g/m

2
 in left ventricular (LV) 

mass and 1.57 (1.2- 2.04) in women (122). 
Echocardiography uses measurements of LV wall thickness and 
left ventricular diastolic dimensions by a validated cube formula 
to estimate LV wall volume. When this volume is multiplied by a 
constant representing the gravity of muscle, the echocardio-
graphic estimate provides a good indication of LV mass (15). 
Because of normal variations in LV mass, calculations are stan-
dardized by indexing for height or body surface area. The arbi-
trary cut-off for LV mass at the 97th percentile of the population 
norms has been used to define LVH; However, on the basis of 
data from the Framingham study, the risk for cardiovascular 
events appears to increase with LV mass indices even well below 
this percentile (122).  

By echocardiography, LVH can be classified as concentric or ec-
centric, depending on the ratio of LV wall thickness to chamber 
diameter. 
Concentric hypertrophy is defined as LV hypertrophy with an 
increased ratio between wall thickness and LV cavity dimension 
(2 x posterior wall diameter / LV diastolic diameter > 0.43) 
(108;123). Eccentric hypertrophy is defined as LV hypertrophy 
without an increased ratio between wall thickness and LV cavity 
dimension (<0.43). Finally concentric LV remodeling is a condition 
defined as an increased ratio but with an LV mass within normal 
limits (123). 
The patophysiology behind the appearance of the different LV 
hypertrophy patterns is not fully understood, but it seems that 
stimulation of myocardial cell growth and activation of the sym-
pathetic nervous system might preferentially lead to concentric 
LV hypertrophy through a direct trophic effect and pressure over-
load, whereas sodium and water retention could lead to eccentric 
LV hypertrophy due to volume overload (124;125).  
There is a close relation between presence of LVH and systolic 
dysfunction as demonstrated in the large population studies like 
HyperGen (119) and Strong Heart (126), where patients with LVH 
have impaired systolic function. Over time, patients with LVH also 
seem predisposed to develop systolic heart failure, but often in 
relation to concomitant presence of coronary heart disease and 
MI (127;128). 
However, from clinical hypertension trials there are interesting 
data which indicate a close relation between LVH and systolic 
dysfunction which is if blood pressure is lowered and the LV mass 
is reduced (129). 

Myocardial fibrosis 
The cardiac tissue composition also changes in hypertension, due 
to myocardial remodeling in the presence of elevated blood 
pressure.  
While LVH is based on the growth of cardiomyocytes, cardiac 
fibrosis is accompanied by other iterations in tissue structure, 
involving heterogeneity and a disproportionate involvement of 
noncardiomyocyte cells, which accounts for a pathologic remode-
ling of tissue structure (116;130;131). 
The cardiomyocytes become tethered within an exaggerated 
accumulation of extracellular collagen fibers, endothelial and 
vascular smooth muscle cells and fibroblasts located in interstitial 
and perivascular spaces (132). 
In post mortem hypertensive hearts, Tanaka et al. observed in-
creasing amounts of cardiac fibrosis from the outer layer of the 
myocardium to the inner layer, where the fibrosis severity was 
highest (116). Fibroblasts contribute to accumulation of perivas-
cular fibrosis which seems to impair the vasodilator capacity of 
the intramyocardial arterioles (116;133). This may further exagge-
rate accumulation of interstitial fibrosis. 
Development of myocardial fibrosis appears to be due to disequi-
librium between synthesis and degradation of collagen, caused by 
disturbance of the normal reciprocal regulation of collagen pro-
duction (130). It seems that cardiac fibroblasts contribute to an 
upregulation of collagen type I and III and diminished degradation 
of collagens when in presence of hemodynamic overload 
(130;134;135). Fibrosis development seems to represent a reac-
tive process due to overload and shear stress of the inner wall of 
the left ventricle (130;134;135), and may also be facilitated by 
neurohormonal activation from the renin-angiotensin system, 
corticosteroids, catecholamines and endothelial factors 
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(131;136;137). Here the common denominators are inflammation 
and tissue repair which will lead to activation of fibroblasts. 
A major interest has been focused on assessment of serological 
markers of collagen turnover and their applicability as markers of 
cardiac fibrosis. 
The main focus has been on detecting collagen turnover by mea-
suring  procollagen types I and III in peripheral blood (138). In 
humans, carboxy-terminal propeptide of procollagen type I (PIP), 
an index of collagen type I synthesis, correlates well to the level 
of myocardial fibrosis in endomyocardial biopsies taken from the 
interventricular septum (139). However, the blood was sampled 
in the coronary sinus, which makes the results difficult to apply in 
daily clinics. 
However, pro-collagen type I sampled from peripheral blood 
relates well to ultrasonic reflectivity, evaluated by a real-time 
integrated backscatter analysis (140) . Ultrasound reflectivity 
should in these cases indicate fibrosis, i.e. the relation to collagen 
type I turnover (140), but does not provide any information about 
myocardial function. 
A few studies have focused on whether serological markers of 
collagen turnover are associated to long axis function. There 
seems to be a relation between serological collagen markers of 
collagen III and systolic long axis velocities (141) as well as long 
axis strain (142) in hypertensive patients. Likewise, decreased 
levels of circulating collagen markers seem to indicate cardio 
reparation in hypertensive individuals treated with blood pres-
sure lowering drugs (132;143), including blockade of the renin-
angiotensin system (144-146). It is important to emphasize that 
blood pressure lowering seems superior to any specific drug 
therapy (147). 
There are downsides to assessment of collagen turnover and 
monitoring of myocardial fibrosis and function in the daily clinic.  
Tests are relatively expensive, and in some cases there is lack of 
specificity due to contribution of pro-collagens from larger organs 
like liver and bone (148;149). Moreover, it is unresolved what 
consequence should be drawn from positive test results beyond 
blood pressure lowering. However as a research tool, assessment 
of collagen turnover in lean patients with essential hypertension 
still seems quite promising. 

Diastolic dysfunction 
The term diastolic dysfunction refers to a condition with in-
creased filling pressures and decreased compliance of the left 
ventricle (17). In hypertension, diastolic dysfunction is a common 
sequela to elevated blood pressure, closely associated with LVH 
(150;151). 
Diastolic dysfunction is frequent in the ageing population (152), in 
diabetic patients (153), in systolic heart failure (154), and in pa-
tients with acute myocardial infarction (155). Impaired diastolic 
function is associated with atrial fibrillation (156), aortic stiffness 
(157;158), and albuminuria (159;160), and has a poor prognosis 
comparable to that of systolic heart failure (112;161). 
Diastolic function is composed of an energy demanding myocar-
dial relaxation and the distensibility of the left ventricle, which is 
a passive phenomenon (162). Relaxation of the contracted myo-
cardium occurs at the onset of diastole and produces a suction 
effect, which augments a pressure gradient between the left 
atrium and the ventricle, facilitating diastolic filling.  During the 
later phases of diastole, the cardiomyocytes in the left ventricle 
are relaxed and the LV wall is compliant, which as a consequence 
offers minimal resistance to further LV filling. Therefore, the 
contribution from the atrium is fairly small in the normal diastole 

(163;164). Structural changes like LV hypertrophy, and myocardial 
fibrosis or myocardial ischemia, lead to reduced chamber size and 
decreased capacitance (reduced volume at a specific pressure) 
(163), which results in an upward and leftward shift in the diastol-
ic pressure volume curve. As a result, the chamber compliance is 
reduced, the time course of filling is altered, and LV filling occurs 
against elevated pressure in the ventricle. 
Under such circumstances, small increases in central blood vo-
lume can cause a substantial increase in left atrial and pulmonary 
venous pressures and may result in pulmonary congestion (164). 
In conditions with long duration, diastolic dysfunction will inevit-
ably lead to left atrial dilation and increased risk of atrial fibrilla-
tion, which is a common comorbidity in hypertension (165;166). 
Furthermore, it is evident that patients with diastolic dysfunction 
and heart failure symptoms carry a poor prognosis similar to what 
is found in patients with reduced LVEF (111;167;168).  

Treatment of diastolic dysfunction 
Despite significant improvements in the medical treatment of 
systolic heart failure, diastolic dysfunction is still a therapeutic 
enigma. Many strategies have been challenged, but besides blood 
pressure lowering (169) or diuretics if congestion is present, no 
specific treatment strategy has been superior in treating diastolic 
dysfunction. 
The 2005 ACC/AHA CHF guidelines (2), support four approaches: 
 
 

 Control of systolic and diastolic hypertension  
 

 Control of ventricular rate in patients with atrial fibrilla-
tion 
 

 Control of pulmonary congestion and peripheral edema 
with diuretics 
 

 Coronary revascularization in patients with CHD in 
whom ischemia is judged to have an adverse effect on 
diastolic function  

 
Medical treatment should be aimed at regression of LV mass, 
which theoretically should improve the diastolic function. Reduc-
tion of LV mass is primarily related to blood pressure lowering 
than to a specific drug therapy. There may be a tendency to less 
LV mass regression with beta-blockers, compared to drug classes 
like ACE-inhibitors and ARB’s or calcium channel blockers, but 
data are not convincing (170-173). 
Another aspect has been whether LV remodeling (ACE/ARB) was 
superior to slowing the heart rate and prolonging the filling pe-
riod (beta blockers). 
However, no large randomized trial has yet been able to answer 
this question. The recently published OPTIMIZE-HF study based 
on beta-blocker therapy failed to show any benefit in patients 
with diastolic dysfunction (174) and neither the VALIDD trial 
(169), the CHARM-preserved trial (175) or the I-PRESERVE trial 
(176) were able to show superiority from an ARB-based regimen. 
So if a drug should be recommended for specifically treating 
diastolic dysfunction, it must have benefits beyond simple blood 
pressure lowering abilities to be superior to good blood pressure 
control. 



 DANISH MEDICAL BULLETIN   9 

Isolated diastolic dysfunction? 
Previously, diastolic dysfunction was often taken as an isolated 
phenomenon, if the LV ejection fraction was above 45 %, and the  
term “isolated diastolic dysfunction” or “diastolic dysfunction 
with preserved systolic function” was widely used to characterize 
these patients (177;178). 
However, this conception is not correct, since the systolic func-
tion does not appear normal if more advanced echocardiographic 
modalities are applied (179;180). 
For a long time, it has been possible to demonstrate prolonged 
pre-ejection time and ejection time intervals by use of spectral 
Doppler (181), which are useful indicators of reduced systolic 
function, also in hypertension (182). However, these findings did 
not seem to have significant impact on the conception that dias-
tolic dysfunction was an isolated phenomenon, if the ejection 
fraction was above 45-50 per cent. By introduction of new TDI 
based echocardiographic measures, it became obvious that the 
systolic function was abnormal in a vast majority of this specific 
patient category, and that isolated diastolic dysfunction was 
actually quite uncommon (179;180;183-185).  
The large amount of data made it necessary to rephrase the term 
“isolated diastolic dysfunction” to “heart failure with preserved 
ejection fraction” (HFNEF), which at present is the most common-
ly used term (40). 

Early systolic dysfunction in hypertension  
The early systolic dysfunction in hypertensive HFNEF patients is 
not fully defined, despite numerous studies. It is unclear whether 
there is a simultaneous degradation of contraction and relaxation 
of the cardiomyocyte, or whether these are separate phenomena. 
Previously, it was generally accepted that the failing midwall 
function was the earliest sign of systolic failure hypertensive 
individuals (186;187). This conception was among others derived 
from the LIFE-study, where midwall fractional shortening was 
used as a parameter of systolic dysfunction (188).  
However, it is worth noticing that the average echo-LIFE patient 
had considerably elevated blood pressure (mean 174 / 96 mmHg), 
was approximately 67 years old and overweight, and had eccen-
tric LVH with a considerable enlarged LV mass (average above 230 
g)(189). Far from all hypertensive patients apply to these charac-
teristics and reduced midwall fractional shortening may not be 
among the earliest changes in systolic function in hypertensive 
individuals. 
By use of TDI it is possible to detect subclinical changes in long 
axis function, which seems to appear even earlier than failure of 
the midwall. This opens up for a new conception of LV mechanics 
in hypertensive individuals in the early stages of the disease. 
It seems that the earliest involvement is impaired long axis func-
tion, often hand in hand with impaired diastolic dysfunction 
(27;179;183) and can be found in hypertensive patients with only 
low grade hypertension (179;185). Reduced long axis function can 
often be seen in conjunction with normal or increased circumfe-
rential (midwall) deformation, which in the primary stages pre-
serves the ejection fraction (27;190;191). This pattern of involve-
ment can also be found in diabetic individuals (192;193) and has 
been interpreted as evidence of the long axis oriented subendo-
cardium, being the primary site of involvement of hypertension 
(190;191). 
Therefore, it must be assumed that dysfunction of the radial 
oriented fibers must belong to a more advanced stage of myocar-
dial dysfunction (20). 

Decreased long axis function is closely related to the presence of 
LVH in both non-diabetic and diabetic patients (27;160;179;194) 
and probably more pronounced in patients with concentric hyper-
trophy (195). Moreover, diminished long axis function is as men-
tioned associated to myocardial fibrosis, which may contribute 
significantly to impaired LV function (196), as this phenomenon 
also can be observed in individuals with diastolic dysfunction 
without LVH (29;61;142).  
Theoretically, heart failure in hypertensive patients may consist of 
a primary deterioration of the long axis function, followed by 
failure of the midwall i.e. LIFE-study patients (129). Finally pa-
tients will experience reduction in LVEF and overt heart failure. A 
short cut to this stage could be a large myocardial infarction (MI). 
Coronary artery disease and hypertension 
Hypertension and coronary artery disease are evidently related, 
which has been shown in numerous occasions (197-200). 
How the coronary circulation and blood flow reserve relate to 
long axis dysfunction, left ventricular hypertrophy and myocardial 
fibrosis, is not fully clarified. However, several studies have found 
an association between diastolic dysfunction and impaired coro-
nary flow reserve in hypertensive individuals (201-203).  
In type 2 diabetic patients, a large tissue Doppler based study 
found decreased long axis function related to the presence of 
concomitant coronary artery disease (204), but a similar setup has 
not been made in patients with essential hypertension.  
Patophysiological mechanisms beyond the specific effects of 
ischemia on the cardiomyocyte function could be accumulation of 
fibrosis. Several small studies have found significant associations 
between increased collagen turnover, diastolic dysfunction and 
reduced coronary flow reserve estimated by ultrasound 
(133;205;206), but to which extent coronary artery disease in-
volves the systolic function in early stage hypertension is unre-
solved (110). 
Myocardial infarction in patients with antecedent hypertension 
The ultimate consequence of coronary atherosclerosis is myocar-
dial infarction, which is far the most common cause of overt heart 
failure in hypertensive patients (127;128;163;207). Presence of 
clinical heart failure symptoms after an acute myocardial infarc-
tion carries a very poor prognosis (208;209), and concomitant 
hypertension reduces the survival further (210).  
The adverse influence of hypertension on the left ventricular 
function after a myocardial infarction is not well described and 
there seems to be marked differences depending on the 
revascularization therapy. 
Data derived from large myocardial infarction trails, based on 
thrombolytic therapy indicate that patients with a history of 
hypertension have poorer outcome, more evident congestive 
heart failure symptoms, more pronounced LV dilation than pa-
tients without hypertension (211;212). 
However, entering the era of primary percutaneous intervention 
(pPCI), results have slightly changed. In two large studies, patients 
with antecedent hypertension treated with primary PCI only had 
minor differences in left ventricular volumes and ejection frac-
tions after an acute MI (34;213) compared to non-hypertensive 
controls. Nevertheless, these patients had disproportionately 
higher incidences of congestive heart failure symptoms compared 
to the control group (34;213). Different revascularization strate-
gies and improved antithrombotic treatment may explain the 
dissimilar results in LV remodeling, but the consistent high inci-
dences of heart failure symptoms are unexplained. A common 
denominator could be changes in long axis function, undetected 
by normal LVEF assessment. Otherwise, it could be caused by 
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worsened diastolic function in hypertensive patients accentuated 
by the MI (108;109;182). 
These assumptions were investigated in a study involving patients 
with antecedent hypertension and acute myocardial infarction 
(44). In this study, both hypertensive patients and a control group 
of non-hypertensives with myocardial infarction had impaired 
diastolic function immediately after the acute MI.  After 1 
month’s follow-up, the non-hypertensive patient’s diastolic func-
tion improved significantly, whereas patients with antecedent 
hypertension still had elevated E/E’ ratios and did not seem to 
improve their LV filling characteristics assessed by spectral Dopp-
ler. This was despite similar changes in LVEF, LV dimensions and 
long axis systolic strain (44). 
Impaired diastolic function will lead to pulmonary congestion and 
may partially explain why hypertensive patients experience more 
heart failure symptoms despite similar LVEF after a large MI. 
The causal mechanisms should be found in what is already known 
about the hypertensive heart, where presence of hypertension, 
LVH and myocardial stiffness leads to reduced chamber size and 
decreased diastolic capacitance (163;164). 
In addition, it seems that the hypertensive patient may suffer 
from more severe myocardial infarction damage since the myo-
cardium may be more vulnerable (214). As seen in the mentioned 
study, patients with antecedent hypertension had a significantly 
poorer post-procedural TIMI-frame count, a larger area at risk 
measured by SPECT, a slightly higher leak of cardiac troponins, 
and a strong tendency towards a larger final infarct size 
(44). 
Since any patient suffering from a large MI will experience deteri-
oration of the diastolic function (208;215), hypertensive patients 
will be worse affected and ought to experience more dyspnea and 
heart failure symptoms. 
Inevitably, presence and degree of abnormal LV filling will in-
crease left atrial size, which will lead to atrial fibrillation and 
increase the risk of stroke (216;217). Both disorders are far more 
common in hypertensive patients following an acute MI and will 
increase the morbidity and mortality of the hypertensive patient 
(218;219). These mechanisms correspond well with the fact that 
abnormal LV filling and left atrial size are strong predictors of 
survival after an acute myocardial infarction (167;220). 

DIABETIC HEART DISEASE 
Cardiac involvement in diabetes represents a continuum of prec-
linical stages, which evolve over time into marked structural and 
functional changes of the myocardium. 
The major characteristics of the internal milieu of the patient with 
diabetes are elevated blood pressure, hyperglycemia and pres-
ence of atherosclerosis. In type 2 diabetic patients, hyperinsuli-
nemia must also be considered a major determinant (221). 
The presence of diabetes is associated with a population-
attributable risk for developing CHF in both men (6%) and women 
(12%) (4;222). 
Presence of congestive heart failure in diabetic patients is very 
common and is characterized by significantly poorer outcome 
compared to non-diabetic heart failure patients (6;223-225).  
For decades, a diabetes-specific, non-ischemic myocardial disease 
– referred to as ‘diabetic cardiomyopathy’ has been discussed 
(226-228). In the seventies, Rubler et al. described the presence 
of CHF among a small group of patients with diabetes and renal 
involvement (229). In these patients, the presence of CHF could 
not be attributed to coronary artery disease or hypertension, but 
seemed solely related to the presence of diabetes. (229). As 

today, no specific criteria for a diabetic cardiomyopathy exist, and 
there is no clear definition (227;228;230). Furthermore, the con-
dition seems to have a long subclinical course and possible causa-
tive links are immediately interrupted by multifarious treatment 
algorithms (13).  

Diabetes and myocardial dysfunction 
The presence of left ventricular diastolic dysfunction in patients 
with normal LV ejection fraction was for a long time proposed as 
the initial stage in the development of a diabetic cardiomyopathy 
(153;226;231;232). Doppler echocardiographic studies demon-
strated presence of abnormal LV diastolic filling in as high as 50 % 
of normotensive patients with type 2 diabetes and a normal 
ejection fraction (153;231). 
In diabetic individuals, diastolic dysfunction is associated with 
LVH, microalbuminuria (160;233;234), arterial hypertension (151), 
absence of a nocturnal blood pressure dip (160), endothelial 
dysfunction (235), and increased carotid intimal thickness 
(236;237). Strikingly, diabetic patients with diastolic dysfunction 
and preserved LVEF have similar high mortality rates as diabetic 
patients with reduced LVEF (223). 
Subclinical long axis dysfunction 
By TDI, it is possible to visualize subclinical stages of LV dysfunc-
tion in diabetic patients. As in hypertensive patients, it seems that 
subtle changes in systolic dysfunction may occur before or to-
gether with presence of diastolic dysfunction, which measures 
like ejection fraction and fractional shortening are unable to 
detect. 
Tissue Doppler echocardiography reveals a recognizable pattern 
of functional changes in the LV function in these patients. The 
primary finding in type 2 diabetic patients is normal ejection 
fraction, reduced long axis function, compared to normal control 
subjects (29;160), matched by an increase in radial function, 
which exceeds that of normal subjects (192;193). Again this ex-
plains why these patients have normal LV ejection fraction. 
The increase in radial function may be compensatory 
hyperfunction from midwall derived myocardial fibers, which 
compensate for the loss of contractile force in the long axis plane, 
but this issue is not fully clarified. Actually, echocardiographic 
studies performed before the TDI era have described radial 
hyperfunction in type 1 diabetic individuals who had significantly 
higher 2D fractional shortening compared to a control group 
(238-240). This may have been the same phenomenon. 
In diabetic patients as well, reduced long axis function has been 
interpreted as evidence of the subendocardium being the primary 
site of involvement of diabetic myocardial disease (241;242). 
Numerous theories about patophysiological mechanisms exist 
(221;226;230), but it has been difficult to connect experimental 
observations to clinical data, since the estimation of systolic 
function has been based on crude measures like LVEF ad FS esti-
mates. 
However, with TDI it is possible to explore early signs of myocar-
dial involvement and relate these findings to some of the theories 
behind cardiac dysfunction in diabetic individuals. 
One of the primary observations was taken from a small subset of 
asymptomatic type 2 diabetic patients and relatively short di-
abetes duration. The patients did not have any of the common 
complications to diabetes like hypertension, LVH, retinopathy or 
albuminuria, and had acceptable glucose control (HbA1c 8.3 ± 2 
%)(29). In these patients, the long axis function was significantly 
reduced, especially in the subgroup with diastolic dysfunction. 
This observation showed that a myocardial involvement was 
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present in diabetic patients, independent from the presence of 
hypertension or common markers of small vessel disease (29). 
Furthermore, these observations pointed out that long axis dys-
function may be equally related to the substrate metabolism 
(hyperglycemia and hyperinsulinemia) as to LVH, hypertension 
and myocardial ischemia. 
The following sections will focus on the major components in the 
type 2 diabetic patients’ metabolism and their relation to myo-
cardial dysfunction in diabetic patients (Figure 3). 

Insulin resistance 
Insulin resistance is a condition in which normal amounts of insu-
lin are unable to induce a normal insulin response in fatty tissue, 
skeletal muscle and liver cells. Insulin resistance elevates free 
fatty acids in the blood stream, reduces glucose uptake in the 
skeletal muscle and reduces liver glucose storage, all effects 
serving to elevate blood glucose levels. High plasma levels of 
insulin and blood glucose resulting from insulin resistance are 
cornerstones in the metabolic syndrome and in type 2 diabetes 
(221).  
Insulin resistance is linked to obesity, hypertension, left ventricu-
lar hypertrophy, endothelial dysfunction, albuminuria and coro-
nary heart disease, and seems to have detrimental effects on 
cardiomyocyte metabolism as well (243). 
Hyperinsulinemia seems to influence cardiomyocyte growth 
through cellular mechanisms, despite the fact that the cellular 
mechanisms of insulin are attenuated, if the patient is resistant to 
insulin (244) Hyperinsulinemia may partially induce LVH and 
stiffness of the left ventricle and can be linked to diastolic dys-
function (192), but also to early changes in LV systolic function in 
insulin resistant patients (245-248). However, in normal individu-
als, the HOMA index (surrogate measure of insulin resistance) is 
not linked to the LV function (249). 
In type 2 diabetic individuals naïve to insulin treatment, there is a 
negative correlation between fasting insulin levels and LV systolic 
long axis strain (250). This indicates that myocardial function and 
insulin resistance are closely associated and insulin resistance 
may exert a direct effect on the long axis function (250). This 
hypothesis is supported by a TDI study in obese individuals that 
showed a direct correlation between HOMA-IR values and systolic 
strain/SR (251). This could also mean that correction of insulin 
resistance may have a favorable effect on the long axis function, 
and data on this matter have recently been reported. In a study 
including 140 type 2 diabetic patients, randomized to a lifestyle 
modification programme, there was a significant correlation 
between improvements in systolic strain and strain rate and 
improvements in the HOMA index (252). This should mean that 
myocardial insulin resistance is a potent accessory in the reduc-
tion of long axis function, and that treating insulin resistance 
leads to improved LV function. 
The hyperinsulinemia component of insulin resistance can proba-
bly account for most of the myocardial changes which occur in 
obese or type 2 diabetes, but cannot explain the changes seen in 
lean type 1 diabetic patients, who more or less per definition are 
insulin sensitive. Therefore, hyperglycemia may be of considera-
ble importance as well. 

Hyperglycemia 
Both chronic and intermittent hyperglycemia are significantly 
related to organ damage in both type 1 and type 2 diabetic pa-
tients (253-256). The UKPDS study found significantly higher 
incidences of myocardial infarction and heart failure among pa-

tients with type 2 DM with high levels of glycated hemoglobin 
(HbA1c), and the same association can be found in type 1 diabetic 
cohorts (253). 
However, recent trials on actual intervention have presented 
disappointing results in preventing cardiovascular disease 
(257;258).   
Several studies have focused on chronic hyperglycemia and long 
axis dysfunction. Even in non-diabetic individuals, there seems to 
be a correlation between glycemia and the systolic properties in 
the long axis plane (249). In a small study in non-diabetic males, a 
linear correlation was found between fasting plasma glucose 
within the normal spectrum and systolic strain rate (both values 
obtained within the same hour), indicative of an association 
between blood glucose homeostasis and long axis function (249). 
A similar relation can be found between S-fructosamine and long 
axis strain rate, however found in a slightly older population 
(160). Both observations support the conception that glycemia 
and LV function seem to interplay, even within the normal spec-
trum. 
Concurrent data in type 2 diabetic patients have shown that 
glycemic control and long axis systolic function are very closely 
interrelated. Three separate studies have reported correlations 
between HbA1c, and systolic velocities (192), systolic strain (250) 
and strain rate (160), demonstrating that glycaemic control over 
the last 60-80 days is significantly related to the contractile func-
tion of the left ventricular long axis plane. The same correlation 
has also been found with fructosamine, which is regarded as a 
marker of the last 2 weeks’ glycemic control (160). 
In type 1 diabetic patients, only few data exist on glycemic control 
and long axis function.  A small magnetic resonance imaging study 
of the systolic rotational force of the left ventricle, showed that 
hyperglycemia (HbA1c) and systolic function are interrelated in 
type 1 diabetes as well (259). 
However, cross-sectional data do not clarify whether decreased 
systolic long axis function depicts generally poor controlled di-
abetes with organ involvement, or whether it is a more dynamic 
phenomenon, changeable if glycemic control is improved. 
A small number of studies have explored this question. In type 2 
diabetic patients, a significant relation between coherent values 
of HbA1c and LV strain rate can be found over a 12 month obser-
vation period (260). Patients with improved glycemic control – 
defined as a reduction in HbA1c value after 12 months of follow-
up (8.3% to 7.4%) – had significantly improved long axis strain 
rate compared to patients whose HbA1c values were higher than 
the baseline level (8.2% to 9.1%). The two patient groups had 
comparable baseline values with regard to long axis function, 
systolic blood pressure, left ventricular mass, age and duration of 
diabetes (260). 
In the same cohort, coherent values of long axis strain rate (base-
line, 3 and 12 months) where significantly correlated to the 
HbA1c value, obtained at the same time. This correlation elimi-
nated effects from LV mass and blood pressure reduction in a 
multiple regression analysis (260). 
This must be seen as a dynamic relation between blood glucose 
homeostasis and LV function, and surprisingly LV function is 
changeable even after several years of diabetes duration (260). 
Similar findings can be done in type 1 diabetic patients. When 
type 1 diabetic individuals undergo insulin pump therapy, patients 
often significantly improve their glycemic control over a short 
period of time (261). In a small observational study, the initiation 
of insulin pump therapy led to a significant improvement in 
HbA1c from 8.6 ± 1.4 % to 7.6 ± 1.1 % (p< 0.01) over 45 days 
(262). During this time span, their mean left ventricular SR ob-
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tained in the long axis plane improved significantly from -1.58 ± 
0.30 s

-1
 to -1.80 ± 0.4 s

-1
 (p<0.05). Interestingly, there was a close 

correlation between these changes in glycemic control and 
changes in long axis function (∆SR vs. ∆ HbA1c: r= 0.49, p< 0.01), 
which emphasizes the connection between hyperglycemia and 
function of the cardiomyocyte (262). 

Patophysiological effects from hyperglycemia 
How elevated blood glucose levels interfere with the contractile 
function of the long axis fibers of the myocardium is unknown, 
although several theories exist. Hyperglycemia may directly in-
duce apoptotic cell death and myocyte necrosis (263). Cardi-
omyocyte apoptosis initiated by hyperglycemia and aggravated by 
oxidative stress (264) results in myocardial cell loss, which may 
impair the contractile forces of the myocardium. However, the 
mechanisms that directly mediate hyperglycemia-induced cardiac 
damage remain poorly understood (265;266), and actual cell 
death does not correspond well with the reversible manner of 
long axis dysfunction (260;262). 
Chronic hyperglycemia could also affect LV function via the reduc-
tion of the sarco(endo)plasmatic reticulum Ca

2+
-ATPase 

(267;268), but this issue is far from settled in humans. 
A more consistent theory is influence from non-enzymatic glyca-
tion of proteins, which induces irreversible formation and deposit 
of reactive advanced glycation end-products (AGEs). The forma-
tion of AGEs on extracellular matrix components accelerates the 
process of collagen cross linking, contributing to myocardial stiff-
ness and hypertrophy (269). In experimental settings, this phe-
nomenon has been moderated through treatment with a cross 
link breaker or an AGE receptor antibody (270-274). In human 
studies, serum levels of AGEs are higher among type 2 diabetic 
patients with coronary heart disease (275), but little is known 
about the relation to myocardial function (276;277). Carboxyme-
thyllysine (CML) is known to bind to a specific AGE-receptor 
(RAGE) and activate NF-κB and proinflammatory cytokine secre-
tion (278), but no significant association has been found between 
carboxymethyllysine (CML) and long axis systolic strain rate in 
type 2 diabetic patients (160). The lack of any correlation with the 
non-cross-linking ligand CML brings into question whether CML is 
related to the involvement of myocardial function in human type 
2 diabetes. Nevertheless, the significant correlation between the 
levels of glycosylated hemoglobin and long axis function in the 
same study supports the assumption that glycosylation somehow 
significantly influences myocardial function (160;226;250). 
Another issue is glucose transport through the cellular mem-
brane. Increased glucose uptake in hypertrophied hearts is insulin 
independent and associated with, on one hand, the increased 
expression of the basal glucose transporter GLUT1, and on the 
other, the decreased expression of insulin-regulated glucose 
transporter GLUT4 (221;279-281). These changes in GLUT expres-
sion are also partially related to the mitochondrial dysfunction 
found in the type 2 diabetic patient (282). Thus changes in GLUT 
expression can be partially attributed to hyperglycemia, but they 
are also a result of insulin resistance (283). 
Theoretically, if the metabolic control (glycemia and lipids) was 
optimized, this may directly result in improved cardiac function by 
increased GLUT expression on the surface of the cardiomyocyte, a 
process which has been shown to have an effect on cardiac func-
tion in experimental studies (284;285). The role of these glucose 
transporter isoforms and their relation to myocardial function in 
humans is yet to be clarified.  

Hyperlipidaemia 
Hyperlipidemia, including cholesterol, triglycerides  and free fatty 
acids (FFA) may all affect LV function.  
Lipid overstorage in human cardiac myocytes is an early manife-
station in the pathogenesis of type 2 diabetes mellitus, which 
precedes the presence of heart failure (286), but the actual link 
between hyperlipidemia and LV dysfunction is not clarified. Nev-
ertheless, several mechanisms have been proposed including 
impaired coronary flow reserve (287), aortic stiffness (192) and 
lipotoxicity of the cardiomyocyte attributed by free fatty acids, 
triglycerides or both (288). 
Not much data are available in humans. However, it is well known 
that lipid levels raise with increasing insulin resistance and im-
paired glucose tolerance (221). In humans, impaired glucose 
tolerance is accompanied by cardiac steatosis, which precedes 
the onset of type 2 diabetes mellitus and left ventricular systolic 
dysfunction. Lipid overstorage in human cardiomyocytes may be 
an early manifestation in the pathogenesis of myocardial dysfunc-
tion in type 2 diabetes mellitus. 
Cholesterol levels significantly correlate to the diastolic properties 
of the left ventricle in type 2 diabetic patients (192). The relation 
between cholesterol and diminished myocardial compliance may 
be explained by stiffness in the great vessels and myocardium due 
to atherosclerosis (192), but this theory has not been further 
examined.  
However, it seems that this issue may deserve more interest. A 
small cross-sectional study in healthy males found a highly signifi-
cant relation between LDL-cholesterol and resting long axis systol-
ic strain rate, whereas the triglyceride levels did not seem to be 
related to the long axis function at all (249). This finding corres-
ponds well with data from patients with dyslipidemia, in which 
reduction in cholesterol levels seemed to improve the contractile 
forces of the myocardium, probably by improving the endothelial 
function (289) and the coronary flow profile (287;290).  
In type 2 diabetic patients, the major problem with assessment of 
cholesterol levels is influence from statin treatment regimes, or 
absence of such, which may interfere with the interpretation of 
the results. Therefore, studies in patients with metabolic syn-
drome may be the best way to explore this issue further (60). 

Hypertension and diabetes 
The majority of patients with either type 1 or type 2 diabetes 
develop hypertension. Patients with type 2 diabetes often suffer 
from isolated systolic hypertension, partially due to increased 
stiffening in the large arteries (291). Over time, elevated blood 
pressure levels can have similar detrimental effects on LV func-
tion as non-diabetic patients with hypertension. Perhaps more 
interesting is the question as to what role the presence of hyper-
tension plays in the early stages of cardiac involvement in diabetic 
patients. Interestingly, a strong association between systolic 
blood pressure and long axis dysfunction has not yet been de-
scribed in type 2 diabetic patients. Vinereanu and colleagues 
described an inverse correlation to diastolic blood pressure, but 
also found that a contribution of co-existing arterial hypertension 
to long axis dysfunction was not significant (192).  
Likewise, it also appears that lowering blood pressure cannot 
directly be related to improved long axis function. A recently 
published study of 48 type 2 diabetic patients found no connec-
tion between a 7 mmHg systolic blood pressure reduction and 
changes in systolic strain rate in the long axis plane. However, the 
study demonstrated that significantly improved long axis function 
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correlated to reductions in LV mass, which partly reflect changes 
in blood pressure over time (260). 
Therefore, the impact of elevated blood pressure levels cannot be 
fully discounted, as the MYDID study also demonstrated a systolic 
velocity response to dobutamine stress in type 2 diabetes with 
hypertension, which ranked lower than normo-hypertensive 
patients with diabetes, despite similar LV mass estimates (204). 
The direct relation between diabetes, long axis function and 
arterial hypertension requires further elucidation, but from the 
available data it seems that elevated blood pressure levels may 
play a less significant role in the mechanism behind the earliest 
changes in long axis function. Instead it seems that hypertension 
truly make its presence felt at a later stage. 

Coronary artery disease and myocardial microperfusion 
Extensive coronary disease is often associated with reduced left 
ventricular function, and sceptics might argue that early stages of 
diabetic heart disease are only subclinical manifestations of coro-
nary heart disease. 
Nonetheless, according to a large cohort study (292), only 22 per 
cent of asymptomatic type 2 diabetic patients have silent ische-
mia assessed by SPECT (292), a number which might be even 
lower, when patients are subjected to aggressive treatment regi-
mens (293).  
Moreover, the large bulk of data in subclinical long axis dysfunc-
tion is based upon patients with normal stress echocardiography, 
which to some extent should exclude patients with severe coro-
nary lesions. One study actually included conduct of coronary 
angiography in selected cases (294). Furthermore, some of the 
results from the large MYDID study demonstrated subclinical LV 
long axis dysfunction in diabetic individuals with normal coronary 
angiograms (204).  
There is also little to justify attribution from abnormalities in the 
microcirculation. Although postprandial hyperglycemia has 
proved to decrease myocardial microperfusion (295), a direct 
connection between myocardial perfusion defects and the loss of 
long axis function has not been described. Microalbuminuria, a 
common surrogate for widespread involvement of the microcircu-
lation in diabetic patients, also has not been linked to abnormal 
long axis function (29;160).  
What is known about transmural myocardial blood flow and 
diabetes is that coronary blood flow is reduced in patients with 
LVH (296) and possibly also associated with the glycemic control 
(297), but more studies are needed. Regarding long axis dysfunc-
tion, a recent TDI-study did not find any relation between trans-
mural blood flow and subclinical myocardial long axis dysfunction 
in type 2 diabetic patients (298). 
In summary, diabetic cardiomyopathy remains without proper 
definition, However, TDI studies have contributed with data 
showing that there is an early involvement of systolic function, 
which is correlated to the substrate metabolism as well as LVH 
and to some extent hypertension. Proper treatment of diabetes 
takes all these components into account (13). 
Overt heart failure in hypertensive diabetic patients will probably 
appear due to similar mechanism as described in non-diabetic 
hypertension. However, since type 2 diabetes almost has endemic 
behaviour, in the future we will see patients with dilated cardi-
omyopathy and a coexisting type 2 diabetes. This coincidence will 
mistakenly be considered a “diabetic cardiomyopathy”. Whether 
TDI can help the clinician to distinguish between the two, will be a 
challenge for the future. 

 

Figure 3. Tentative mechanisms behind long axis dysfunction, in 
patients with hypertension and diabetes. 
 
CONCLUSION 
Left ventricular systolic long axis dysfunction seems to be the 
earliest stage in myocardial disease. 
In normal subjects, long axis function deteriorates with age and 
increasing systolic blood pressure, which emphasizes the impor-
tance of age matched control groups with similar blood pressure 
levels. 
In hypertensive individuals long axis function seems mainly de-
pendent on the presence of LVH and myocardial fibrosis, and 
accordingly also to presence of diastolic dysfunction. 
Long axis dysfunction in type 2 diabetic individuals appears before 
the presence of more well described complications like retinopa-
thy and albuminuria.  
In several studies, long axis dysfunction has been closely related 
to hyperglycemia, observations which can even be found in non-
diabetic individuals. 
It seems that improved glycemic control improves long axis func-
tion, which means that the underlying mechanisms behind hyper-
glycemia and insulin resistance influence the contractile forces of 
the myocardium in a reversible manner. 

FUTURE PERSPECTIVES 
Considerations for the future seem manifold. By introduction of 
new echocardiographic methods, it may be possible to optimize 
deformation imaging and thereby make detection of subclinical 
myocardial dysfunction applicable for the clinician. More ad-
vanced off-line analysis software and new entities like Speckle 
Tracking may be a solution to this problem. Speckle tracking 
seems less influenced by image acquisition pitfalls and may be-
come the preferred deformation imaging modality (299-301), but 
such new methods need validation.    
In patients with antecedent hypertension and acute myocardial 
infarction, a new study is being conducted at the department of 
cardiology, Skejby Hospital, in which more advanced echocardio-
graphic assessment and blood pressure measurements are used. 
This will provide more data about the relation between hyperten-
sion, diastolic dysfunction and myocardial infarction. In addition, 
more data will make it possible to make a register study on the 
incidence of atrial fibrillation, stroke and death in this specific 
cohort of patients. 
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Prediabetic, prehypertensive individuals should be explored in 
terms of LV dysfunction, blood pressure and metabolic control, to 
be able to understand the preclinical stages of LV dysfunction. 
In diabetic individuals, a large randomized study on LV function 
and optimized glycemic control is already under way (252). A 
similar setup in Denmark is difficult, but other questions could be 
addressed. Short term alterations in glycemic control may influ-
ence LV function, which could be elucidated by studies using 
clamp-technique. 

SUMMARY 
The present thesis summarizes studies on subclinical left ventricu-
lar dysfunction in patients with hypertension and diabetes. Left 
ventricular systolic long axis dysfunction seems to be the earliest 
stage in myocardial disease and therefore an important focus of 
attention, to determine what causes the myocardium to fail. 
At present, imaging of myocardial deformation in the long axis 
plane by strain or strain rate seems to be the best applicable 
method, due to its independence of tethering and translational 
motion, but also considering load stability, reproducibility and 
heart rate independence. 
Long axis function deteriorates with age and increasing systolic 
blood pressure in normal individuals. 
In hypertensive individuals long axis dysfunction seems mainly 
dependent on the presence of LVH and myocardial fibrosis, and 
accordingly also to presence of diastolic dysfunction. However, if 
a hypertensive patient develops a myocardial infarction, no addi-
tional loss of long axis function is found, but worsened diastolic 
function compared to non-hypertensive patients. 
In type 2 diabetic individuals, long axis dysfunction appears be-
fore the presence of more well described complications like reti-
nopathy and albuminuria.  
In several studies, long axis dysfunction is closely related to 
hyperglycemia, observations which can even be found in non-
diabetic individuals. 
It seems that improved glycemic control improves long axis func-
tion, which means that the underlying mechanisms behind hyper-
glycemia and insulin resistance influence the contractile forces of 
the myocardium in a reversible manner. 
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