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1. PREFACE 

This thesis is based on the work carried in the Vascular Smooth 
Muscle group at the Institute of Physiology and Biophysics, Aar-
hus University. This thesis is focused on a mechanistic under-
standing of cellular synchronization in the small resistance arter-
ies. I have started this work because of my general interest in 
vasomotion, a phenomenon of synchronized activity in the vascu-
lar wall which has been known for more than 150 years. In spite 
of the long history and suggestions that vasomotion is important 
for pathological states the studies of vasomotion have been 
mostly descriptive. Development of new experimental techniques 
such as small artery myography, intracellular Ca2+ imaging and 
electrophysiological approaches brought new possibilities to the 
studies of cellular mechanisms of vascular synchronization. 
I have used these advanced methods to characterize vasomotion 
in detail and have suggested and tested a model for generation of 
vasomotion in the rat mesenteric artery. The suggested model is 
one of several models of vasomotion but it has strong experimen-
tal support and is supplemented by the mathematical modeling 
published by our group. Two key elements for the synchronized 
oscillation in the mesenteric small arteries a cGMP-dependent 
Ca2+-activated Cl- current and the electrical intercellular commu-
nication were further explored in my research. I have character-
ized the cGMP-dependent Ca2+-activated Cl- current suggested by 
our model for vasomotion and demonstrated this current in 
different vascular beds. Using a novel siRNA approach I have then 
shown the association between this current and bestrophin-3 
protein expression in vivo and in vitro. Based on these results I 
suggested the molecular identity of this current and its signifi-
cance for smooth muscle cell synchronization by a membrane 
potential-dependent mechanism. The studies of intercellular 
communication in the vascular wall are lacking specific and effec-
tive tools to manipulate these intercellular contacts. I have per-
formed comprehensive studies to analyze the action of the most 
commonly used gap junction blockers and demonstrated that 

vasomotion can be used as a “readout” for intercellular commu-
nication. Using this approach I demonstrated that inhibition of 
the ouabain-sensitive Na+/K+-ATPase uncouples smooth muscle 
cells in the vascular wall and suggested the mechanism responsi-
ble for this electrical uncoupling. In my studies on the role of the 
ouabain-sensitive Na+/K+-ATPase for vascular function I suggested 
the presence of Na+/K+-ATPase-based signalosome which also 
includes the Na+/Ca2+-exchanger, gap junctions and the ATP-
dependent K+ channels. These studies provide a useful tool for 
manipulations intercellular communication in the small arteries. 
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3. LIST OF ABBREVIATIONS 

AA arachidonic acid 
ADP adenosine diphosphate 
ANO1 anoctamin-1; see also TMEM16A 
ATP adenosine triphosphate 
AVP arginin-vasopressine 
BAPTA 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-

tetraacetic acid 
BK big-conductance Ca2+-activated K+ channels 
[Ca2+]i intracellular calcium concentration 
CaCC Ca2+-activated Cl- channels 
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CAMKII calmodulin kinase II 
cAMP cyclic adenosine monophosphate 
cGMP cyclic guanosine monophosphate 
CICR Ca2+-induced Ca2+ release 
Cx connexin 
DIDS 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid 
EDHF endothelium-derived hyperpolarizing “factor” 
EGTA ethylene glycol tetraacetic acid 
ER endoplasmic reticulum  
GAP connexin-mimetic peptides 
GJ gap junctions 
IAA-94 R(+)-[(6,7-Dichloro-2-cyclopentyl-2,3-dihydro-2-

methyl-1-oxo-1H-inden-5-yl)-oxy]acetic acid 
ICl(Ca) Ca2+-activated Cl- current 
ICl(Ca,cGMP) cGMP-dependent Ca2+-activated Cl- current 
IK intermediate-conductance K+ channels 
IP3 inositol 1,4,5-trisphosphate 
IP3-R IP3-sensitive channels 
KATP ATP-dependent K+ channels 
KCa Ca2+-activated K+ channels 
MAPK mitogen-activated protein kinase 
MLC myosin light chain 
NCX Na+/Ca2+ exchanger 
NO nitric oxide 
NPY neuropeptide Y 
PKG protein kinase G 
PKC protein kinase C 
PLC phospholipase C 
PLA2 phospholipase A2 
RYA-R ryanodine-sensitive channel or receptor 
siRNA small interfering RNA 
SK small-conductance K+ channels 
SMCs smooth muscle cells 
SR sarcoplasmic reticulum 
TMEM16A transmembrane protein 16A, see also ANO1 
TRP channel transient receptor potential channel 
VDCCs voltage-dependent Ca2+ channels 
VMD vitelliform macular dystrophy 

4. INTRODUCTION 

A blood circulation system in complex, multicellular organisms 
should satisfy the metabolic demands of all cells in the body. This 
demand varies widely with location of the tissues and with time, 
and is affected by changes in environmental and internal parame-
ters over a considerable range. Therefore, it is important to have 
a very precise regulation of blood flow that is achieved by the 
combined effects of multiple interacting mechanisms, including 
sensitivity to pressure, flow rate, metabolite levels, and neural 
signals. Flow regulation requires the sensing of metabolic and 
hemodynamic conditions, and the main effectors of this regula-
tion are the arterioles and small arteries, which are located pro-
ximally to the tissue that they supply. Arterial pressure falls mark-
edly while passing these vessels 1, which demonstrates that they 
are responsible for a significant part of total vascular resistance in 
the circulation 2-4. These small arteries are therefore known as 
resistance arteries. Abnormal changes in peripheral vascular 
resistance were shown to be associated with a number of patho-
logical conditions including hypertension and diabetes, which 
underlines the importance of understanding their function.  
Arterial resistance is under constant control of numerous regula-
tory systems, such as neurogenic and hormonal influences as well 
as a broad range of local and intrinsic factors. These regulatory 

mechanisms are not functioning independently but rather are 
deeply integrated into each other, modulating the final vascular 
responses. Nevertheless, the final effect of all these regulations is 
the change in the vessel diameter, i.e. vascular resistance, which 
depends on the contractile status of smooth muscle cells in the 
vascular wall. Whether smooth muscle cells are relaxed or con-
stricted depends on the level of myosin light chain (MLC) phos-
phorylation by MLC kinase activated by the Ca2+-calmodulin com-
plex 5. Thus, the contractile status of smooth muscle depends on 
the intracellular calcium ([Ca2+]i) level as well as on the sensitivity 
to [Ca2+]i of proteins involved in the dynamic process of MLC 
phosphorylation-dephosphorylation. Many agonists and local 
stimuli, e.g. noradrenaline and transmural pressure, act in both 
directions: by increasing [Ca2+]i via membrane influx and release 
from intracellular Ca2+ stores, and by the sensitizing the contrac-
tile apparatus to prevailing Ca2+ level 6-9.  
[Ca2+]i and membrane potential in smooth muscle cells are in a 
reciprocal relation 10, i.e. membrane depolarization opens the 
voltage-dependent L-type Ca2+ channels which are the major 
pathway for Ca2+ influx 11, while increase in [Ca2+]i stimulates a 
Ca2+-dependent Cl- conductance on the smooth muscle cell mem-
brane 12-15. In contrast to some other tissues, e.g. skeletal muscles 
16, Cl- in smooth muscle cells is not distributed passively across 
the plasma membrane, but accumulates actively inside the cell 
17;18. This makes the equilibrium potential for Cl- less negative 
than resting membrane potential in smooth muscle cells. There-
fore, Ca2+-activated increase in Cl- conductance will lead to Cl- 
efflux across the plasma membrane and depolarize smooth mus-
cle cells (SMCs) 19-24. Although the degree to which the resulting 
depolarization contributes to contraction of smooth muscles is 
not known 25, the depolarizing Ca2+-activated Cl- conductance 
counterbalances to a certain extent a Ca2+-activated K+ current 
12;26-31 which tend to hyperpolarize and relax smooth muscle cells. 
Although various external signals changing SMCs contractility are 
obviously important for both long-term and short-term regulation 
of arterial diameter, an internal ability of SMCs to alter the vascu-
lar wall tone in response to physical factors at least as important 
2;32;33. In reality, the combination of myogenic and non-myogenic 
factors creates the final vascular tone, which can be both stable 
and varying over time. Rhythmic changes in the vascular tone, 
known as vasomotion, were observed in different vessels but are 
clearly more prevalent in small arteries and arterioles 34. Vasomo-
tion is one of the most mysterious and fascinating vascular re-
sponses although only very limited information regarding the 
generating mechanism was available until recently35. The impor-
tance of such knowledge is obvious since the changes in the 
rhythmic activities in the vascular wall have been associated with 
several pathologies 34. Thus, it has been shown that vasomotion is 
more prevalent or pronounced in hypertension. Studies on both 
animal models and humans indicate a tight coupling between the 
high blood pressure and the ability of vessels to oscillate 36-39. 
Vasomotion is reduced in different forms of diabetes 40. It is note-
worthy that certain oral antidiabetics (e.g. metformin) markedly 
stimulate vasomotion in diabetes 41. Altogether this suggests that 
vasomotion is of pathophysiological, and tentatively of prognos-
tic, interest.  
Recent studies significantly improved our understanding of vaso-
motion 34;35;42-44. Several models for initiation of vasomotion were 
suggested and received experimental support (I and 45-55). We 
have suggested a model for vasomotion in the mesenteric small 
arteries which is based on synchronization of intracellular Ca2+ 
oscillations by a membrane potential related phenomenon (I). 
The key elements for this synchronization are the depolarizing 
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Ca2+-activated Cl- current which projects changes in [Ca2+]i into 
membrane potential oscillations and gap junctions which enables 
spreading of the depolarization between the smooth muscle cells. 
The following detailed studies of these key players provide a 
better understanding of their role in the generation of vasomo-
tion and their molecular identities (V, VII and VIII). This brings us 
to a new molecular level in our understanding of the phenome-
non of vasomotion. 

5. THE MODEL FOR THE GENERATION OF VASOMOTION IN RAT 

MESENTERIC SMALL ARTERY (PAPERS I AND II) 

An outstanding motor phenomenon in the vasculature: 150 

years of research 

Rhythmic contractions, which are known for many organs from 
the heart to the gastrointestinal and urinary tracts, are also de-
scribed in blood vessels where they are termed ‘vasomotion’. 
Vasomotion is sometimes used as a broad term which describes 
any vasomotor response, i.e. a change in the vascular diameter 56, 
but it is also used exclusively to describe spontaneous, rhythmical 
changes in the vascular diameter or tone. Although both applica-
tions of the term are still in use, the majority of vascular physiolo-
gists prefer to confine the term vasomotion to the rhythmic oscil-
latory behavior of the vascular wall 34;44;57-60. 
This “outstanding motor phenomenon observed in peripheral 
vascular structures” 61 was first described in 1852 in vivo in study 
of bat wing circulation 62. This observation of rhythmic contrac-
tion and dilatation was ascribed to a natural state of veins while 
the ability of arteries to oscillate on its own was seriously 
doubted. The evidence accumulated during the following 100 
years proved, however, that vasomotion is a phenomenon com-
mon for both arteries and veins 63;64, and this led to the classical 
study on vasomotion by Nicoll and Webb in 1955 61. This study 
postulated that SMCs function during vasomotion as independent 
effectors modulated by changes in their immediate environment 
61. Nicoll and Webb made a large effort to study these regulatory 
factors which they subdivided into the nerve impulses, the spe-
cific or general chemical substances, and physical phenomena, 
such as temperature and pressure. They concluded that all these 
factors have only modulatory function and regulate the frequency 
and characteristics of vasomotion which has an intrinsic nature 61. 
This conclusion is still valid and there is no doubt that vasomotion 
is an intrinsic function of the vascular wall 34;42;60;65. 
During the last years vasomotion has been observed by many 
researchers in many, if not all, vascular networks under certain 
conditions. Being essentially characterized in vivo 61;62, vasomo-
tion research remained to be quite descriptive due to technical 
limitations over a long period of time. A significant advancement 
was made by the development of modern techniques for both in 

vivo and in vitro studies, such as myography of small (few hun-
dred micrometer diameter) vessels 44;57;66-69, electrophysiological 
approaches for membrane potential measurement and patch 
clamping of single ionic currents (I, VI, VII, VIII and 70-74), intracel-
lular ion imaging and confocal microscopy (VII, VIII and 43;53;54;75-

80), laser-Doppler flowmetry 81, immunohistochemistry and mo-
lecular biological methods (VII and 74;82-85). In spite of great pro-
gress the cellular mechanism for vasomotion remained a matter 
for debate. The fact that this discussion has 150 years’ history 
indicates the many problems which researchers have had and still 
have in the experimental studies of vasomotion. Vasomotion is 
often unpredictable, making it difficult to standardize results and 
to draw generalized conclusions. This has led to intense scientific 

debates between research groups whether some treatment really 
stops or induces vasomotion, or just brings the vessel to a state 
where oscillations in tone are not possible 86;87. The appearance 
of vasomotion depends on the type of blood vessel, the nature of 
stimulation and is also very sensitive to the experimental proce-
dure, i.e. form of anesthesia, solutions, preparations and physical 
conditions 35;65. 

Is it possible at all to generalize the appearance of vasomotion? 

Being regulated by multiple factors which in variable combina-
tions can give different results, vasomotion is difficult to evaluate 
by analogy to many other biological responses where an intensity 
of stimulus can be correlated to the strength of the response. The 
fact that the same artery under certain conditions can develop 
different types of oscillations, makes the situation even more 
complicated. As described previously, the inhibition of one oscilla-
tor in the vascular wall will not necessary lead to elimination of 
vasomotion. On the contrary, this can unmask another oscillator, 
which was suppressed by the ‘dominating’ oscillator and this will 
initiate vasomotion with other characteristics than before 87;88. 
Thus, several oscillators in the vascular wall are interacting with 
each other in a complicated manner. The final outcome of these 
interactions might depend on experimental conditions. Caution 
should be therefore taken when different reports on vasomotion 
are compared and a number of different parameters should be 
taken into account.  
Interestingly, non-invasive in vivo measurements detect several 
different types of oscillations simultaneously in the same vascular 
bed 89. Although it was previously suggested that these oscilla-
tions have different origin, e.g. cardiac, respiratory, myogenic, 
neurogenic and endothelial types 90, they may also represent 
different types of intrinsic myogenic or myoendothelial oscilla-
tions which can be seen in vitro depending on experimental con-
ditions (I, II and 87;88). In vivo oscillations termed myogenic have 
the same frequency as vasomotion normally observed in vitro on 
the arterial segment (I and 90) but other types of oscillation can 
also be induced. 
It is obvious that the studies of vasomotion in vivo have great 
physiological significance but are limited in the possibilities to 
provide mechanistic insight. In vitro experiments can give the 
mechanistic insight although the meaning of ‘physiological condi-
tions’ is significantly reduced in vitro. Isolated arterial segments 
provide the possibility to study vasomotion without mechanical, 
hormonal and neurogenic influence from the rest of body.  

Oscillators in the vascular wall. 

The mechanism of vasomotion may vary between different spe-
cies and within the same species between different vascular beds. 
Several models for the generation of vasomotion have been 
suggested and are receiving strong experimental support (I and 
34;35;42;43;46-48;50-52;55;91). It is necessary to accept that the complex-
ity of the vascular wall makes it impossible to exactly reproduce 
vasomotion by theoretical modeling. On the other hand, the 
modeling of the process helps to highlight the major components 
which are important for vasomotion and also it helps to suggest 
and predict possible interventions 46;47. 
Virtually all existing models for the generation of vasomotion are 
based on the presence of oscillators 35;92. It is generally accepted 
that the release of Ca2+ from intracellular stores and the following 
synchronization through coupling of oscillations in SMCs are the 
basis of vasomotion. With respect to the mechanism, the putative 
oscillators can be subdivided into cytosolic and membrane oscilla-
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tors 34;42. As it can be appreciated from the name, the cytosolic 
oscillator originates from the cytoplasm. The current view is that 
low concentrations of an agonist can induce transients of [Ca2+]i 
increases which are not necessarily associated with membrane 
potential changes (I and 78;93) but strictly depend on the SR func-
tion 35;42;60;65. Depending on the vessel studied and the type of 
stimulation, Ca2+ is released either via inositol 1,4,5-trisphosphate 
(IP3)-induced Ca2+ release and/or via ryanodine-sensitive chan-
nels.  
This localized initial rise in [Ca2+]i appears in specific regions of the 
cell and propagates along the cytoplasm in a wave-like manner 48. 
The Ca2+ waves do not represent simple diffusion of Ca2+ but 
require regeneration by Ca2+-induced Ca2+ release (CICR). The Ca2+ 
waves appear spontaneously under resting conditions 48;48;79;94 
and when low concentrations of contractile agonists are applied (I 
and 43;95-97). Stimulation of adrenoreceptors causes initially tran-
sient Ca2+ waves, with a typical frequency of 0.01-0.2 Hz (I, II and 
VII). These Ca2+ waves are uncoordinated between neighboring 
cells and show a considerable heterogeneity between different 
SMCs in the arterial wall (I, II and 48). When [Ca2+]i is integrated 
over an entire cell with time, these Ca2+ waves appear as rhythmi-
cal oscillation in [Ca2+]i but due to their asynchrony have little 
effect on the global [Ca2+]i changes across the entire arterial wall 
or on tension (I). 
The CICR allows [Ca2+]i to propagate over substantial distance 
without decrement in strength 98;99. Both IP3- and ryanodine-
sensitive channels are theoretically suitable for the CICR and 
these have received experimental proof (I and 78;97;99). There is a 
general suggestion that the IP3 channels stimulated by IP3 pro-
duced by agonist stimulation are essential for the initial [Ca2+]i 
rise which then can propagate by means of IP3- or ryanodine 
channels, or by interaction of both types 34;42;60;65. Thus, in rabbit 
inferior vena cava 97, in cultured aortic SMCs 75 and in rat portal 
vein 100 the blockade of IP3-channels stops Ca2+ waves. Similarly, 
acute inhibition of ryanodine channels blocks the Ca2+ waves in 
rat mesenteric artery (I), in cultured aortic SMCs 75, in rat tail 
artery 99 and in rabbit inferior vena cava 94. Interestingly, chronic 
downregulation of the ryanodine channels in rat tail artery did 
not affect Ca2+ waves while acute application of ryanodine 
stopped it 101 suggesting that one source of Ca2+ release can be 
sufficient for propagation of Ca2+ waves and can compensate for 
the lack of another. 
The transience of the Ca2+ waves is based on the following inhibi-
tion of the Ca2+ release. This is ascribed to a number of mecha-
nisms, such as inhibition of IP3 channels with the high [Ca2+]i 

102;103 
and/or by low luminal SR Ca2+ 104, an adaptive inactivation of 
ryanodine channels 105 and a time-dependent inactivation of both 
IP3 and ryanodine channels 106. The temporal characteristics of 
the inhibition determine the frequency of oscillations. This is 
supported by the observation that the frequency of Ca2+ oscilla-
tions has normally a limit and does not increase continuously with 
increasing agonist concentration 48;94. 
An increase in agonist stimulation increases the number of SMCs 
responding with the Ca2+ waves and leads to SMCs synchroniza-
tion 48;78;94;99;107;108. Synchronization of SMCs within the vascular 
wall gives rise to global oscillations in [Ca2+]i and vasomotion (I 
and 43;96;108). The global Ca2+ oscillations represent a uniform rise 
in [Ca2+]i throughout the cell. Significant changes in membrane 
potential are essential to induce such global synchronized Ca2+ 
influx through the voltage-dependent Ca2+ channels (VDCCs). 
Consistent with this, vasomotion was shown to be associated with 
oscillations in membrane potential in all vessels where it has been 

measured (I, VI and 7;71;72;86;93;109-111) with the exception of irideal 
arterioles 68;74.  
To be synchronized SMCs need to be coupled to allow a coordi-
nating signal to quickly spread between the cells. There is no 
doubt that intercellular gap junctions are the key elements for 
such synchronization. It has been documented experimentally 
that interruption of gap junctions desynchronizes Ca2+ transients 
and membrane potential oscillations and stops vasomotion, but is 
without effect on the Ca2+ waves (VI, VII, VIII and 112;113). This 
suggests an essential role of gap junctions in synchronization and 
entrainment of the Ca2+ oscillations 45;47;48. The nature of this 
signal which spreads through the gap junctions is, however, de-
batable. The synchronization can be mediated by transfer of small 
signaling molecules between SMCs. Depending on the model for 
synchronization, current (I and 46;47) or [Ca2+]i 

45 have been sug-
gested as major candidates. The movement of [Ca2+]i between 
SMCs seems to be small since the Ca2+ waves in one cell were not 
shown to initiate the Ca2+ waves in other, neighboring cells (I and 
48;94;96). This can be due to limited number of gap junctions be-
tween SMCs in the vascular wall 114;115 or due to a low (a few 
hundred nanomolar) concentration gradient (i.e. driving force) of 
[Ca2+]i between two SMCs in comparison to the gradients be-
tween cytosol and extracellular Ca2+ or Ca2+stored in the SR. A 
high buffering capacity of the cytosol will also prevent spreading 
of the Ca2+ signal between the cells. Thus, Ca2+ flux between two 
cells is unlikely to significantly affect the global [Ca2+]i. The electri-
cal current is therefore the more likely candidate to substantially 
affect the membrane potential and induce massive Ca2+ influx 
through the VDCCs (I and 46;47). 
Based on the current knowledge one of three generalized mecha-
nism for generation of vasomotion can be suggested by combin-
ing the parameters discussed above. In all suggested models the 
Ca2+ release from the SR is essential for vasomotion. In one rare 
case, seen only for irideal arterioles 68;74, no voltage-dependent 
membrane channels are involved. The critical dependence of such 
voltage-independent vasomotion on phospholipase C and A2 
pathways suggested their function as oscillators (Fig. 1A). The 
feedback loop will result here in oscillations due to biphasic regu-
lation of the IP3 channels by [Ca2+]i 

68. These oscillations are inde-
pendent of membrane voltage but can induce oscillations in 
membrane potential on a secondary basis. This suggests that 
SMCs are not synchronized by means of voltage but coupled by 
movement of second messengers 45. Whether the kinetics of 
second messenger movements is consistent with the speed suffi-
cient for information transfer between the SMCs necessary for 
vasomotion is unclear.  
Alternatively, in most of other blood vessels vasomotion is volt-
age-dependent because the influx of Ca2+ through the VDCCs is 
essential for the synchronization of individual oscillators. This 
synchronization can arise from an interplay between membrane 
conductances (membrane oscillators) or between cytosolic and 
membrane oscillator. The first might be due to temporary shifted 
activation by [Ca2+]i of the Ca2+ activated Cl- channels and the 
Ca2+-dependent K+ channels. This is possible because of different 
voltage-, Ca2+- and time-dependence of Cl- and K+ channels (Fig. 
1B) 26-31;116. This suggestion is based on the observation that in 
hamster cheek pouch arteries inhibition of K+ membrane conduc-
tance abolishes vasomotion 117. It is important to note that the 
involvement of K+ and Cl- is not mandatory and several other 
membrane transporters have been suggested to act as membrane 
oscillators, e.g. the Na+/K+-ATPase 66 and TRP channels 118. 
Finally, oscillations can appear due to activation of a depolarizing 
current which is stimulated by oscillating [Ca2+]i. This depolarizing 
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current will lead to the VDCCs opening, Ca2+ influx and synchroni-
zation of the global Ca2+ oscillations by membrane potential (Fig. 
1C). Although significant discrepancies between different groups 
were reported, this model provides suitable explanation for a 
large part of reports on vasomotion in rat mesenteric arteries (II 
and 43;54;66;69;76;78;86;87;96;110;112;119;120). I dedicated my research to 
improve the understanding of this oscillation type in the rat mes-
enteric small arteries. 
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Figure 1  
Sequences of events suggested for three different general models for the initiation 
of vasomotion. Panel A illustrates the voltage-independent model where the inter-
action between phospholipase C (PLC), phospholipase A2 (PLA2) and protein kinase 
C (PKC) amplifies the IP3 signal. The elevated IP3 level can induce oscillation in [Ca2+]i 
due to biphasic regulation of the IP3 channels by [Ca2+]i. SMCs can be synchronized 
by the movement of second messengers between the cells. AA is arachidonic acid. 
Panel B shows the pathway suggested for voltage-dependent oscillations. CICR can 
affect two membrane conductances (for example, Ca

2+
-activated K

+
 channels (KCa) 

and Ca2+-activated Cl- channels (CaCC)) which have opposite effect on the membrane 
voltage. Neighboring SMCs will be then synchronized by membrane potential 
changes. Panel C shows an interaction between cytosolic and membrane oscillators. 
IP3 induces the local Ca2+ release which gives rise to Ca2+ waves through CICR. 
Transiently elevated [Ca2+]i stimulates a depolarizing membrane current, possibly the 
Ca2+-activated Cl- current. The following depolarization opens VDCCs, induces a 
global Ca2+ influx which in turn affects the membrane potential and enhances the 
possibility of oscillations. This model has experimental support where vasomotion 
was shown to be endothelium-dependent (I and II). This can be due to steep cGMP-
dependence of the Ca

2+
-activated Cl

-
 current (III, IV and 

121
). This endothelium-

dependence is however still matter of debate 44. 

 

Hypothesis for the initiation of vasomotion in rat mesenteric 

small arteries (Paper I) 

Agonist-induced responses of rat mesenteric small artery in vitro 

Rat mesenteric small arteries are popular for studies the structure 
and function of resistance arteries, due to their easy accessibility 
and a large number of long branches of different diameters 
2;115;122;123. However, these arteries have unique properties in 
comparison to other small arteries. They have virtually no intrin-
sic myogenic tone which is often observed in other resistance 
arteries 9;124-129. Mesenteric small arteries contribute, neverthe-
less, significantly to the total peripheral resistance 130-132 where 

the sympathetic nervous control of smooth muscle contraction is 
of major importance 80;122;133. Mesenteric small arteries are heav-
ily innervated and sensitive to sympathetic neurotransmitters 
[ATP, noradrenaline (NA) and neuropeptide Y (NPY) 134-137] as well 
as to a number of other contractile agonists, such as vasopressin 
138;139, endothelin 140, thromboxane 141 and some vasoactive pep-
tides 142. This agonist-induced receptor-coupled stimulation of 
vascular contractility involves elevating [Ca2+]i as well as a sensiti-
zation of myofilaments to [Ca2+]i 

143. [Ca2+]i, elevated either by 
transmembrane Ca2+ influx, or by release from the SR, can then 
either directly activate the contractile filaments or indirectly alter 
cell excitability by affecting ion channel activity in the plasma 
membrane 65;144;145. In the mesenteric small arteries noradrena-
line is the most often used contractile agonist (I, II, VI and 
7;43;54;57;66;70;86;87;96;119;120;140;146-148). 
Development of myograph technique revolutionized the experi-
mental use of small arteries in vitro 149. Before this technique was 
developed, in vitro research was limited to strips and rings of 
large, conduit arteries 122. Development of small vessel myog-
raphs allowed arteries with diameter of few hundreds microme-
ters and below to be studied 2. In myographs changes in the wall 
tension or diameter are measured under isometric or isobaric 
conditions, respectively, to evaluate the vascular response to the 
stimulation. Although many researchers suggest that the isobaric 
conditions more closely resemble situation in vivo, in practice the 
difference between these two methods is not so dramatic: the 
arteries show similar passive pressure-diameter characteristics, 
although under isobaric conditions they are more sensitive to 
agonist stimulation 150. Nevertheless, the isobaric conditions (i.e. 
pressure myograph) are preferable for studies of vascular wall 
autoregulation. Moreover, under these conditions researchers 
receive the possibility to monitor changes in different parts of 
arterial segment independently. Thus, pressure myograph was a 
suitable technique for our study of partial synchronization in the 
vascular wall (II). 
Wire myography has an advantage over isobaric myography in 
experiments where the accurate and reproducible determination 
of basal tension is essential 2. This method allows normalization of 
the arteries in each experiment by determination of the passive 
length-tension relationship and then setting the internal diameter 
to a value that gives maximal force development. Thus, the nor-
malization sets all vessels in the same standard conditions which 
are utilized for almost all studies employing isometric myography 
of resistance arteries 2. In our studies (I, II, VI-IX) the vessel diame-
ter was set to 90 % of the value vessel would have had in vivo 
under transmural pressure of 100 mmHg 149. These standardized 
isometric conditions are ideal for interventional studies of vaso-
motion. 
The observation that submaximal stimulation by different con-
tractile agonists can induce rhythmic oscillations in tone suggests 
a primary role of SMC activation for initiation of vasomotion 
rather than a specific effect from a certain receptor. Vasomotion 
in rat mesenteric small arteries has been seen with electrical field 
stimulation of sympathetic nerves, where they are suggested to 
be due to noradrenaline release 80, in response to administration 
of exogenous noradrenaline (I, II, VI and 
7;43;54;57;66;70;86;87;96;119;120;140;146-148), vasopressin 151 and NPY 137 (Fig. 
2). Although stimulation with the thromboxane analog U46619 or 
endothelin-1 is reported to fail to induce vasomotion in rat mes-
enteric small arteries 140, the presence of endothelin-induced 
vasomotion in other vascular beds, e.g. cat arterioles 152, and our 
unpublished observation (Fig. 2C) in the rat mesenteric small 
arteries could suggest an importance of different experimental 
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conditions. The inconsistence could also be due to the steepness 
of the concentration-response curves for U46619 and endothelin-
1 which makes it difficult to achieve a reasonable submaximal 
level of tone. 
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Figure 2  

In spite of the different kinetics of contraction, vasomotion in-
duced by different contractile agonists has a similar pattern. 
Panel A shows a cumulative stimulation with increasing concen-
trations of noradrenaline (NA). Panel B shows vasomotion in 
response to arginin vasopressin (AVP). Panel C shows response to 
endothelin-1. Arteries were studied in vitro under isometric con-
ditions. 
 
Vasomotion is normally seen over nearly the entire spectrum of 
vascular tone, though their characteristics may change with the 
tone. This is especially true for the amplitude of oscillations while 
the frequency does not change much at different levels of tone. 
Since maximal amplitude is achieved at about 50% of maximal 
tone, this is a standard level of contraction where vasomotion is 
normally being studied (I, II and 87;110). 

[Ca
2+

]i imaging in the vascular wall in vitro 

Development of new techniques, first of all live fluorescence 
microscopy, improved our understanding of the sequence of 
events leading to vasomotion (I) (Fig. 1C). The possibility of load-
ing the arterial wall with fluorescent dyes was greatly improved 
with development of acetoxymethyl ester (AM) dye forms. Prior 
introduction of the fluorescent dyes into the cells was a harmful 
procedure including temporary membrane disruption with deter-
gents or voltage pulses 153. The membrane permeable AM-form 

becomes an impermeable, hydrophilic form inside the cell after 
the AM group is cleaved away by endogenous esterases. Available 
fluorescent dyes have various properties making them useful for 
different applications. Thus, we have used the Ca2+ ratiometric 
(dual excitation) dye Fura-2 (I, VI and VII) which is a practical tool 
for the continuous real-time monitoring of global [Ca2+]i events 
154. The ratiometric properties allow a conversion of the fluores-
cence ratio signal into [Ca2+]i (VI) although this calibration does 
not necessary contribute further important information and often 
calibration is not done (VII). The fluorescence ratio depends on 
several parameters, e.g. temperature, pH and ionic strength, 
which modify the dissociation constant for Ca2+ binding to Fura-2. 
This uncertainty is a disadvantage to the calibration method and 
it is necessary to assume that the dissociation constant is un-
changed during the study.  
To record [Ca2+]i changes with Fura-2 we used a conventional 
epifluorescent microscopic technique which does not allow moni-
toring of [Ca2+]i dynamic at the cellular and subcellular levels. This 
techniqual limitation can be overcome with the laser confocal 
microscopy approach. Combining a high numerical aperture ob-
jective and ability to move the focal point this approach makes it 
possible to record live images of the individual SMCs in the vascu-
lar wall mounted in the specially designed wire myograph over 
time (II, VII, VIII and 48;146). The narrow focal plane complicates 
recording of [Ca2+]i during even slight movement, i.e. the region 
of interest can move out of focus when the artery constricts. The 
movements can be inhibited chemically, e.g. wortmannin inhibits 
the myosin light kinase and therefore contraction, or by sustained 
hyperpolarization, e.g. pinacidil opens the ATP-dependent K+ 
channels. These methods of inducing stabilization however lim-
ited the ability to study vasomotion, i.e. the oscillation in tension. 
Therefore, most of the confocal data in our studies were obtained 
without these drugs because under the isometric conditions the 
movements are negligible (I, II, VI-VIII). 
Due to techniqual limitations (lack of suitable excitation wave-
lengths) we were not able to use Fura-2 dye in our confocal stud-
ies. The non-ratiometric Ca2+ dye Calcium Green-1 was used 
instead (I, II, VI-VIII). Calcium Green-1 increases in intensity upon 
binding to Ca2+ without a shift in the wavelength where emission 
is seen. This increases the probability of interference from 
movement artifact. In the experiments where this risk was espe-
cially high, e.g. measurement of subcellular Ca2+ dynamic in very 
small region of interest, we combined two Ca2+ dye indicators to 
perform semi-ratiometric [Ca2+]i measurements (VIII). Thus, ele-
vated [Ca2+]i results in increased fluorescence intensity of Calcium 
Green-1 and decreased fluorescence intensity of Fura Red. The 
combination of these two calcium indicators allows ratiometric 
analysis of [Ca2+]i changes relatively independent from move-
ments. 

[Ca
2+

]i transients in smooth muscle cells induced by an intracellu-

lar oscillator 

Our paper by Peng et al. (I) clearly illustrates that Ca2+ waves 
within the individual SMCs precede synchronized oscillations in 
[Ca2+]i and vasomotion (Fig. 3). Similar asynchronous [Ca2+]i waves 
preceding the rise in tension were previously seen in rat tail ar-
tery 99 and rabbit vena cava 94 SMCs. We have also detected 
[Ca2+]i waves in some SMCs of un-stimulated arteries 48. Increas-
ing noradrenaline concentration recruits SMCs into an oscillatory 
mode. The frequency of these asynchronous [Ca2+]i waves varied 
between SMCs (I and II) but was constant over time 48. This means 
that even during repeated stimulation the characteristic fre-
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quency of individual cells remained fairly constant. This observa-
tion indicated the phenotypic heterogeneity of SMCs in the vascu-
lar wall with respect to the Ca2+ dynamics 48;79. The source for this 
heterogeneity is unclear 46;48. Ca2+ waves also differ in direction 
and dynamics (I and 48;79). The waves in individual SMCs move in 
different directions, they can be initiated in the cell end or some-
where near the center and spread to non-excited parts of the cell, 
but they do not spread between the cells. The Ca2+ waves spread 
with different velocities between 12 and 175 µm/s with a median 
of 36 µm/s (I) (Fig. 3C) and their frequency increases with the 
noradrenaline concentration. This frequency is usually slower 
although overlap with the frequencies of synchronized oscilla-
tions consistent with the suggested model (I).  
 
It is generally accepted that Ca2+ wave generation needs a func-
tional SR 35. We have shown that this is also the case for mesen-
teric small arteries. Interruption of the SR function stopped the 
Ca2+ waves (I and 88). In line with this observation, the increase in 
noradrenaline concentration and, thus, IP3 production increases 
the velocity of the Ca2+ waves (Fig. 3C). In contrast, we found that 
another source for [Ca2+]i rise, an extracellular Ca2+ influx is not 

necessary for the appearance of Ca2+ waves (I). Inhibition of Ca2+ 
influx with VDCCs inhibitors or Ca2+-free bath solution preserves 
Ca2+ waves for some period of time. Ca2+ waves disappeared 
eventually after 10 to 60 minutes of Ca2+ influx inhibition (I). This 
was probably due to loss of some Ca2+ from the cell by pumping 
across the membrane. Similar conclusions were made previously 
by other groups in studies on rat tail artery 99 and rabbit venous 94 
SMCs. Interestingly, the Ca2+ waves were also preserved in SMCs 
hyperpolarized by opening the ATP-dependent K+ channels with 
pinacidil (I) suggesting its independence not only from the Ca2+ 
influx but also from the membrane potential. Thus, based on the 
experimental facts, consistent with other reports 78;94;99, we can 
conclude that the Ca2+ waves are initiated by an intracellular 
oscillator and propagated by an intracellular mechanism (I). The 
Ca2+ waves are seen in the absence of synchronization between 
SMCs, i.e. when vascular tone is static. These asynchronous waves 
shift to global [Ca2+]i oscillations when SMCs synchronize and 
vasomotion appears (I). 
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Figure 3  

[Ca2+]i events in SMCs in rat mesenteric small artery studied using confocal microscopy. Panel A shows [Ca2+]i image of arterial wall 
loaded with Calcium Green 1/AM. Panel B illustrates different stages of [Ca2+]i in one SMC from panel A. [Ca2+]i was measured in regions 
of interest (ROI) placed in two distant (about 40 µm) points within the cell as indicated by corresponding colors. Upper panel shows the 
quiescent state of cell before noradrenaline administration. Middle panel illustrate [Ca2+]i waves stimulated with noradrenaline before 
synchronization occurred. The 0.98 sec delay in the peak fluorescence gives wave velocity of 40.8 µm/s. Lower panel shows the global 
[Ca2+]i oscillations observed when the synchronization occurred. Panel C shows increase in the wave velocity with increasing noradrena-
line concentration. An average of 4 independent experiments, at least 5 cell in each. 
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Transition from waves to global [Ca
2+

]i oscillations 

In agonist-stimulated rat mesenteric small arteries spontaneous 
synchronization occurs after a variable period of time (normally 
within 30 seconds – 5 minutes), if the endothelium layer is intact 
(I) or if sufficient concentration of a membrane-permeable analog 
of cGMP (II) is present in the bath. During synchronization the 
Ca2+ waves change to global Ca2+ oscillations, which are seen in all 
SMCs in the arterial wall (I and 48). These synchronized oscillations 
in [Ca2+]i lead to the rhythmic contractions. Analysis of [Ca2+]i 
dynamics showed that during these global [Ca2+]i oscillations (I 
and 48) [Ca2+]i rose simultaneously (within the limits of the tempo-
ral resolution) throughout the whole cell (Fig. 3).  
In spite of significant difference in the dynamic characteristics, we 
concluded that the Ca2+ waves function as pacemakers for the 
global Ca2+ oscillations and, thus, vasomotion (I and 66;76). This is 
similar to a number of other reports which demonstrate that 
when either release or uptake of Ca2+ into the SR is inhibited 
vasomotion, the synchronized Ca2+ oscillation and the Ca2+ waves 
disappear 68;74;88;93;155;156. In contrast to the Ca2+ waves, the global 
Ca2+ oscillations are dependent on Ca2+ influx; the blockade of 
VDCCs, immersion into the Ca2+-free bath and hyperpolarization 
with the ATP-dependent K+ channel opener all stopped vasomo-
tion in the rat mesenteric arteries and, even more interesting, 
transformed the global Ca2+ oscillation back to the asynchronous 
Ca2+ waves (I). Thus, the synchronized activity in the mesenteric 
artery wall is voltage-dependent (I and II). Vasomotion and syn-
chronized Ca2+ oscillations are accompanied with rhythmic 
changes in membrane potential with the same frequency that 
were observed in rat mesenteric arteries (II, VI, VII and 7;54;70;86) 
and many other blood vessels 71;72;74;93;109. Moreover, the oscilla-
tions in membrane potential are shown to precede the oscilla-
tions in [Ca2+]i and the wall tension (I and 35). 
Although each cycle of contraction in vasomotion starts from 
depolarization 35 following by a rise in [Ca2+]i which leads to 
smooth muscle contraction, the means by which transition from 
Ca2+ waves to global oscillations in Ca2+ and membrane voltage 
occurs remains to be explained. Based on the previously reported 
measurements (II, VI, VII and 7;54;70-72;74;86;93;109) there is a little 
doubt that SMCs synchronize by membrane potential dependent 
mechanism. An electrical signal is probably the only signal fast 
enough to synchronize SMCs over a long arterial segment. It is 
important to mention that the mesenteric small artery wall is 
equipped with low-resistance channels of gap junctions 115;157-160. 
The gap junctions between of SMCs undoubtedly mediate the 
electrical coupling between cells which has been documented 
experimentally by different techniques. In the studies using puta-
tive blockers of gap junctions vasomotion was shown to be inhib-
ited after uncoupling SMCs (VII and 96;112;113) and the global Ca2+ 
oscillations were replaced by unsynchronized Ca2+ waves (VII). 
The observation of an irregular arterial vasomotion in cremaster 
muscle arterioles in connexin 40 knockout mice is also consistent 
with the importance of intercellular communication in synchroni-
zation 59. It is obvious in this context that the regulation of gap 
junctional conductance could be an important regulator of vaso-
motion. Little is known, however, about such regulation, although 
some potential regulatory elements have been suggested, e.g. 
cGMP, interaction with other membrane transporters such as 
Na+/Ca2+-exchanger, K+ channels and Na+/K+-ATPase (II, VIII and 
66;70). 
The key element for our model for vasomotion in the rat mesen-
teric small arteries is the suggestion that the intracellular and 
membrane oscillators interact with each other to produce phase 
locking of the individual cells (I). This is possible because the 

intracellular oscillations in Ca2+ induce rhythmic changes in mem-
brane potential. We suggested (I) that Ca2+ activates a depolariz-
ing current on the cell membrane. The consequent depolarization 
increases Ca2+ influx through the VDCCs and the likelihood for 
CICR, which amplifies the depolarization that spreads through the 
gap junctions to the neighboring SMCs. This depolarizing current 
enhances Ca2+ influx in the neighboring cell which increases the 
probability of Ca2+ release and, thus, entrains the Ca2+ release and 
forms the basis for vasomotion. The relaxing part of the vasomo-
tion cycle might be caused by hyperpolarizing current generated 
by the Ca2+-sensitive K+ channels which have slow activation 
kinetics, strong voltage-dependence and low sensitivity to [Ca2+]i 
30;145;161-167 and therefore activate substantially only when the 
membrane depolarizes and [Ca2+]i is significantly elevated. It is 
important in this respect that the K+ channel blockers have only 
modulating effect on vasomotion (I and 66). This could be because 
several different types of channels are involved in the repolariza-
tion. Another reason for the repolarization could be a slow-down 
of Ca2+ release due to emptying of the SR in the combination with 
an active removal of Ca2+ from the cytoplasm 97. A decrease of 
Ca2+ release from the SR could be due to a refractoriness of the 
Ca2+-release channels 98. 
The transition of Ca2+ waves to the synchronized oscillations in 
the rat mesenteric small arteries is only possible if the endothelial 
layer is intact or if a sufficient concentration of cGMP is present (I, 
II and 87). The fact that a fixed concentration of intracellular cGMP 
could, at least partially, compensate for the absence of endothe-
lium suggests that oscillations originate in SMCs and that the 
endothelium is not directly involved in the generation of oscilla-
tions under normal conditions (II and 70;88;108;168;169). A similar 
importance of endothelium was previously observed in other 
vessels 89;170-175, while in some vessels, e.g. rabbit mesenteric and 
ear arteries, aorta and hamster cheek pouch 155;175-178, vasomo-
tion was shown to be potentiated by endothelium removal or NO 
production blockade. The reason for such inconsistencies is un-
known and can be ascribed to significant differences in experi-
mental protocols or to the variability in the mechanism of vaso-
motion in different vasculatures. It is quite natural to suggest that 
several endothelium-derived factors have influences on vasomo-
tion and the role of each of the factors depends on the vascula-
ture and the experimental conditions. Our studies together with 
other groups reports show a promoting role of the NO/cGMP 
pathway for vasomotion in the rat mesenteric small arteries (II 
and 70;88;96;108;168;169). The importance of cGMP for the entrain-
ment of the intracellular Ca2+ oscillations via a membrane poten-
tial changes led us to suggest the presence of cGMP-dependent 
Ca2+-activated depolarizing membrane conductance (I). This sug-
gestion was supported by our membrane potential measure-
ments demonstrating that caffeine-induced Ca2+ release from the 
SR could depolarize SMCs only if the endothelium was present or 
if the loss of endothelium was compensated by a membrane 
permeable-analog of cGMP (I). We later identified this conduc-
tance as the cGMP-dependent Ca2+-activated Cl- conductance (III 
and 146;179). 

The model for generation of vasomotion 

Our comprehensive study of vasomotion in the rat mesenteric 
small arteries together with other studies in this field lead us to 
suggest a detailed model for the initiation of vasomotion in this 
vessel (I). Our model (Fig. 4) suggests that agonist stimulation of 
SMCs induces intermittent release of Ca2+ from the SR which 
activates a Ca2+-dependent depolarizing Cl- channel in the mem-
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brane only when cGMP is present. While this may occur randomly 
in different SMCs, the individual cells become synchronized by 
entrainment of Ca2+ release from SR in individual cells. When this 
occurs in a sufficient nu 
mber of cells, a depolarization is evoked which spreads through 
the gap junctions (I and 46;47). 

A complex action of cGMP in the generation of vasomotion 

(Paper II) 

In accordance with our model for the generation of vasomotion 
the presence of a sufficient amount of intracellular cGMP is nec-
essary for transition of the Ca2+ waves to synchronized oscillation 
in the vascular wall (I). This role of the endothelium/cGMP path-
way in the synchronization of SMCs is somewhat controversial: 
cGMP/endothelium has been shown to have both potentiating (I 

and 70;170;171) and suppressing 67;180 action, depending on the 
vasculature type and the experimental protocols. In an attempt to 
understand this controversy we tested whether cGMP has a more 
complex role in the initiation of vasomotion (II) than those sug-
gested by our initial model (I) where some of the parameters 
were simplified 46-48. Our detailed study of vasomotion “beating” 
and the concentration-dependent effect of 8Br-cGMP on the 
oscillation parameters, e.g. the frequency and amplitude of oscil-
lations, led us to two major conclusions (II). The first finding is 
that a state of partial coupling between SMCs is possible and that 
intermediate concentrations of cGMP can provide it. The second 
is that the stimulation of Ca2+-activated Cl- channel is only one of 
several different targets of cGMP in its complex modulation of 
vasomotion (II). The partial coupling of SMCs in the vascular wall 
was seen as a ‘beating’ oscillation in endothelium-denuded arter-
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Figure 4  

Model for the generation of vasomotion we suggest based on our experimental data (I, II). Left panel represents the schematic sequence of events during the initiation of 
vasomotion, the right panel shows changes in [Ca2+]i in two individual SMCs (shown in two colors), the global [Ca2+]i in the vascular wall (black line) and changes in the wall 
tension. Initial stimulation with contractile agonist increases IP3 production and stimulates localized Ca2+ released from the SR (upper panel). This is not accompanied with any 
changes in the global [Ca2+]i and in force. This local Ca2+ release can initiate the Ca2+ waves amplified by the CICR (middle panel) causing unsynchronized Ca2+ transients but not 
contractions. In the presence of a substantial amount of cGMP a rise in [Ca2+]i can stimulate the cGMP-dependent Ca2+-activated Cl- channel (bottom panel) and depolarize the 
membrane. Membrane depolarization opens the VDCCs, induces global Ca

2+
 oscillation and synchronizes SMCs via gap junctions. This leads to vasomotion. 
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ies under isometric conditions after addition of intermediate 
concentrations of 8Br-cGMP (30-100 µM) (II). The phenomenon 
can be explained by the presence of two or more regions oscillat-
ing with different frequencies. This was confirmed in isobaric 
experiment with pressurized arteries where different segments of 
a denuded artery oscillated with different frequencies at inter-
mediate cGMP concentrations (II). Importantly, this phenomenon 
is rarely seen in the endothelium-intact rat mesenteric small 
arteries 181. Moreover, the frequencies between different pieces 
of the endothelium-intact vessels are the same even when these 
to the pieces are not coupled to each other 110.  
The partial synchronization was accompanied by a dissociation of 
oscillations in membrane potential and tension (II). When a glass 
electrode was implanted in one SMC the membrane potential 
oscillations often differed from the ‘summarized’ force oscilla-
tions. Similar observation was also made for the [Ca2+]i dynamics 
(II). At the state of intermediate cGMP concentration islands of 
cells having synchronous oscillations of [Ca2+]i were observed (II 
and 48). Even in the presence of a high (300 µM) concentration of 
8Br-cGMP some SMCs were quiescent during synchronous oscilla-
tions in [Ca2+]i in their neighbors 48. Other SMCs had an extra 
transient which were not synchronized and was in the form of a 
Ca2+ wave (II). The observed extra [Ca2+]i waves were not seen in 
arteries with intact endothelium suggesting that endothelium 
provides more than NO/cGMP. The endothelium can also provide 
additional means of synchronization in the vascular wall, which is 
also suggested by the observation that vasomotion is not always 
stopped by blockade of NO production (II and 57). This might be 
explained by an essential role of an endothelium-derived hyper-
polarizing factor because its inhibition by charybdotoxin and 
apamin blocked vasomotion 57. This was, however, not the case in 
another study 66 and in our own experiments (unpublished obser-
vation).  
The cGMP molecule has multiple effects on vascular function. 
Thus, cGMP-dependent phosphorylation of connexins 37 and 43 
182 reduces intercellular coupling but cGMP enhance the intercel-
lular communication via connexin 40 183-185. It is therefore possi-
ble that cGMP affects vasomotion via an effect on intracellular 
coupling 115. It has been shown previously that the coupling resis-
tance between SMCs is much higher than that between endothe-
lial cells 186. Thus, the removal of endothelium also abolishes a 
low-resistance pathway for current synchronization and therefore 
potentially makes it more difficult to entrain synchronized islands 
of SMCs located distantly. 
In our cGMP concentration-effect study we also observed that 
cGMP had a direct effect on [Ca2+]i dynamic by reducing the num-
ber of oscillating cells and the frequency of Ca2+ release (II). The 
exact reason for this suppressing action of cGMP was not studied, 
but it has been reported previously that cGMP inhibited SR-
dependent Ca2+ transients via stimulation of Ca2+ extrusion 
mechanisms, i.e. the Ca2+-ATPase 187 and the Na+/Ca2+-exchanger 
188, as well as through direct inhibition of the IP3 pathway 189;190. 
Increased Ca2+ extrusion could explain the reduction in the fre-
quency of oscillation. Thus, similar to our findings, stimulation of 
NO/cGMP production by acetylcholine and sodium nitroprusside 
in tail artery reduces [Ca2+]i dynamics even in hyperpolarized 
arteries 191. We suggested that Ca2+ waves, being the pacemaker 
for vasomotion, have a strong influence on the frequency of the 
synchronized oscillations. It is therefore possible to expect that 
cGMP, by affecting the frequency of the Ca2+ waves, will also 
reduce the frequency of vasomotion. We confirmed this experi-
mentally by showing that the frequency of vasomotion decreased 
gradually with an increasing 8Br-cGMP concentration (II). 

Electrophysiological approaches in the studies of vasomotion 

Registration of electrical events over the cell membrane is one of 
the essentials for understanding vasomotion. The measurements 
of membrane potential in isolated arterial segment supported the 
suggested theory about transition of [Ca2+]i waves into the syn-
chronized global Ca2+ oscillations by means of a membrane poten-
tial dependent mechanism (I and II). Moreover, simultaneous 
measurements of membrane potential, [Ca2+]i and isometric force 
showed the initial role of membrane potential changes in the 
sequence of events leading to the rhythmic contractions 35. The 
great advantage of this method is an ability to record membrane 
potential without isolating the cells 7. Thus, a sharp glass elec-
trode can be impaled in smooth muscle cell located in its natural 
environment in the vascular wall. It is therefore possible to com-
bine membrane potential recording with isometric force and 
[Ca2+]i measurements, although the problems with movement 
artifacts are also relevant for this method. Although the myosin 
light chain kinase inhibitor wortmannin can be used for stabiliza-
tion, normally recordings under isometric conditions are made 
without wortmannin. We controlled the location of the electrode 
tip by continuous recording of electrode resistance (input resis-
tance) by current pulse injection (VI and VII). The recorded input 
resistance is an indicator of both the membrane resistance of the 
impaled cell and the resistance of intercellular contacts within the 
vascular wall. We have, therefore, used input resistance for quali-
tative evaluation of intercellular coupling within the intact vascu-
lar wall (VI and VII). 
The suggested presence of a cGMP-dependent Ca2+-activated 
depolarizing current based on the membrane potential measure-
ments (I) received support in our voltage clamp studies where we 
characterized the current (I, III-V). Under voltage clamp conditions 
the current injected to clamp the potential reflects the ionic 
current across the cell membrane 192;193. A major disadvantage of 
voltage clamp is the difficulty of applying it to vascular smooth 
muscle cells in situ. In comparison with the conventional sharp 
electrode used for membrane potential measurements, the volt-
age clamp electrode has low tip resistance and “patch” the cell 
membrane forming a very high-resistance seal with the mem-
brane surface 194. The formation of a gigaohm seal is essential for 
successful patch clamp experiments and this means that only 
“clear” membrane surfaces can normally be used 195. Vascular 
wall cells are not “clean” and additional procedures, e.g. enzyme 
“shaving” of vessels surface are necessary 195;196. Even if it will be 
possible to patch the vessel without enzymatic digestion (as it is 
the case for some arterioles) this will not give much advantage 
over the conventional membrane potential measurement due to 
the “space phenomenon”, i.e. inability to control the voltage over 
a piece of tissue containing more than a few cells 192;195;197. This 
problem can however be solved by chemical uncoupling the cells 
in the vascular wall 196;198. In summary, some modification of the 
conventional technique provides the possibility to patch SMCs in 
the vascular wall but the necessary manipulations will signifi-
cantly modify the cells. 
The cells for conventional patch clamp can be isolated by enzy-
matic digestion of the vessel. The method of digestion depends 
on the type of artery and the type of conductance which is stud-
ied. There is no one ideal isolation technique which is suitable for 
all studies. Different combinations of collagenase, elastase and a 
broad-spectrum protease, papain, are normally used to digest 
different vessels 195. Papain is know to damage some types of Ca2+ 
conductances but is good for studies of K+ currents 199. Although 
Ca2+ conductances are resistant to the collagenase/elastase diges-
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tion, the isolated cells show hyperreactivity and are constrict to 
any stimulus which makes difficult to patch them 200. 
After the gigaseal is obtained several patch clamp configurations 
can be formed 195. Rupture of the membrane under the tip forms 
a low resistant pathway between the intracellular environment 
and the pipette solution. The configuration I have mostly used in 
my studies is the “whole-cell” technique because it enables me to 
record the current from the entire cell membrane. Under the 
whole-cell configuration the contents of the cell and the pipette 
exchanges within a few minutes which allows control of the intra-
cellular environment 201. This property is helpful for effective 
isolation of single ionic conductances in macroscopic mode. I have 
dialyzed the cells with a cesium rich solution to establish more 
complete block of K+ conductances which otherwise could con-
taminate the recordings (III and IV). Similarly the intracellular 
messengers and other big signaling molecules can be added via 
the pipette in defined concentrations, e.g. I applied intracellularly 
membrane-impermeable cGMP (III-V), ATP (IX), protein kinase G 
(III) and controlled intracellular Ca2+ by Ca2+-chelators (III, V, VIII). 
Importantly, diffusion also occurs from the cell to the pipette, and 
significant loss of important cellular component can be observed 
201-203. This is the explanation for rundown of several membrane 
currents, e.g. Ca2+-activated Cl- current 204. Washing out of diffus-
ible second messengers explains also the disruption of receptor-
channel coupling seen in the whole-cell experiments 12. This 
problem with the loss of intracellular constituents is partially 
overcome using the perforated patch clamp where the mem-
brane patches only permeabilized for monovalent ions by anti-
fungal drugs, nystatin and amphotericin (I and 205). Permeabilized 
patch does not allow addition of bigger molecules via the pipette 
solution resulting in pure control of [Ca2+]i, ATP/ADP ratio, etc. 
Noteworthy, the conventional patch clamp configuration does 
not seem to provide a complete control over larger organic mole-
cules (e.g. cAMP and ATP) which have low washout rates partially 
because of their size 206;207 and partially because of the microdo-
main structures 208;209. Moreover, ion concentration was also 
suggested to be poorly controlled in some subcellular compart-
ments. Thus, the possibility to change local [Ca2+]i is strongly 
dependent on the type of Ca2+ chelator and the distance to the 
signaling target 210.  
Other modifications of patch clamp allow direct measurements of 
the conductance of a single channel and provide detailed infor-
mation on channel biophysical properties which can not be ob-
tained from the whole-cell macroscopic recordings. This can be 
done in “cell-attached” mode when other cellular constitutes can 
directly modulate channel behavior 121. Only poor control of 
voltage over the patch membrane and no control of the intracel-
lular environment are limiting the use of this method. A single-
channel can also be studied in a cell-independent manner when 
the membrane patch is completely isolated from the cell in “in-
side-out” and in “outside-out” modes 195;211. These methods 
permit identification of distinct channel subtypes when the mac-
roscopic currents are not easy to distinguish 195;211. Under these 
conditions there is a tight control of the environment on both 
sides of the membrane which is a clear advantage but a drawback 
at the same time since single channels in excised patches behave 
differently because of lack of many intracellular constituents 
which play regulatory and modulatory roles. Therefore, caution 
should be taken when relating the patch clamp data to functions 
of the intact vessels. 
Patch clamp is used not only for studies of membrane currents 
but also for evaluation of intercellular communication. Evaluation 
of electrical coupling can be seen under conditions when visual 

dye coupling fails to detect intercellular communication 72;212. 
Electrical coupling between two cells can be determined by dual 
patch clamp 213;214. This technique is more challenging than con-
ventional single electrode recording. Alternatively, monitoring the 
membrane capacitance of coupled cells by single electrode patch 
clamp can give insight to the cell coupling (VII, VIII and 215;216). Cell 
membranes store a charge as a capacitor. Therefore, when cells 
are electrically coupled the total electrically coupled membrane 
surface is increased and membrane capacitance increases like-
wise (VIII). Uncoupling of coupled cells decreases capacitance. 
The great advantage of this method is that it enables intercellular 
coupling to be estimated under conditions where only one of the 
coupled cells is patched 215;216. Importantly, this way to estimate 
electrical coupling can not be used easily for quantitative meas-
urements because of non-linear relation between the measured 
total capacitance and intercellular resistance 217. Nevertheless, 
intercellular resistance changes can be estimated by a compli-
cated recalculation of the measured parameters 217-219.  

6. A CL
-
 CHANNEL IN VASOMOTION? (PAPERS III, IV, V) 

The characterization of a unique cGMP-dependent Ca
2+

-

activated Cl
-
 current in SMCs from rat mesenteric small arteries 

(Paper III) 

A cGMP-dependent Ca2+- activated depolarizing conductance was 
predicted by the model for the initiation of vasomotion in rat 
mesenteric small arteries (I).We recorded this cGMP-depended 
current initially in permeabilized whole-cell mode (I). This type of 
recording makes it difficult to manipulate the intracellular envi-
ronment and to characterize the conductance in detail. We chose, 
therefore, the conventional whole-cell patch-clamp method 
which allowed us to manipulate both intracellular and extracellu-
lar environments. Using this method we characterized the cGMP-
dependent current in detail (III). Piper and Large published a 
description of the same conductance at the single channel level 
121;220. 

[Ca
2+

]i-dependence 

Similar to the permeabilized patch-clamp experiments, caffeine-
induced Ca2+ release induced under the conventional ruptured 
patch-clamp conditions a few hundred pA inward current only 
when micromolar cGMP was added into the pipette solution (I 
and III). This cGMP-dependent, Ca2+-activated inward current can 
be also stimulated by increasing [Ca2+]i by other means, e.g. 
stimulation of extracellular Ca2+ influx (III) or dialysis of the cell 
with high-Ca2+ solution (IV and V). Importantly, this current can 
also be stimulated by noradrenaline via the G-protein-coupled 
adrenoreceptor in the cell-attached mode 121. Chelating Ca2+ with 
a low concentration of BAPTA or EGTA abolished the cGMP-
dependent current induced by caffeine (III) suggesting that Ca2+ 
can be released at a distance (>100 nm) from the channel 210 and 
that there is no need for a very close interaction between the SR 
and the channel. 
The cGMP-dependent inward current was steeply Ca2+ depend-
ent, as was shown with the single channel recordings 121. The 
current was detectable already at 50 nM [Ca2+]i and reached its 
maximum at 100 nM with half-maximal activation at 74 nM. This 
[Ca2+]i-dependence was shown to be mediated via calmodulin 
which increased the open probability of the channel in a calmodu-
lin kinase II (CaMKII) independent pathway 220. The surprisingly 
high sensitivity for [Ca2+]i suggests that either under the physio-
logical conditions Ca2+ sensitivity is under control of second mes-
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sengers, as it is known for other Ca2+-activated ion channels, or 
the channel is regulated by local spatially restricted Ca2+ changes 
rather than global [Ca2+]i.  
We observed sometimes during caffeine stimulations a superim-
posed outward current due to an activation of big-conductance 
Ca2+-activated K+ channels (BK) (III), since it was abolished by 
specific blockers, e.g. charybdotoxin or iberiotoxin 221. It also has 
been shown previously that Ca2+-activated outward (K+) and 
inward (Cl-) conductances can superimposed on each other 27-29. 
The appearance and prevalence of the BK current depended on 
the membrane voltage and became significant at voltages posi-
tive to -60 mV, when it was distant from the K+ equilibrium poten-
tial (EK=–78.5 mV). To avoid complications in the analyses of the 
Cl- conductance, we had K+ channel blockers, charybdotoxin and 
barium chloride, in the bath during almost all our experiments. 
Another reason to have these K+ blockers in the bath was to 
compensate for the non-specific effects of niflumic acid on the 
membrane conductance (IV and 222) (see below). 

An absolute requirement for cGMP 

There is no doubt that caffeine induces the inward current by 
elevation of [Ca2+]i only in the presence of intracellular cGMP (III). 
This requirement for cGMP was absolute under whole-cell con-
figuration but a small inward current was seen under permeabi-
lized conditions in the absence of 8Br-cGMP (I). This can be due to 
remaining endogenous cGMP. It is, therefore, important that the 
single channel recordings clearly indicate an absolute require-
ment for cGMP 121. The sensitivity to cGMP (in micromolar range) 
was not significantly different under whole-cell (III) and single 
channel configurations 121. Although the detected sensitivity for 
cGMP is similar to that described for cyclic-nucleotide-gated 
channels 223;224 this channel is not one of them, because we have 
shown that the channel is activated via phosphorylation by a 
cGMP-dependent protein kinase (PKG) which is not the case for 
the cyclic-nucleotide-gated channels (III and 121). Key evidence for 
this was that a cGMP-independent constitutively active catalytic 
fragment of PKG Iα 225 activated the Ca2+-activated inward current 
in the absence of cGMP (III). The catalytic subunit of PKG I was 
produced by trypsinization 225 but it is not possible to specify to 
which extent it depends on the two PKG I variants, i.e. PKG Iα and 
PKG Iβ 226. The role of the variants is, however, important since 
the dominating smooth muscle variant, PKG Iα 227, is highly sensi-
tive to cGMP with half-maximum activation at 0.1 µM 226. This is 
much higher than the sensitivity detected in our studies and that 
of Piper & Large (III and 121). Thus, since PKG Iβ is also expressed 
in SMCs and is at least 10-times less sensitive to cGMP, PKG Iβ is 
the most likely candidate for the activation of the cGMP-
dependent Ca2+-activated inward current. The two PKG variants 
are involved in distinct signaling pathways 228;229. Thus, it is possi-
ble that cGMP pathways divide into the well-known NO-mediated 
relaxation via cGMP with involvement of PKG Iα, and another 
pathway via PKG Iβ which is associated with rhythmic membrane 
depolarization via the cGMP-dependent Ca2+-activated depolariz-
ing current (I). This is consistent with previous suggestions that 
both Ca2+ and cGMP signaling are spatially restricted in SMCs 
65;228-232.  

A novel cGMP-dependent Ca
2+

-activated Cl
-
 current 

Since the equilibrium potential for K+ was negative to the holding 
potential in our experiments, K+ cannot be a charge carrier for the 
inward current, but Na+, Ca2+ and Cl- ions are candidates (ENa=+68 
mV; ECa=+88 mV; ECl=0 mV) (III). However, neither Ca2+-free ex-

tracellular solution nor Ca2+ channel blockers affected the cGMP-
dependent current. Na+ was also excluded from the candidates 
based on substitution experiments (III). In contrast, the close 
correlation between the equilibrium potential for Cl- (ECl) and the 
current reversal potential (EREV) indicates that the cGMP-
dependent Ca2+-activated inward current is carried by Cl- (III and 
121). 
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Figure 5  
EREV is plotted against calculated ECl. The dashed line is the identity line, expected for 
ideal Cl- channel. Bath solution contained the following cations (in mM) 6 K+, 145 
Na+, 0.1 Ca2+. Pipette solution contained (in mM) 132 K+, 10 Na+, 0.01 Ca2+. Cl- con-
centration was varied as described previously (III). Vertical bars indicate SEM. Note 
the difference of the experimental results from the identity line. This difference 
disappeared when symmetrical CsCl solution was used instead (III). 

 
To estimate the anion selectivity in the whole-cell configuration 
we used CsCl solutions to suppress the Ca2+-activated K+ channels 
and buffering [Ca2+]i at 900 nM. Under these conditions, EREV 
corresponds fairly well to ECl 

24;233;234 indicating a pronounced, 
although not perfect, selectivity for anions (III). It is not apparent, 
however, whether some deviations from the identity line reflect 
cations passing through the channel, or if they result from an 
insufficient control of intracellular ion concentrations. In general, 
a Cl- channel displays a 5-50 time selectivity for anions over 
cations. This is the case for, e.g. cystic fibrosis transmembrane 
conductance regulator (CFTR) 235, GABAA and glycine receptors 236 
and the voltage-gated Cl- channels 237-239. However, a more ap-
propriate name might be a Ca2+-activated anion channel. 
When we used complex solutions, containing K+, Na+, Ca2+ and Cl- 
ions, the correlation between ECl and EREV was no longer ideal (Fig. 
5), indicating less than perfect anion selectivity. The downward 
shift from the identity line seen under these conditions indicates 
a significant influence of K+ conductance which has a negative EK 
relative to ECl. A relatively poor selectivity for anions over for 
cations was previously described for the Ca2+-activated Cl- chan-
nels (CaCCs) 240. More information about the ion conducting 
properties comes from the studies of relative halide permeability. 
This was normally evaluated under bi-ionic substitutions, i.e. 
when Cl- on one side is substituted for another anion, and this 
results in the EREV change 240;241. 
The relative halide permeability of most CaCCs increases with the 
ionic radius and normally follows the sequence I->Br->Cl->F-. The 
Cl- channels are also permeable to polyatomic non-halide anions, 
such as thiocyanate (SCN-), acetate and aspartate. SCN- is usually 
more permeable than Cl-, while acetate and aspartate are known 
to be less permeable due to their size 240;242. To enter the channel 
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pore, anions have to be partly dehydrated and the energy neces-
sary for dehydration must be supplied by a binding site within the 
pore. Wright and Diamond 243 suggested that a binding site with a 
low electrical field strength (where the interaction of ions with 
the channel is weaker than interaction with water) provides this 
energy and, thus, defines the typical permeability sequence for 
the anion channel. In the simple terms this would indicate that I-, 
which is the large ion, binds better within the pore than F- , which 
is small, and, therefore, is more permeable. Importantly, the 
relative permeability can not be used as a measure of an ion flux 
and describes only an ability of an ion to enter the channel pore. 
The flux of ions is determined mainly by the strength of interac-
tion within the pore. High-affinity binding slows down ion flux 
(the ion “sticks” in the pore) and reduces channel conductance. 
Conductance is evaluated from the current-voltage relationship 
240 but is rarely studied in details. When it has been studied, I- was 
either shown to be more conductive than Cl- 235;244 or no differ-
ence was detected 245;246. This indicates that I- binds in the chan-
nel pore with either similar or weaker strength than Cl-.  
Keeping this in mind, we identified both the relative conduc-
tances and permeabilities for the cGMP-dependent Ca2+-activated 
Cl- current (ICl(Ca,cGMP)) in SMCs (III). The sequences were similar to 
those of the ‘classical’ Ca2+-activated Cl- current (ICl(Ca)) but not 
identical, e.g. we found Br->I-. This is possible when permeabilities 
for I-, Br- and Cl- are close 243 which was the case in our study (III). 
This might also be the reason for the inconsistency with results 
achieved in the single channel recordings, where the relative 
permeability sequence was Cl->I-, but again the I-/Cl- ratio was 
close to 1 121. When the channel permeability was placed against 
the hydration energy of the ions (Fig. 6) the slope was shallow 
compared to that reported for other CaCCs 15;240;241;247. This indi-
cates that in contrast to other CaCCs 240;241;247, the hydration 
energies is not a major determinant of the ion permeability. 
Which other parameters are of significance for the cGMP-
dependent CaCC permeability and conductance remains unclear, 
but we failed to find a correlation with ion dimensions 248. Also 
the binding affinity could not explain the observations since the 
recalculated relative affinities for the binding site in the channel 
were equal for all halides (III). Obviously, ionic radius is playing a 
role when ion dimensions become very big, as is the case with 
aspartate. Acetate, in contrast, is still permeable in accordance 
with its hydration energy. These results suggest that the channel 
pore is bigger than 4.7 Å (acetate size) but smaller than 5.8 Å 
(aspartate size) 248. 
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Figure 6  
The permeability of anions (PX) measured relative to Cl- permeability (PCl) (III) corre-

lated reasonably, but with a shallow slope, to the hydration energy of the anions. 
 
Another interesting observation we made was that SCN- has high 
permeability but low conductance suggesting a high affinity to the 
channel binding site (III and 240). Similar properties were previ-
ously shown for the native ICl(Ca) in the Xenopus oocytes 240 and, 
surprisingly, for GABA receptors where SCN- induced pore block-
ade 236. The latter observation might suggest a possible structural 
similarity between the cGMP-dependent CaCC and the GABAA 
receptors (V). 

The voltage and time independence 

In addition to [Ca2+]i, the open probability of many CaCCs is de-
termined by membrane voltage. This was not, however, the case 
in our voltage-clamp experiments where the ICl(Ca,cGMP) changed 
linearly with the membrane voltages (III and IV). Similar results 
were obtained from single channel recordings 121. It is possible 
that the high [Ca2+]i we used in the studies (III and IV) can be the 
reason, since voltage-dependence is known to be [Ca2+]i-
dependent; current rectification is prominent at lower [Ca2+]i but 
is almost absent at micromolar [Ca2+]i 

15;241;247. We tested the 
possibility of Ca2+ dependence of the voltage-dependency and 
found that this was not the case: the ICl(Ca,cGMP) was voltage-
independent through the entire [Ca2+]i range (V). The observation 
that the cGMP-independent ‘classical’ ICl(Ca) had the [Ca2+]i sensi-
tive outward rectification under these experimental conditions 
suggests that our finding is not an artifact of the experimental 
protocol but a unique property of the channel. Some previously 
described ICl(Ca) also have a weak or even absent the voltage-
dependence at submaximal [Ca2+]i 

249-251. The reason for these 
discrepancies is unknown. 
The ICl(Ca,cGMP) has no obvious time dependence (III and IV): as 
soon as [Ca2+]i and cGMP are sufficient for activation, the channel 
is activated and the ICl(Ca,cGMP) depends only on the driving force 
for Cl-. Therefore, voltage steps in SMC dialyzed with cGMP and 
high [Ca2+]i produce an immediate Cl- current which is not differ-
ent between the early and the instantaneous phase (III and IV). 
The absence of a tail current after repolarization also demon-
strates that the gating mechanism is time- and voltage-
independent. 

Sensitivity to blockers 

None of several putative blockers, known to block other Cl- con-
ductances, were found to be specifically effective for the 
ICl(Ca,cGMP). Thus, DIDS and IAA-94 were without effect on the 
ICl(Ca,cGMP) (III) when applied in concentrations known to inhibit 
other Cl- conductances 15;241;247. The most common blocker of the 
ICl(Ca) 

20;252-254, niflumic acid, also had no effect on the ICl(Ca,cGMP) (III, 
IV, V and 121). This is consistent with previous reports on insensi-
tivity of some of Ca2+-activated Cl- currents 255 and even a poten-
tiating action of niflumic acid on the Cl- conductance 116;256-258. 
This dual effect of niflumic acid on the ICl(Ca) is of interest because 
recent data suggest an overlapping pharmacology of the Ca2+-
activated Cl- and the Ca2+-activated K+ (BK) currents 116;222. It has 
been shown recently that niflumic acid can potentiate both the 
BK current and, under certain conditions, the sustained Ca2+-
activated Cl- current (III, IV and 116;256-258), while the BK channel 
modulators can also affect the Ca2+-activated Cl- current 258. 
Therefore, some similarities in the molecular structure have been 
suggested 116, although the effect of a physical interaction be-
tween the two proteins is also possible. Importantly, these non-
specific effects appeared only when the blockers were applied 
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separately. When charybdotoxin is applied first, niflumic acid 
produces effective inhibition of the ICl(Ca). Thus, the combination 
of blockers is needed to achieve inhibition of the ICl(Ca). In our 
experiments (III-V), the bath solutions contained charybdotoxin to 
avoid the potentiating effects of niflumic acid on the BK and Ca2+-
activated Cl- currents. The inhibition of the classic ICl(Ca) supports 
action of niflumic acid on this conduction (III-V). 
Since several Cl- conductances were previously reported to be 
sensitive to multivalent cations, we tested the effect of divalent 
cations on the ICl(Ca,cGMP) and found that micromolar Zn2+ effec-
tively inhibited the current while Co2+ was without effect (III and 
121). Zinc was previously used to inhibit voltage-gated Cl- channels 
but at higher concentrations 259;260. Interestingly, the sensitivity to 
micromolar Zn2+ is one of the fingerprints for GABAA sensitive Cl- 
conductance 261;262. Zinc inhibits GABAA channels by binding to the 
selectivity rings in the channel pore 263;264 again suggesting a 
possible similarity in the pore structure between putative cGMP-
dependent CaCC and the GABAA channel. 

Two distinct Ca
2+

-activated Cl
-
 currents co-exist in SMCs (Papers 

III and IV) 

The current conductance 

The characterization of the ICl(Ca,cGMP) clearly indicated that the 
current we described (III) was unique in comparisons to other 
known, so called “classical”, ICl(Ca) 

15;241;247. The unique position of 
the ICl(Ca,cGMP) in the group of the ICl(Ca) was strongly supported by 
the finding that both types of current are present in the same 
SMCs (III and V). Also single channel recording revealed the pres-
ence of both currents 121;265. The classical Cl- conductance was 
much smaller (~3 pS) than the ICl(Ca,cGMP) conductance which was 
~20 pS 121. This interesting feature is in accordance with previous 
observations indicating that at least two distinct types of anion 
conductances can be detected in the cell membrane. The low-
conductive CaCCs is the most reported type. This conductance is 
detected in the various tissues including SMCs 265-268. The reports 
on the large Ca2+-activated Cl- conductance are sparser. 
In the beginning of the 1990’s Benos and co-authors identified in 
bovine trachea a membrane protein constructed of 38- and 64-
kDa polypeptides which incorporated in a lipid bilayers gave 25-
30 pS ICl(Ca) without any voltage-dependence 269. Interestingly, this 
reconstituted channel did not need any other intracellular mes-
sengers but Ca2+ for its activation and was completely inhibited by 
100 µM DIDS. In contrast, other authors reported a large ICl(Ca), 
which depended on protein kinase G activation, and explained 
the Cl- current rundown by washout of intracellular messengers 
270-272. No voltage-dependence was shown for these ICl(Ca). It 
should be noted, that CaCCs with conductance >100 pS was pre-
viously reported too, although most of these conductances be-
long to intracellular Cl- channels 273;274. 

The difference in pharmacology 

The cGMP-dependence was used to distinguish between the Ca2+-
activated Cl- currents when they were activated in the same SMCs 
(III-V and 121;220). This differentiation was possible also based on 
distinct pharmacological properties. Thus, the ICl(Ca,cGMP) had low 
sensitivity to niflumic acid in concentrations which inhibited the 
classical ICl(Ca) (III). In contrast, the classical ICl(Ca) was insensitive to 
micromolar Zn2+, the blocker of the ICl(Ca,cGMP) (III-V and 121;220). 
This allowed us to design a protocol where the two currents were 
measured and evaluated during the same voltage clamp of SMC 

(III). The protocol was then carefully tested for unwanted effects 
of the blockers, e.g. niflumic acid, cGMP and Zn2+ (IV and V). 
The [Ca2+]i sensitivity of the ICl(Ca,cGMP) 

121 is surprisingly high in 
comparison to previously published values for other ICl(Ca) 

15;241;247. 
Most of the ICl(Ca) reported in the SMCs have half-maximal activa-
tion at 0.2-0.6 µM of [Ca2+]i and achieve maximal activation at 
0.6-1 µM of [Ca2+]i 

23;246;265;275. This broad range can probably be 
explained by a variability of mechanisms (a direct activation or by 
phosphorylation via Ca2+/CaM-dependent protein kinase II) for 
Ca2+-activation within the heterogeneous group of the CaCCs 
247;276;277, although this has not been studied systematically. 
In our experiments we dialyzed SMCs with a solution containing 
~0.9 µM free [Ca2+]i, which was enough for activation of both 
Ca2+-activated Cl- conductances (III and IV). When sensitivities of 
the two types of the Cl- current were directly compared, both Cl- 
currents were maximally activated at 0.3-0.9 µM [Ca2+]i, but the 
ICl(Ca,cGMP) showed a higher [Ca2+]i sensitivity (V). No current reduc-
tion was seen with supra-maximal [Ca2+]i, as it was shown previ-
ously for single channel recording 220. 

Distribution of the currents in SMCs of different origin 

The two different Ca2+-activated Cl- conductances might be 
caused by the same protein where phosphorylation by PKG chan-
ges the channel properties. PKG can thus act as a switch between 
different channel modes. This is, however, not the case, since the 
cGMP-dependent and the classical Ca2+-activated Cl- currents 
have different expression profiles in SMCs. This is also supported 
by differences between these two Ca2+-activated Cl- conductances 
in pharmacology, single-channel conductance and ion selectivity. 
The ICl(Ca,cGMP) was first characterized in SMCs freshly isolated from 
the rat mesenteric small arteries (III). It was then detected in 
SMCs isolated from other vascular beds and in visceral SMCs (IV). 
In most vessels, e.g. aorta, tail artery, femoral artery and vein, 
middle cerebral artery, renal artery, portal vein, superior mesen-
teric artery and colon, the ICl(Ca,cGMP) was accompanied with the 
classical ICl(Ca) in variable proportions (IV). 
Importantly, due to different voltage-dependences the relative 
size of two currents was strongly dependent on the membrane 
voltage at which the currents were measured (IV). The classical 
ICl(Ca) showed a strong outward rectification. Thus, for the com-
parison of the two Cl- currents, it is important to define at which 
membrane voltage the currents are compared. It seems more 
relevant to compare the currents under conditions close to 
physiological membrane potentials. We, therefore, compared the 
Ca2+-activated Cl- currents at membrane voltages close to the 
resting membrane potential of SMCs (IV and V). Under these 
conditions SMCs from cerebral arteries and femoral vein had 
dominating ICl(Ca,cGMP), while in the myocytes from tail and mesen-
teric arteries and portal vein these two currents are not different. 
Importantly, the pulmonary arteries had virtually no ICl(Ca,cGMP) (III). 
It remains unclear whether this has physiological significance, but 
we have used this observation to search for the gene responsible 
for ICl(Ca,cGMP) (V). 

The Cl
-
 conductance in the SMCs 

If Cl- is distributed passively across the plasma membrane intra-
cellular Cl- concentration should be ~10-15 mM. This is consistent 
with the data in skeletal muscles 16, but not the smooth muscles. 
Measured with intracellular electrode 14;278-281, 36chloride efflux 
282;283 and a fluorescent dye 284 in different SMCs, the [Cl-]i is 
surprisingly high within the range between 30 and 50 mM. Thus, 
the estimated ECl will be between -40 and -25 mV which is above 
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resting membrane potential in the majority of smooth muscles 
285;286. This suggests active transport of Cl- into the SMCs. There 
are at least two transport mechanisms which contribute to intra-
cellular Cl- accumulation: Cl-/HCO3

- exchange 14;287 and the Na+-K+-
Cl--co-transport 288;289. In addition to these well-known types of Cl- 
transports, a third form of transport, the so called ‘pump III’, is 
suggested from the work of Chipperfield and co-authors 290-292. 
Neither the molecular identity nor the driving force for the ‘pump 
III’ is known. 
Opening of Cl- channels will depolarize SMCs and, therefore, 
induce smooth muscle contraction. Indeed, a role of Cl- efflux for 
agonist-induced contraction has been shown in several types of 
smooth muscle and the role of CaCCs was emphasized 19-24. If Cl- is 
important for contraction, the contraction should depend on the 
Cl- gradient across the plasma membrane. Several studies have 
shown that replacement of extracellular Cl- with non-permeate 
anions can amplify agonist-induced depolarization and contrac-
tion 25;125;293, but this is not always the case. Substitution of ex-
tracellular Cl- was shown to have only mild effects on both resting 
and stimulated membrane potentials 294 and no significant effect 
on contraction in rat mesenteric arteries 87. A growing number of 
reports suggest a variable significance of Cl- for SMC contraction 
depending on the type of vasculature and stimulation 293.  

Ca
2+

-activated Cl
-
 conductance: an important function of un-

known origin 

The CaCCs, first described more than 25 years ago 295-297, are 
found at the functional level in most SMCs where they have been 
characterized electrophysiologically and pharmacologically 
15;247;276. Despite their obvious importance and the great interest 
in this group of channels their molecular identity is still under 
debate 247;277;298. 

Why does the question of molecular identity remain open? 

Several problems have made it difficult to pinpoint the molecular 
counterparts of endogenous ICl(Ca). 

• Heterologous expression has often been used to show that a 
protein is a bona fide CaCC. This technique has several draw-
backs and the major of them is the absence of an expression 
system that has no endogenous Cl- conductance. This en-
dogenous Cl- conductance often seems to be upregulated by 
over-expression of a candidate protein, resulting in false posi-
tives. Thus, the most widely used expression system, the 
Xenopus oocytes, expresses a huge amount of an endoge-
nous Ca2+-activated Cl- conductance and is therefore difficult 
to use for characterizing a candidate. 

• Compounds blocking or activating the conductance of inter-
est are needed for differentiation of the ICl(Ca) from other 
membrane currents and, especially, other Cl- currents. How-
ever, available drugs are lacking specificity 116;299. There are 
currently attempts to overcome this problem by using mo-
lecular biological tools, such as antisense DNA, knockout 
models, siRNA knock-downs, and specific antibodies. 

• Most of the currently known membrane channels are mul-
timers composed of several different subunits. Some of the 
subunits form the channel pore, while others are involved in 
the regulation, but all of them may be essential to produce 
the current. This means that the heterologous expression 
may be unable to reproduce the endogenously observed cur-
rent. This is a well-known problem even for the Cl- channels 
that have already been cloned, such as CFTR, GABAA recep-
tors and ClC channels. 

• Finally, a broad spectrum of CaCC properties are found 
15;241;247. This variability suggests that the CaCCs are a hetero-
geneous group of different protein families. Three to four dif-
ferent classes of CaCCs have been suggested 277. Some CaCCs 
are directly activated by physiological concentrations of 
[Ca2+]i, while others are modulated by CaMKII 239. The Cl- 
channels with large, over 100 pS channel pore conductance 
form possibly a special class of the CaCCs 270;273;274;300.The 
cGMP-dependent CaCC can be considered another independ-
ent class, although it shares many similarities with the group 
of channels directly regulated by [Ca2+]i (III, V and 121;277). 

The problems described above complicate the search for the 
molecular identity of the CaCCs and indicate that only a complex 
strategy can be successful. It suggests also that caution should be 
taken with respect to conclusions made based upon only one 
research strategy, since it can be misleading as it has been re-
cently shown in an example with CLCA candidate gene 301. 

The potential candidates for the role of the Ca
2+

-activated Cl
-
 

channel 

CLCA 

In spite of these problems, some molecular candidates for CaCCs 
have been suggested over the past years. The CLCA protein was 
the first notable candidate to mediate an ICl(Ca) 

255;302. The first 
member of the CLCA family was cloned from a bovine tracheal 
cDNA library by immunoscreening with an antibody against a 
Ca2+-activated anion channel 255. The following evidence for its 
function as a CaCC was collected 255;302-305: 

• Heterologous expression of various isoforms of CLCA gener-
ated membrane currents which activated by high [Ca2+]i. 

• The heterologously expressed current was sensitive to the 
classic Cl- channels blockers such as niflumic acid and DIDS. 

• The heterologously expressed CLCA protein carried Cl- ions, 
but this was shown under Na+ and K+ free conditions. 

This evidence is, however, not enough to accept CLCA as a valid 
candidate for the CaCC structure, especially because several 
inconsistencies were also identified. 
• The channel structure remains unclear. Although mutagenesis 

analyses identified potential protein domains which might be 
responsible for forming a pore, the deletion of these domains 
did not affect the current 306. 

• There was a number of concerns regarding membrane local-
ization of CLCA, and CLCA also has been suggested to function 
as an adhesion molecule or a secreted protein 307-309. 

• There are significant phenotypical differences between char-
acteristics of the classical ICl(Ca) and the current induced by 
heterologous expression of CLCA 310. 

• The CLCA-associated current has been shown to be activated 
by [Ca2+]i in much higher concentrations than are known to 
activate the endogenous ICl(Ca) 

310. Greenwood and colleagues 
have solved this problem by co-expressing the CLCA protein 
with the β-subunit of the Ca2+-activated K+ channel 311. This 
co-expression ‘normalized’ the Ca2+ sensitivity and voltage-
dependence suggesting the lack of a regulatory subunit in the 
CLCA expression system. 

• Importantly, the correlation of ICl(Ca) and the CLCA expression 
in different tissue is not convincing. For example, mouse Ehr-
lich tumor ascites cells have the ICl(Ca) but do not express CLCA 
310. 

However, in spite of these concerns, it is too early to exclude the 
CLCA protein family from the list of potential candidates for 
CaCCs.  
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ClC channels 

ClC channels are the family of voltage-gated Cl- channels 239;312. 
One member of this family, ClC-3, was shown previously to be 
regulated by [Ca2+]i via CaMKII activation 313;314. The expression of 
ClC-3 produces an outward-rectifying, slightly time-dependent 
ICl(Ca). It has been shown, however, that although the CaMKII- 
activated Cl- conductance is gone in ClC-3 knockout mice, the ICl(Ca) 
is still present 315. This suggests that ClC-3 could be responsible 
for the CaMKII-activated Cl- current, but another pore-forming 
protein conducts the directly-Ca2+-activated Cl- current.  
TWEENTY 

The heterologous expression of mammalian homologues for 
Drosophila flightless gene TWEENTY has been shown previously 
to induce the ICl(Ca) 

316. The TWEENTY-associated Cl- channels have 
an unusually high conductance of >100 pS and, therefore, belong 
to the distinct group of maxi-Cl- channels. The maxi-Cl- currents, 
which were found endogenously in neurons 270, kidneys 274 and 
skeletal muscles 273;300 have biophysical properties similar to the 
TWEENTY-associated Cl- conductance. There is, however, no 
correlation between the TWEENTY-homologous gene expression 
and the appearance of smaller Ca2+-activated Cl- conductances.  
TMEM16A 

TMEM16A gene belongs to a family assembled from bioinformat-
ics analyses 317;318 and has a number of different names, e.g. 
TAOS2, DOG-1, OVRAOV2 and NGEP, which are given because of 
its association with different forms of cancer 319. After identifica-
tion as a putative CaCC 320-322, the protein produced by TMEM16A 
gene was termed ‘anoctamin-1’ (ANO1) because of the anion 
selectivity of this eight transmembrane domain structure 320-322. 
The characterization of ANO1 was received as a breakthrough in 
the search for the CaCCs identity 298;319 because this protein most 
closely reproduces the native properties of endogenous ICl(Ca). 
Several strong arguments support it. 

• ANO1 was predicted to have eight transmembrane domains 
and was shown to be localized in the plasma membrane 
320;322.  

• ANO1 has been shown directly to produce Cl- current in re-
sponse to G-protein-coupled receptor stimulation (via endo-
thelin, angiotensin II, muscarinic, histamine and purinergic re-
ceptors) 320-322. 

• The biophysical properties and halide conductance (I- > Br- > 
Cl- > F-) of the ANO1-overexpressed current 319-322 are similar 
to the endogenous ICl(Ca) 

15;241;247;321. The ANO1-associated Cl- 
current shows time-dependent activation and outward recti-
fication which reduces with increase in [Ca2+]i. The detected 
single-channel conductance of ANO1 Cl- current (~8 pS) 320 
corresponds to the well-known small conductances of the 
classical ICl(Ca) 

241;247. 

• The overexpressed ANO1-associated Cl- current has been 
shown to be sensitive to low concentrations (10 µM) of clas-
sical Cl- channel blockers, such as DIDS and niflumic acid 320. 
These concentrations are, however, somewhat different from 
the sensitivities of native ICl(Ca). Thus, in many tissues the sen-
sitivity to DIDS and niflumic acid was shown to be significantly 
higher or lower 15;116;241;247;276. Interestingly, measuring Cl- 
conductance as I- influx, Caputo and co-authors reported sen-
sitivity of ANO1 to niflumic acid much closer to endogenous 
ICl(Ca) sensitivity 321. Finally, Schroeder and co-authors re-
ported the concentrations inhibiting half of the ANO1-
associated Cl- current to be ~30 µM for niflumic acid and ~24 
µM for DIDS 322, which again is consistent with previous re-
ports 15;116;241. 

• The Cl- current associated with ANO1 is sensitive to [Ca2+]i, 
although [Ca2+]i inducing half-maximal activation (2.6 µM) is 
higher 320 than that described for many native ICl(Ca) 

15;241;247. 
Schroeder and colleagues also evoked the ANO1-associated 
ICl(Ca) in oocytes permeabilized with a Ca2+-ionophore by in-
creasing extracellular Ca2+ to 5 mM but detailed characteriza-
tion of the Ca2+ sensitivity was not done 322. In contrast, other 
groups have showed a significant activation of the ANO1-
associated ICl(Ca) already at 0.2-0.6 µM [Ca2+]i, although the 
complete concentration-response study has not been per-
formed 319;321;322. Nevertheless, native ICl(Ca) with half-maximal 
activation by [Ca2+]i >1 µM were reported previously as well 
as current activated half maximally at ~0.3-0.6 µM [Ca2+]i 
15;241;247. In addition, similar to the native ICl(Ca), the Ca2+-
sensitivity of the ANO1 current was voltage-dependent and 
the current was inhibited at extreme (>10 µM) [Ca2+]i 

320. 
• Mutagenesis analyses identified the potential protein region 

which forms the channel pore. Mutations in the putative ion 
selectivity filter or agents modifying sulfhydryl groups af-
fected ion conductance 320;321. 

• ICl(Ca) was significantly reduced after downregulation of ANO1 
expression with siRNA 320;321.  

• ANO1 expression was shown in the tissues, such as salivary 
and submandibulary glands, pancreas, lungs, airway epithelia, 
kidney, retina and neurons, where the ICl(Ca) is important 320-

322. Expression of ANO1 was shown to be associated with 
changes in the organ function. However, the downregulation 
of ANO1 with siRNA suppressed only part of secretory func-
tion (<50%). These points out that ANO1 might not be the 
only protein mediating a Cl- conductance in the same tissue.  

Thus, although ANO1 is the best candidate for the classical ICl(Ca) 
some inconsistencies are present. Currently, there are only few 
publications which characterize ANO1 as a Cl- channel in detail 320-

322. Some differences between these studies and between de-
scribed ANO1-associated Cl- current and native ICl(Ca) could be due 
to differences in clones used in these studies (xenopus vs. human 
cDNA) and differences in the expression systems. There are, 
however, some critical points, which cannot be explained by 
differences in the experimental setup. 

• Among 10 mammalian members of the ANO gene family, 
ANO7 was suggested to have a transcript of soluble protein 
without transmembrane domains 323. This raises the question 
whether all family members belong to transmembrane chan-
nel proteins or they serve entirely different functions.  

• ANO proteins do not have apparent Ca2+-binding sites and it is 
unclear how this channel can be activated by Ca2+ 247. 

Bestrophins 

After ANO1 has been suggested to be the classical CaCCs 320-322, 
the previous favorite, bestrophin 324-326, did not lose its interest. 
The first member of the bestrophin family, Best-1, was identified 
more than 10 years ago as a gene responsible for vitelliform 
macular dystrophy (VMD, Best’s disease) 327 but its cellular func-
tion remained unclear for some time. Four members of the be-
strophin family were identified in the mammalian genome and 
many homologous in genomes of invertebrates and even pro-
karyotes 328-330. Previously two parallel nomenclatures had been 
developed: one based on the VMD gene abbreviation –VMD2, 
VMD2-like1, VMD2-like3 and VMD2-like2; another is Best-1, Best-
2, Best-3 and Best-4, respectively. It is confusing that the VMD2-
like3 gene corresponds to Best-3, while VMD2-like2 is Best-4. This 
is because previously VMD2-like2 (Best-4) was suggested to be a 
pseudo-gene in mouse 331, although this seems rather unique for 
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the mouse genome and is not the case for other species (V). 
Recently, a ‘Best’ nomenclature was suggested for uniform use by 
the HUGO and the Mouse Genome Database 330;332. 
Bestrophins were previously suggested to be secondary active 
transport proteins 333 or proteins associated with the Ca2+ chan-
nels 334-336. However, based on the protein homology in the ion 
selectivity filters to ligand-gated anion channels such as the GABA 
and glycine receptors, bestrophin was cloned as a putative Cl- 
channel 324. Heterologous expression of bestrophins produced the 
ICl(Ca) and several lines of evidence suggested that bestrophins are 
bona fide Cl- channels 325;326;337-339. 

• Bestrophins expressed in different cell types produce a similar 
ICl(Ca) 

324;325. If overexpression induced upregulation of en-
dogenous current, one should not expect the same kind of 
current in different cell types. Different bestrophin isoforms 
produce Cl- currents with different characteristics, even when 
expressed in the same type of cells 324;337. 

• Co-immunoprecipitation revealed that bestrophins form 
multimeric complexes composed of 4-5 subunits, as one 
would expect for an ion channel 325. Bestrophin proteins have 
been predicted to have several transmembrane domains in 
plasma membrane and this has been confirmed by biotinyla-
tion experiments 334;337;340-343. 

• Point mutations and sulfhydryl group modifications within a 
putative pore domain modified the bestrophin-associated 
ICl(Ca) providing strong argument for the channel structure 
326;344. 

• Bestrophins are quite sensitive to [Ca2+]i, with half-maximal 
activation about 200 nM. Thus, they can be activated by slight 
changes in physiological [Ca2+]i

324;337;345. Bestrophin proteins 
contain domains which can be responsible for [Ca2+]i sensitiv-
ity, possibly both via direct Ca2+ action and/or via Ca2+-
dependent phosphorylation 345-348. The predicted Ca2+/CaMKII 
sites are, however, of low stringency 347. 

• Bestrophins have been shown to respond with Cl- currents to 
G-protein-coupled receptor stimulation 328;349-351. 

• Knockdown of bestrophins with siRNA abolishes the endoge-
nous ICl(Ca) in cell cultures and in the intact tissue (V and 
352;353). 

• Mutations in Best-1, which affect the ICl(Ca), have been shown 
to be associated with several ophthalmological conditions, 
first of all with vitelliform macular dystrophy 332.  

In light of the variability of the ICl(Ca), it is likely that ANO and 
bestrophins are two different families of proteins forming the 
pore of a CaCCs 319;332. The exact separation of the ICl(Ca) between 
these two protein families remains to be elucidated. Currently, 
bestrophins have as many arguments as ANO proteins in favor of 
being the CaCCs, but possibly due to longer research story be-
strophins have accumulated a number of concerns regarding their 
function. 
• The heterologously expressed bestrophins have different 

current characteristics compared to the native ICl(Ca) 
324;325;337;338;343;344;347;354;355. This difference could be explained 
by the importance of a multimeric structure with different 
isoforms or by lack of relevant subunits in the heterologous 
systems. 

• The observation that a large fraction of heterologously ex-
pressed bestrophin appeared intracellularly contradicts its 
function as a membrane channel 324;328;350. However, the an-
tibodies raised against bestrophins are very poorly character-
ized. In addition, the experiments with biotinylation contra-
dicts this finding 334;337;340-343. 

• There is no detailed study of single channel conductances of 
the bestrophin-associated Cl- current. Drosophila ortologs of 
bestrophin-1 have 2 pS conductance 355. The only know con-
ductance of mammalian bestrophin, mouse bestrophin-2, is 
surprisingly small (~0.3 pS), suggesting that other regulatory 
subunits were lacking in the host cell of the overexpression 
model 348.  

• siRNA-induced knockdown eliminates the ICl(Ca), although a 
significant portion of the protein (~50 %) is still present (V and 
350). Whether this represents the specific protein turn-over in 
respect to the transient siRNA-induced mRNA degradation 
remains unknown. It is also unknown why all the current dis-
appears while there is still 50% of protein. 

• Overexpression of bestrophins affects endogenous Ca2+ 
channels 334;336 suggesting a regulatory function of bestro-
phins in line with CFTR which function both as a channel and 
as a regulatory protein 356. 

• Finally, Best1 knockout mice do not have macular dystrophy 
335. It has been suggested that VMD is caused by gain-of-
function mutations in Best1, although the species difference 
might also be relevant. 

Bestrophin-3 properties are close to the ICl(Ca,cGMP) characteristics 

(Papers IV, V) 

Detailed comparison of biophysical and pharmacological proper-
ties of the ICl(Ca,cGMP) (III-V and 121;220) with the known characteris-
tics of the bestrophin-associated Cl- currents 324;337;338;342-

344;347;348;350;352-355 reveals many similarities 15;241;247 but also some 
differences can be seen. The comparison, however, is partially 
complicated by lack of a comprehensive study of each bestrophin 
isoform 332 and because some of the characteristics are different 
not only between isoforms but also between different splice 
variants and between species. Thus, Best-3 is widely variable, at 
least 5-6 different splice variants have been identified and their 
distribution varies between tissues 357;358. In addition, it is impor-
tant to remember, that most of the characteristics are obtained 
by heterologous expression. Thus, presence or absence of regula-
tory proteins in the host cells can be critical for the observed 
functions. 
The comparisons I have made do not point to one of the isoforms 
as the best candidate for the cGMP-dependent CaCC. We found, 
however, interestingly that Best-3 is the most variable and 
broadly expressed family member, which is potentially under 
strong intracellular regulation 331;357;358. Several regulatory sites 
were found on the Best-3 C-terminal 343;345;354. We found previ-
ously sites for phosphorylation by protein kinase G, predomi-
nantly in the C-terminal (V). 
Using sets of specific primers, we analyzed SMCs of different 
origin for the expression of bestrophins in the rat (V). The expres-
sion of all four bestrophins was seen at the mRNA level. This is a 
surprising result since Best-4 was previously suggested to be a 
pseudogene in rodents based on the presence of premature stop 
codons in the mouse genomic cDNA 357. However, the PCR prod-
uct (~200 bases) was verified by sequencing, although the entire 
open reading frame has not been obtained (unpublished). Best-3 
showed the strongest expression of the four bestrophins in the 
mesenteric small arteries between other family members (V). A 
Best-3 band was detected in the rat mesenteric small arteries, 
aorta and A7r5 cells but only insignificant expression was seen in 
the pulmonary arteries.  
As it can be seen from Table 1, the tissue distribution of the be-
strophins is still controversial due to the problems of alternative 
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splicing 357;358 and lack of well-characterized antibodies. Even in 
well-studied tissues such as the eye and some epithelia there is 
poor correspondence between results obtained using different 
techniques and in different laboratories 332. We characterized a 
commercially available antibody to Best-3 by expressing immuniz-
ing peptide fused to eGFP expressing plasmid (V). Recently, the 
specificity of this Best-3 antibody was supported by use of anti-
body against another epitope on the Best-3 protein (gift from 
prof. Kunzelmann, unpublished). Western blot identified the 
expression profile seen in RT-PCR of SMCs of different origin. No 
Best-3 protein was detected in the pulmonary arteries (V) (Fig. 7). 
This profile of rBest-3 expression is similar to distribution of 
ICl(Ca,cGMP) (III and IV) suggesting that rBest-3 might be associated 
with this current. 

A

DC

B

 
Figure 7  
Bestrophin-3 expression was identified immunohistochemically in several arteries. 
Panel A shows staining of rat mesenteric small artery with bestrophin-3 antibody, 

panel B the same artery stained with bestrophin-3 antibody preincubated with 
immunizing peptide. Panel C demonstrated expression of bestrophin-3 in the kidney 
artery and panel D shows absence of bestrophin-3 expression in the pulmonary 

artery. Bars represent 50 µm.  

Bestrophin-3 is associated with the ICl(Ca,cGMP) in SMCs (Papers V) 

To address the question of whether the ICl(Ca,cGMP) is associated 
with Best-3, we used small interference RNA (siRNA). Since siRNA 
can have several off-target and non-specific effects 359;360, we 
performed several controls to ensure the specificity of siRNA 
action (V). Only the specific siRNAs had effect on the mRNA and 
protein expression in cultured aortic SMCs A7r5 and in the rat 
mesenteric small arteries (V). The degree of downregulation was 
not, however, consistent between mRNA and protein: 80% reduc-
tion mRNA was accompanied with only 55% of protein reduction. 
We do not have an explanation for this, although it could be due 
to different time-scales for mRNA and protein degradations. 
Interestingly, a similar tendency was seen when Best-1 was 
downregulated in colonic epithelial cells 350. 
In accordance with our previous findings (III and IV), SMCs ex-
pressed two Ca2+-activated Cl- currents: the classical ICl(Ca) and the 
ICl(Ca,cGMP). Downregulation of Best-3 specifically suppressed the 
ICl(Ca,cGMP) without affecting the classical ICl(Ca) (V). These experi-
ments strongly suggest a direct association between Best-3 ex-
pression and the ICl(Ca,cGMP). Interestingly, cGMP-dependence was 
previously shown only for human Best-1 352;361. In contrast, the 
mouse Best-3 variant expressed in the heart was not shown to be 
cGMP-dependent 362. Whether this is due to tissue-specific differ-
ences or due to species variability remains to be determined. 
Importantly, the mouse Best-3 variant from heart expressed 
heterologously produced ICl(Ca) of significant amplitude under 
whole-cell configuration 358;362. This is contrasted by data from 
Hartzell and colleagues who showed that expression of the full-
length clone of mouse Best-3 does not produce any significant Cl- 
current consequent to autoinhibition by the C-terminal 343;354. 
This autoinhibitory cytoplasmic C-region contains several sites for 
phosphorylation (including sites for PKG-dependent phosphoryla-
tion) and mouse Best-3 with deleted C-terminal produced a large 
Cl- current. 
Several other groups have recently used siRNA technique to 
prove association between the bestrophin proteins and the ICl(Ca). 
This was, however, only done in cell cultures 350;351;353;355;361;363. 
We are the first who showed that Best-3 expression can be down-
regulated in vivo and this is accompanied with loss of a specific Cl- 
current - the ICl(Ca,cGMP) (V). Whether the cGMP-dependency is 
specific for the splice variant expressed in the rat SMCs or is a 
general characteristic of Best-3 remains to be studied. 
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Bestrophin-3 is important for vasomotion. 

Although we have shown that Best-3 is expressed in rat mesen-
teric small arteries and is associated with the ICl(Ca,cGMP) (V), the 
important question remains to be answered: what is the function 
of this Best-3-associated Cl- current? Since our essential interest 
for the ICl(Ca,cGMP) arises from the model of vasomotion (I), we 
hypothesized that this channel might be important for synchroni-
zation of SMCs by membrane potential changes 46;47. This sug-
gests a Cl- dependence of vasomotion. Indeed, this was the case 
87. Substitution of Cl- with impermeable anions abolished vasomo-
tion in the mesenteric small arteries, consequent with a critical 

role of membrane potential for the global synchronized oscilla-
tions in the vascular wall. Thiocyanate was previously shown to 
inhibit the ICl(Ca,cGMP) (III) and we demonstrated later that SCN- 
abolished vasomotion by stopping oscillations in membrane 
potential and desynchronizing [Ca2+]i oscillation 87. Surprisingly, 
we have also seen inhibition of the classical ICl(Ca) in the inward 
direction by SCN-, which is in contrast to previous reports showing 
stimulation of the ICl(Ca) with full substitution of Cl- by SCN- 366-368. 
This inconsistence prevents us from distinguishing the importance 
of the two Ca2+-activated Cl- conductances for vasomotion. The 
use of the Cl- conductance blockers, DIDS and Zn2+, in the myog-
raph experiments did not make the picture more clear 87. We 
expected that these blockers would inhibit one or both types of 

Table 1. Comparison of the characteristics of different bestrophin isoforms and the ICl(Ca,cGMP). mBest - mouse ortolog; hBest - human ortolog; dmBest - Drosophila 

melanogaster ortolog; ceBest - Caenorhabditis elegans ortolog gene. 

 ICl(cGMP-Ca) 
Bestrophin-1 

(VMD2) 

Bestrophin-2 

(VMD2-like1) 

Bestrophin-3 

(VMD2-like3) 

Bestrophin-4 

(VMD2-like2) 

Cl
-
 conductance Yes (III and V) Yes 325;326;336;339;347;351-353;363;364 Yes 324;325;337;339;344;351;364 Yes 326;354;358;362;364 Yes 326;347;364 

Halide  

permeability 

Br-> I->Cl- (III) 

or Cl->I- 121 
I-> Br->Cl- 325;341;342;349 I-> Br->Cl- 324;337;338;348 

I->Cl- 362 or 

I-> Br->Cl- 354 
not tested 

cGMP-

dependence 

activation; 

EC50≈3-6 µM 

(III, V and 121) 

activation352;361; possibly explain 

current run-down in whole cell325 
not tested no effect in the mouse heart 362 

probably, no effect 

347 

Ca
2+

-sensitivity EC50≈75 nM 121 

activation 325;339;341;349;352;355;363  

EC30≈140nM 341;345; inhibition 

>1µM 351 

activation EC50≈200-400 

nM 324;337;339;348;349;351;  

inhibition at >1µM 351,  

activation 349;354;358  

EC50≈200 nM 362 
EC50≈200 nM 347 

Action of [Ca
2+

]i 
directly, without 

Ca2+/CaMKII 220 

binding to the CaM-like motif 345, 

might be phosphorylation 355 

probably, direct action 

347;348 
probably, direct action 347 

probably,  

direct action 347;348 

Conductance 

block with SCN
-
 

Yes (III) No 341;342;355 Yes 337;338;344 No (for mBest-3) 354;362 not tested 

Voltage-

dependence 

No 

(III-V and 121) 

No (mBest-1 351); 

Small (hBest-1 

325;326;336;339;341;342;350;353;355;364 and 

dmBest-1 325;363); Inward rectifica-

tion (ceBest-1 325;326) 

No (xBest-2 324, mBest-2 

337;338;344;348;351;358;364, 

hBest-2 
325;339); small 

(hBest-2 364 and dmBest-2 

355) 

No (mBest-3 343;354;358;362 and 

hBest-3 364); Inward rectification 

(hBest-3 326 and mBest-3 354) 

Small (hBest-4 

326;364); Inward 

rectification (hBest-

4 354) 

Sensitivity to  

niflumic acid 

No effect of 100 µM; 

100% inhibition by 1 

mM (III and 121) 

~50% inhibition by 100 µM 350;353 EC50≈10 µM 348 
~65% inhibition by 100 µM 

(mouse) 348 
not tested 

Sensitivity to 

DIDS 

No effect of 200 µM; 

80% inhibition by 1 

mM (III) 

60-80% inhibition by  100 µM 

325;350-353;361  

EC50≈3 - 100 µM, voltage-

dependent block 337;338;351 

~70% inhibition by 100 µM 

(mouse) 358;362 
not tested 

Sensitivity to Zn
2+

 
EC50≈2-6 µM  

(III-V and 121) 
No 361 not tested not tested not tested 

Cell  

localization 

membrane current  

(III-V 121;220) 

Cell membrane325;341;342, many 

intracellular 326;328;339;349 

cell membrane (partially) 

324;328;337;348;349 

cell membrane (partially) 

326;343;362 

cell membrane 

(partially) 326;349 

Tissue  

expression 

vascular and colonic 

SMCs (IV) 

RPE; lung; submucosal glands; 

endothelium; SMCs; neurons; 

airways, colonic and kidney 

epithelia; heart; testis 331;348;350-

352;362;365  

RPE; retina; lung; gut; 

liver; spleen; airways and 

olfactory epithelia 

324;331;348;350;351;362 

(≥5 splice variants) heart; testis; 

exocrine glands; kidney; lung; 

liver; pancreas; spleen; lymph 

node; brain; intestine; skeletal 

muscles 331;348;350;358;362 

colon 329;331;363 
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the Ca2+-activated Cl- currents, but instead vasomotion changed 
properties and became endothelium-independent. This endothe-
lium-independent vasomotion was still inhibited by SCN- suggest-
ing an importance of a Cl- conductance 87. Other Cl- conductance 
blockers can not be used because of their unspecific inhibitory 
effect on the vessel contractility. Thus, pharmacological tests and 
anion substitutions demonstrated the importance of Ca2+-
activated Cl- conductance for the generation of vasomotion 87. 
The lack of specific tools makes it, however, impossible to differ-
entiate between the role of the classic ICl(Ca) and the ICl(Ca,cGMP). 
One of the ways to differentiate between the two Ca2+-activated 
Cl- conductances will be a specific removal of the channel from 
cell membrane in situ 369. We reported previously the successful 
downregulation of Best-3 in the mesenteric small arteries in vivo 
which was accompanied with significant inhibition of the ICl(Ca,cGMP) 
(V). When arteries, downregulated for Best-3, were tested in an 
isometric myograph (unpublished), no change in contractility was 
seen. However, the arteries with downregulated Best-3 had sig-
nificantly suppressed amplitude of vasomotion without changes 
in oscillation frequency. Vasomotion suppressed by Best-3 down-
regulation was endothelium-dependent and addition of 8Br-
cGMP to the endothelium-denuded arteries reproduced vasomo-
tion, but still with a significantly lower amplitude. These unpub-
lished results are consistent with our initial model for the genera-
tion of vasomotion 46;47. 

7. INTERCELLULAR COMMUNICATION SYNCHRONIZES SMOOTH 

MUSCLE CELLS IN THE VASCULAR WALL (PAPERS VI AND VII) 

Gap junctions 

Gap junctional communication, in contrast to the chemical syn-
apse, involves direct exchange of information between adjacent 
cells 370. Cell-to-cell communication through gap junctions (GJ) 
exists in most animal cells and is essential for many important 
biological processes where synchronization of cells is important 
including rapid transmission of electric signals to coordinate 
contraction of cardiac and smooth muscle and the intercellular 
propagation of Ca2+ waves within a tissue. 
GJs consist of two hemichannels, aggregates of six transmem-
brane connexin proteins, that dock to each other forming a chan-
nel between the adjacent cells 157;158;371;372. Recombinant gap 
junction channels revealed that there is a tight seal between the 
two hemichannels 373;374. The wall of each hemichannel creates an 
approximately 2 nm-diameter aqueous pore that allows diffusion 
of molecules of about 1 kDa between the cytoplasm of adjacent 
cells 375;376. The commonly used nomenclature distinguishes con-
nexins (Cx’s) by their molecular mass deduced from their respec-
tive cDNAs (www.genenames.org/genefamily/gj.php).  
Hemichannels are homomeric, when composed from a single Cx 
type, or heteromeric, when they contain different Cx’s. Further-
more, homotypic and heterotypic GJ channels were shown to be 
formed depending on the types of hemichannels in two interact-
ing cells 157;158;377. Given that at least 24 mammalian Cx’s have 
been characterized to date, a number of structurally and, thus, 
potentially physiologically distinct GJ channels may be formed to 
provide a diversity of intercellular communication. The diversity 
of Cx combinations confers distinct regulatory and biophysical 
properties to GJ channels 377. Heteromeric hemichannels and 
heterotypic GJ channels have been shown in expression systems 
and in some cell cultures 378-381 but whether they are present in 

vivo remains unknown. Some electron microscope studies sug-
gested the presence of heteromeric hemichannels and hetero-

typic GJ between endothelial cells 382-384 but, unfortunately, these 
studies do not differentiate between real mixtures of Cx types in 
one truly heteromeric GJ channel and different homotypic GJ 
channels mixed in one GJ plaque. The potential heterogeneity in 
the GJ channels could have functional importance, for example to 
provide the base for asymmetrical transfer of dyes between 
endothelial and smooth muscle cells 385. 
For technical reasons, most biophysical properties of intercellular 
communication are studied on homotypic GJ channels demon-
strating symmetric properties. These properties are, however, 
quite different depending on the type of Cx’s 377. In general, all 
homotypic GJ channels display voltage sensitivity. But Cx37 is 
more sensitive to the transjunctional voltage than Cx43 379;386. 
Cx40 is shown to have intermediate voltage sensitivity 387. For 
these “vascular” Cx’s the transjunctional voltage providing half-
maximal conductance is between 30 and 80 mV suggesting that 
the voltage sensitivity of GJ channels is not a major determinant 
of the dynamic changes in intercellular coupling under physiologi-
cal conditions. The exception for the vascular Cx’s is Cx45 which 
has half maximal conductance already at 20 mV transjunctional 
potential 387. When a transjunctional voltage is applied, the initial 
current decays with time to a steady-state level, indicating a 
significant time-dependence of the conductance 388. Importantly, 
although the voltages modifying the GJ conductance are outside 
the usual physiological range, this can be modified by intracellular 
second messengers and ligands 389. Interestingly, Cx’s have a 
broad spectrum of unitary conductances, which suggests different 
functions. Thus, for the ‘vascular’ Cx’s the sequence 
Cx37>Cx40>Cx43>Cx45 (from ~400 pS to ~25 pS) is suggested 377. 
This makes Cx37 and Cx40 the more attractive candidates to 
mediate the conductive vascular responses 390. Whether this 
suggests an involvement of the charge selectivity filter remains to 
be studied. Nevertheless, it has been shown that Cx43 forms 
rather non-selective ion pores while Cx40 and Cx45 have some 
anion selectivity 391;392 and, furthermore, the selectivity of Cx37 
depends nonlinearly on ion concentrations 393. Although the 
biophysical properties of GJ formed by different Cx’s are quite 
variable and could suggest different functional properties they, 
probably, represent the real endogenous properties only to a 
certain extent.  
Of special physiological interest is the permeability of GJ channels 
to such important ions as H+ and Ca2+. Both of these ions were 
shown in high concentration to close GJ channels but could per-
meate at low, physiological concentrations 394;395. There is evi-
dence that Ca2+ and H+ can affect the GJ gating synergistically but 
other studies suggest independent action of these ions 396. The 
following order of pH sensitivity for Cx’s was suggested (with 
pKa~7) Cx45>Cx37>Cx43>Cx40 397 which is an intrinsic property of 
the GJ hemichannels 398. Some data suggest that low intracellular 
pH affects gating via an increase in [Ca2+]i which in turn modulates 
the GJ gating by activation of calmodulin 399;400. Although the 
question regarding Ca2+ and H+ sensitivity is still open, it is clear 
that the sensitivity is dependent on the Cx composition of the GJ 
channel. Thus, Ca2+ blocks Cx43-formed GJ channels in a concen-
tration-dependent manner in the range from 150 to 600 nM 401. 
The inhibition was later shown to be dependent on calmodulin 
but not on CaMK II, with a half-maximal inhibition at 310 nM Ca2+ 
which makes Ca2+ a potent regulator at physiological conditions 
402.  
In addition to mediating electrical continuity, GJ channels are also 
known to be permeable to a variety of cytoplasmic molecules 389. 
Being aqueous intercellular channels, GJ provide partial cyto-
plasmic continuity between cells. GJ channels were shown to be 
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freely permeable to second messenger molecules. Thus, 
hemichannels formed of Cx43 and Cx43 homotypic GJ channels 
have been shown to be permeable to ATP and ADP, cAMP, 
adenosine, IP3 and Ca2+ 403-405. Interestingly, even siRNA molecules 
were shown to be transferred through the GJ 406. The general 
view that large channels, such as Cx’s, act as molecular sieves and 
discriminate between molecules by their size, contradicts with 
the simple comparison of Cx’s pore diameters and permeabilities 
of uncharged molecules 389. Thus, the permeability cannot be 
accounted by the permeating molecule’s size and some affinity of 
the relevant molecules to the GJ channel pore is likely 407. It is 
important that the same second messengers, which permeate 
through GJ channels, have been shown to modulate intercellular 
communication between coupled cells 408. Thus, it remains un-
clear whether this permeability has significance for organ func-
tion. Several factors, such as a short lifetime of second messen-
gers and their small concentration gradient, suggest that they 
would not diffuse rapidly between the cells 389. Some publications 
suggest that oscillatory changes in signal molecule concentration 
(primarily Ca2+) observed in coupled cells occur due to spread of 
the oscillatory signal through GJ channels (I and 85;409;410) and 
although diffusion of signaling molecules can be involved in the 
synchronization of some slow processes, spread through GJ’s of 
an electrical signal seems to be the best candidate (see chapter 
about vasomotion), at least in vascular tissue (I). 

Intercellular communication in the vascular wall 

Communication between cells is important for coordination of 
cellular behavior in the vessel wall. Cx’s have a major influence on 
vascular function and are key factors in integration and regulation 
of intercellular communication. Signaling via GJ channels spreads 
along the same type of cells in the vascular wall (homocellular 
coupling of either SMCs or endothelial cells) or from one cell layer 
to another (heterocellular coupling between SMCs and endothe-
lial cells). There is evidence for both types of signaling 159;182;411. 
While longitudinal, homocellular signaling is important for vascu-
lar conductive responses playing a role in blood flow redistribu-
tion 182, heterocellular myoendothelial gap junctions are sug-
gested to be responsible for an endothelium-derived 
hyperpolarizing “factor” (EDHF) 412;413. Also regular oscillations of 
vascular tone or diameter – vasomotion (I, VI and 85) – require 
intercellular communication, and GJ channels are of key impor-
tance for these. 
At least three type of Cx’s (Cx37, 40 and 43) have been identified 
in the vasculature (VII and 159;182;414;415). Although Cx45 has been 
suggested to be expressed in the vasculature 414;416-419 this is quite 
controversial 420, and it should be noted here that some Cx45 
antibodies have been shown to cross-react with Cx43 protein 421. 
Although only a limited number of Cx subtypes are expressed in 
the vasculature, their distribution varies through the circulation 
and between different cell types, as well as between species 
158;159;182;414;422. The mapping of Cx in the vascular wall is difficult 
and is mostly studied using specific antibodies. It should also be 
noted that immunohistochemistry is not sufficient and immu-
noelectron microscopy is the only definitive method available to 
demonstrate Cx’s at morphologically defined gap junctions 383;384. 
Identification of expressed Cx can be affected by plaque size 
382;384; the larger the number of colocalized GJ channels the more 
visible they will be on staining with an antibody. Indeed, big and 
numerous GJ plaques between vascular endothelial cells are often 
described 83;414 but the GJ between SMCs appear as single chan-
nels or in smaller plaques 422-424. Therefore, GJ channels between 

SMCs are rarely identified on a morphological basis and informa-
tion about Cx’s in SMCs is relatively limited compared to the 
extensive and varied Cx expression in endothelial cells of different 
vessels 182;414;420;425. 
A pattern of Cx distribution can be suggested, at least for larger 
vessels 384;414;426. Thus, Cx40 is mostly found in the endothelium, 
while its appearance in SMCs is rarely reported. Cx37 is found to 
be more uniformly distributed (VII and 426-428). The distribution 
and prevalence of Cx43 has been most extensively studied. Cx43 
is expressed in both endothelial and SMCs and is the most abun-
dant vascular Cx 418. The expression of Cx43 falls in endothelium 
and disappears in the media with reduction of arterial size along 
different vascular beds 429 including rat mesenteric (VII and 422) 
and renal circulations 430;431. Similar observations made with 
mouse Cx40 432 suggests that this is a general phenomenon for Cx 
distribution with the vascular size 422;426. 
The suggestion that endothelial cells are more extensively linked 
via GJ channels than the accompanying SMCs 433;434 is supported 
by functional data showing that the vascular cells do not commu-
nicate electrically to a similar extent. It has been suggested that 
the endothelial layer may provide a more efficient pathway for a 
longitudinal electrical signal because of the anatomical shape and 
the orientation of a single cell 435. The intensity of functional 
intercellular coupling is difficult to evaluate using dye transfer 
technique. Nevertheless, dye movement was seen between both 
SMCs and endothelial cells in most studies 424;436, whereas in 
some reports it was limited to endothelial or myoendothelial GJ 
channels 71;385;385;437. Coupling between SMCs has been directly 
confirmed by measurements of electrical conducted responses 
along endothelium denuded arteries 427;438, although the impor-
tance of SMC homocellular GJ channels for the conducted re-
sponse is questioned and probably depends on the type of stimu-
lus 439-441. 

Searching for specific inhibitors of intracellular communications 

(Papers VI and VII) 

Drugs specifically affecting GJ conductance are essential for dem-
onstration of a functional role of intercellular communication. 
Although a number of different compounds have been suggested 
to have a specific action on GJ channels, the effects of most of 
them are questioned. GJ channels are regulated at many levels 
including conductance, trafficking, synthesis and downregulation. 
On this basis many drugs and compounds have been suggested to 
modulate the GJ activity 372;408;442-445. Thus, drugs affecting the 
intracellular ion concentration, e.g. Na+, Ca2+, H+ and Mg2+, have 
been shown to modulate GJ conductance 445;446. Inhibition of the 
Na+/Ca2+ exchanger or Na+, K+-pump has been suggested to act 
via ionic changes on GJ conductance (VIII and 447;448). Since en-
dogenous amines, e.g. histamine, adrenaline and noradrenaline 
were also shown to modulate GJ conductivity via regulatory 
pathways, drugs acting on the cAMP- and cGMP-activated protein 
kinases, protein kinases C, mitogen-activated protein kinase, 
tyrosine kinase and others can potentially modulate gating of GJ 
channels 449-451. Although these types of drugs are broadly used in 
the research of modulation of intercellular communication, it is 
obvious that they have no specificity and, therefore, are not 
always useful tools in studies of GJ’s.  
Several other groups of chemicals are suggested to have direct 
action of the GJ channels, possibly without involvement of com-
plicated regulatory pathways. A group of lypophylic drugs in-
cludes the inhalation narcotics halothane and isoflurane, as well 
as long-chain alcohols such as heptanol and ochtanol, and a num-
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ber of organic acids and their derivates: glycyrrhetinic, myris-
toleic, decaenoic and palmitoleic acids 408;446. The action of these 
lypophylic drugs is explained by their incorporation into lipid 
bilayers leading to impairment of GJ conductance. Thus, heptanol 
has been reported to reduce coupling by reducing the open prob-
ability of GJ channels through conformational changes induced by 
the interaction between connexin and plasma membrane 452;453. 
The inhibitory action of heptanol (KD ~160 µM) was shown to be 
reversible 454. Heptanol is commonly used to block intercellular 
communication in the vasculature 455-457, in spite of a consider-
able number of reports questioning the specificity of its action at 
physiologically relevant concentrations 113;186;458-460. For this rea-
son, we studied in detail the action of heptanol in the mesenteric 
small arteries (VI). We found that a concentration of heptanol 
(150 μM), which has insignificant effect on intercellular communi-
cation, increases K+ membrane conductance, induces hyperpolari-
zation, directly inhibits the Ca2+ current, reduces [Ca2+]i and low-
ers tension development. Only at concentrations above 200 μM 
heptanol significantly affected intercellular communication be-
tween SMCs but also depolarized SMCs (VI). Consistent with the 
previous reports we found both heptanol-induced depolarization 
461 and hyperpolarization 127, and suggested that nonjunctional 
effects of heptanol depended on both heptanol concentration 
and the vasculature type. 
Also derivatives of glycyrrhetinic acid, 18α- and 18β-glycyrrhetinic 
acid, which are commonly used to block GJ’s have been suggested 
to have nonjunctional effects 462;463;463-466. 18α-glycyrrhetinic acid 
has been used as a gap junction inhibitor 467;468 in concentrations 
of ~50 µM 469 and 18β-glycyrrhetinic acid has been suggested to 
be 10 times more potent 470. We have also found that 18β-
glycyrrhetinic acid at micromolar concentrations inhibited inter-
cellular communication (VI), similar to previous reports 113;372;471. 
18β-glycyrrhetinic acid has, however, several nonjunctional ef-
fects; it depolarizes the membrane, reduces [Ca2+]i and relaxes 
the arteries (VI). This is consistent with observations made by 
other researchers 463;466;472. Effects of heptanol and 18β-
glycyrrhetinic acid on membrane conductance could be explained 
by a lypophylic action of these drugs independent of their effect 
on intercellular communication since it was also seen under single 
cell conditions (VI). In contrast to previous reports 127;465;473, we 
did not find any significant nonjunctional effects of 18α-
glycyrrhetinic acid on SMCs (VI). We suggested, however, the 
18α-glycyrrhetinic acid acts specifically on the myoendothelial GJ, 
similar to previous studies 83;467;474. 
Another approach to block GJ channels is the use of peptides that 
mimic the extracellular loops of Cx’s 375. The synthetic connexin-
mimetic peptides (GAP) are peptide fragments corresponding to 
short sequences of one of the extracellular loops of Cx’s 475. It was 
found that sequences of 10 to 14 amino acids are the most effi-
cient to specifically inhibit intercellular communication while 
longer peptides show less efficiency and specificity 476. Despite 
GAP peptides having been intensively used in the functional 
studies of GJ communication, the mechanism underlying their 
action remains unresolved. It has been shown that GAP peptides 
do not affect expression, synthesis and de novo formation of GJ 
channels 477-479. This suggests that GAP peptides should act di-
rectly on the GJ channel. Although prolonged exposure with GAP 
peptides was shown to disturb docking of GJ channel formed 
from Cx40 and Cx43 in lymphocytes 480;481, this is a slow process 
which is unlikely responsible for a quick (within minutes) func-
tional effects of GAP peptides 479. One of the fast responses, 
which have been suggested to be involved in the GAP peptide 
action, is an assembly/disassembly of connexons into GJ channels. 

GAP peptides could disturb the docking of two hemichannels 
either sterically or electrostatically. This could either prevent new 
docking of the GJ channels (Cx’s have a rapid turnover 482) or 
dissociate already coupled Cx’s, leading to GJ channel breakdown. 
Alternatively, GAP peptides may directly interact with GJ channels 
and alter channel gating. It is important to notice here that differ-
ent types of Cx’s were suggested to dock each other to form 
heteromeric channels 158;378. How GAP peptides preserve specific-
ity in this situation remains unknown.  
A number of functional reports support either one or another 
possible mechanism of GAP peptide action. Thus, GAP peptides 
inhibit transfer of fluorescent dye between cells 469;479, electrical 
communication (VII and 483) and propagation of Ca2+ waves 
across groups of cells (VII and 484), which is consistent with the 
specific blockade of intercellular communication. If GAP peptides 
uncouple already formed GJ channels, their effect will be seen 
immediately. This seemed dubious, however, since time was 
always needed to achieve the uncoupling effect 485. Nevertheless, 
we reported previously that GAP peptides uncouple electrically 
coupled cultured SMCs within minutes and explained the longer 
time of action in the vascular wall (15 to 40 minutes) by the time 
necessary for diffusion of the big peptide molecules into the 
arterial media (VII). Another interesting observation in this study 
is that uncoupling by GAP peptides is accompanied with an in-
crease in [Ca2+]i and depolarization of SMCs. This cannot be just 
an unspecific effect, as was the case for 18β-glycyrrhetinic acid 
(VI), because GAP peptides do not affect membrane conductance 
of single SMCs (VII). It has been shown that under physiological 
conditions uncoupled GJ connexons are closed 486. The docking of 
the extracellular loops of the Cx protein to extracellular loops of 
another Cx protein opens connexons and leads to GJ channel 
forming. It is, therefore, possible that GAP peptides mimic its 
action and by uncoupling of GJ channels create transiently open 
connexons on the cell membrane. These ‘leaky’ connexons close 
with time, possibly by some environmental stimuli, for example 
elevation of Ca2+ 486-488. This hypothesis is not fully consistent with 
the observation that GAP peptides block ionic conductance 
through the single, “non-paired” connexons 485;489. Although 
these experiments were made under special experimental condi-
tions, which provoke opening of connexons, they suggest that 
GAP peptides could have some other actions on the connexons, 
possibly through a steric block of the channel, which is not spe-
cific to a certain type of connexins 485.  
Unfortunately, the question regarding the specificity of GAP 
peptides is still a very complicated. Negative results are unfortu-
nately not often published, although there are exceptions 85. 
Several others refer to potential nonjunctional effects of GAP 
peptides 84;85;85;425. It is, however, difficult to define functionally 
such nonjunctional effects, since some of them, e.g. depolariza-
tion or changes in [Ca2+]i, might be consequences of junctional 
actions of GAP peptides (VII). Finally, caution should be taken in 
the analyses and explanations of data received with GAP pep-
tides, since their action depends not only on Cx expression, type 
of tissue etc., but also on experimental conditions, origin of the 
peptides, the way the peptides were cleaned and the buffers in 
which they were stored. 

Functional consequences of SMCs uncoupling are consistent with 

the model for generation of vasomotion 

In spite of the debate regarding the specificity of GAP peptides, 
they still remain the currently most specific compounds available 
for studies of GJ communication in the vascular wall. The GAP 
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peptides have been used to inhibit an EDHF response 
84;85;412;425;490, a conducted response along the artery, and syn-
chronization of SMCs in the vascular wall (VII and 85;113). 
We have used a triple combination of GAP peptides because 
three different types of Cx’s were found expressed in the mesen-
teric small arteries (VII). Such ‘combined’ treatment was recently 
shown to be effective in hepatic arteries from rat 490. Consistent 
with the previous findings 113 we have shown that GAP peptides 
stop vasomotion. A study of [Ca2+]i dynamics indicated that this 
was not due to an effect on intracellular Ca2+ handling (VII). Con-
sistent with the model for vasomotion (I), inhibition of intercellu-
lar communication abolished synchronization of SMCs, although 
asynchronous Ca2+ waves were still present in the SMCs. Also 
endothelium-dependent hyperpolarization was diminished in the 
presence of the GAP peptides suggesting inhibition of myoendo-
thelial gap junctions (VII). 
 

8. REGULATION OF INTERCELLULAR COMMUNICATION BY THE 

NA
+
-PUMP (PAPERS VIII AND IX) 

Modulatory protein interactions with connexins 

Recent studies have shown that Cx’s can have either direct or 
indirect interactions with other plasma membrane ion channels 
or membrane transport proteins with important functional con-
sequences. Although the precise molecular nature of these inter-
actions has yet to be defined, their consequences may be critical 
for normal tissue homeostasis. Thus, Cx43 and Cx45 have been 
suggested to be parts of a multiprotein complex containing CFTR 
491 where Cx’s are regulated by TNF-α via the tyrosine kinase c-Src 
492. Cx’s have also been shown to interact with aquaporins: Cx45 
and Cx56 are consistently collocalized with aquaporin-0 in lens 
epithelial cells 493, and Cx43 interacts functionally with aquaporin-
4 in the mouse brain 494.  
In the vasculature Cx’s comprising GJ channels are recognized in 
close spatial association with small and intermediate conductance 
Ca2+-activated K+ channels (SK and IK) 84;495;496. This interaction 
was suggested to be of specific functional importance for endo-
thelium-dependent hyperpolarization 425. Endothelial cells in the 
mesenteric small arteries are coupled by Cx37, Cx40 and Cx43. All 
three Cx type homocellular endothelial GJ channels were found 
spatially close to SK, while for myoendothelial GJ Cx37 was found 
associated with IK 84;495;496. Interestingly, the SR and its IP3 chan-
nels were also found closely associated with vascular GJ channels 
425. Finally, the Na+, K+-ATPase was recently also shown to be 
colocalized with GJ channels 495. Importantly, intercellular com-
munication was reported to be reduced by blockers of the Na+, 
K+-ATPase (VIII and 54;66;497-500). 

Na
+
, K

+
-ATPase - membrane transporter and regulator of cell 

activity 

The Na+, K+-ATPase, also called the Na+-pump, can be dubbed “an 
enzyme of life” because of its essential role for cell life and death. 
The Na+-pump is a ubiquitous membrane transport protein re-
sponsible for establishing and maintaining high K+ and low Na+ in 
the cytoplasm which is required for normal resting membrane 
potential. The ionic homeostasis maintained by the Na+, K+-
ATPase is critical for numerous cellular functions and processes, 
such as cell growth, differentiation, movement, secretion and 
volume regulation. The list of the cellular tasks which are possible 
because of the Na+-pump is constantly growing. Thus, recently a 
central role of the Na+-pump for the different forms of cell death 

was recognized 501. There is also a growing list of evidence for 
functions of the Na+-pump as a signal transducer and activator of 
gene transcription 502;503. Whether the pumping and signal trans-
duction activities of the Na+, K+-ATPase are independent functions 
of the same protein molecules or they are integrative is a matter 
of debate. 

Regulatory microdomains containing Na
+
-pump in vascular 

SMCs. 

Ouabain is a well-known specific inhibitor for Na+-pump 504;505. 
The dominant Na+-pump in rodent SMCs is the α1 isoform, which 
is relatively ouabain-resistant 506; micromolar concentrations of 
ouabain block only the ouabain-sensitive α2- and α3-isoforms 507, 
which are expressed at low levels in rat vasculature 508-510. It is 
generally accepted that all living cells express at least α1 and one 
more isoform of the Na+-pump 511-513. Thus, skeletal, cardiac and 
smooth muscle cells co-express α1 and α2 isoforms, while neu-
ronal tissues expresses α1 and α3 isoforms of the Na+-pump. 
Similarly, although it has been found that renal epithelia ex-
presses mostly the α1 isoform, the expression of the α2 isoform 
has recently been shown 514. Specific functions of the different α 
isoforms are suggested by the findings that α2/α3 isoforms are 
localized in plasma membrane microdomains, i.e. spatially re-
stricted areas in the plasma membrane 502;511;515.  
These α2/α3 isoform/containing membrane microdomains were 
previously shown to be associated to the “junctional” sarcoplas-
mic/endoplasmic reticulum (SR/ER) and include the Na+/Ca2+ 
exchanger (NCX) as the one of key players in the microdomain 
function 504. The α1 isoform of the Na+ pump, in contrast, is more 
widely and homogeneously distributed in the plasma membrane, 
but is apparently excluded from the microdomains 516. The SR-
associated microdomain was previously shown to constitute a 
spatially-restricted environment 65;78;517-519 under the plasma 
membrane that acts as a functional unit 520. The restriction of Na+ 
and Ca2+ diffusion enables the appearance of concentration gra-
dients between these restricted spaces and the bulk cytosol 65;521. 
Interestingly, the α2/α3 isoforms of the Na+-pump have much 
lower affinities for Na+ than the α1 isoform 522. This suggests that 
different α isoforms will rise [Na+]i more in restricted spaces 
controlled by α2/α3 isoforms of Na+-pump than the global [Na+]i 
which is under α1 isoform control. Thus, these α2/α3 Na+-pump 
associated microdomains are well organized to control the local 
Na+ electrochemical gradient which can influence Ca2+ homeosta-
sis via the co-localized NCX isoform 1 504;511. This links cellular Ca2+ 
to Na+ concentration; a spatially restricted rise in Na+ will lead to 
a localized elevation of Ca2+. Such interactions in ion metabolism 
do not only control local Ca2+ but also affect global [Ca2+]i via 
modulation of the SR/ER load. This microdomain-regulated Ca2+ 
has many downstream signals, e.g. gene expression, cytoskeleton 
mobilization, membrane conductances, contraction and secre-
tion. 
The interaction described above explains some well-known cellu-
lar effects of ouabain, such as arrhythmias and decrease in con-
duction velocity in the heart 447;448;523;524 and SMC tone elevation 
78;521;525;526. Another type of ouabain-induced signaling independ-
ent of changes in intracellular ion concentrations was character-
ized recently in various cells, including SMCs and kidney epithelia 
502;527-532. In this pathway the Na+, K+-ATPase acts as a receptor for 
ouabain or endogenous ouabain-like compounds. Binding of 
ouabain induces activation of multiple signal transduction path-
ways, including the activation of Src kinase and tyrosine phos-
phorylation of the epidermal growth factor receptors and other 
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proteins, followed by the activation of Ras, the 
Ras/Raf/MEK/MAPK cascade, and increased production of reac-
tive oxygen species 502;529-533. 
The Na+, K+-ATPase is shown to be organized together with inter-
acting proteins in a microdomain called signalosome 534-537. These 
signalosomes have been shown to be restricted to caveolae 538. 
Exposure to nanomolar ouabain increased binding of both Na+, 
K+-ATPase and Src kinase to the caveolae coating protein, caveo-
lin-1 530. Moreover, the ouabain-bound Na+, K+-ATPase is able to 
recruit and assemble both Src and caveolin-1 into the signalo-
some. Thus, the Na+, K+-ATPase is also an important signal trans-
ducer that not only interacts and regulates protein kinases, but 
also functions as a scaffold, capable of bringing the receptor and 
effectors together to form functional signalosomes 533. Signifi-
cantly, the activation of these regulatory responses by ouabain 
occurs at concentrations which exerts no inhibition of Na+, K+-
ATPase pumping activity 534;539-541. It has been shown that the Na+, 
K+-ATPase dependent Src kinase activity is maintained in cells 
expressing a pumping-null rat α1 mutant isoform 542. The data 
indicate that there is a pool of α1 non-pumping Na+, K+-ATPases 
interacting with the Src signaling cascade. 
It is important to point out that involvement of the Na+, K+-
ATPase in the signaling cascade does not exclude a role for its ion 
pumping function in ouabain-induced effects. Moreover, since 
intracellular Na+ regulates the conformation of the Na+, K+-ATPase 
(e.g., the E1 state), it is possible that changes in intracellular Na+ 
concentration could also regulate the formation of the Na+, K+-
ATPase/Src complex, and thus cellular Src activity 533. This integra-
tive hypothesis remains to be proved experimentally.  

Ouabain-sensitive isoform of the Na
+
-pump is involved in regula-

tion of gap junction channels in the mesenteric small arteries 

Vasomotion and synchronized [Ca2+]i oscillations can be used as a 
noninvasive way for evaluation of intercellular communication. It 
has been shown previously that blockade of GJ leads to desyn-
chronization of [Ca2+]i transients and inhibition of vasomotion (VI, 
VII and 113;479). Ouabain in micromolar concentration is also 
known to abolish vasomotion 110 even in rodent tissues. This 
means that the observed effect of ouabain must be mediated by 
one of the two ouabain-sensitive isoforms of the Na+-pump, α2 
and/or α3 506. We have detected expression of the α2 isoform of 
the Na+-pump in mesenteric small arteries (VIII), which is consis-
tent with previous findings 508;520;525;526;543;544. In our detailed 
study we found that the effect of ouabain on vasomotion is due 
to electrical uncoupling of SMCs from each other; single SMCs 
continued to oscillate in unsynchronized fashion (VIII). Low con-
centrations of ouabain have previously been shown to interrupt 
intercellular communication between cells in a number of tissues 
including smooth muscles 500;545 and cardiac myocytes where they 
produce arrhythmias 524, but the mechanism of this action is 
unknown. 
Our study demonstrated that the uncoupling effect of ouabain is 
mediated through an interaction between the ouabain-sensitive 
Na+-pump and the Na+/Ca2+-exchanger (VIII). This conclusion is 
based on a patch-clamp study of electrically-coupled cultured 
aortic smooth muscle cells (A7r5). We further demonstrated that 
the Na+-pump modulates cell coupling via changes in the [Ca2+]i 
(VIII). This is consistent with the high sensitivity to Ca2+ of Cx43 
abundantly expressed in A7r5 cells 479. Since micromolar concen-
trations of ouabain were not shown to affect global ion concen-
trations 507 we suggested the involvement of local Ca2+ signaling 
in microdomains. This is consistent with previous suggestions 

regarding the role of the ouabain-sensitive Na+-pump in the regu-
lation of local [Ca2+]i 

516;521;544 because of a close structural asso-
ciation with the Na+/Ca2+-exchanger 508;525.  
In accordance with the model we suggested for the interaction 
between the Na+-pump, the Na+/Ca2+-exchanger and gap junc-
tions, an inhibition of the Na+-pump should lead to SMC uncou-
pling (VIII). This was not, however, the case when we attempted 
to stop the pumping activity by omission of extracellular K+. We 
therefore explored the possibility that a leak of K+ from the cyto-
plasm through KATP channels can provide K+ for the ouabain-
sensitive Na+-pump, functionally linking these two transporters 
(VIII). Such an association requires that the proteins are physically 
located near to each other. This is strongly supported by our 
study on coronary arteries where we demonstrated the opposite 
interaction, i.e. that KATP channels are regulated by the ouabain-
sensitive Na+,K+-pump either via modulation of the local K+ or the 
local intracellular ATP concentration (IX). Such a modulation can 
only be possible in spatially restricted subsarcolemmal areas. A 
similar interaction has been suggested previously to be present in 
the renal proximal tubule 546, in pancreatic β-cells 547, in skeletal 
muscle 548 and in the heart 549. 
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Figure 8  
Preliminary co-immunoprecipitation experiments suggested a physical interaction 
between the Na+/Ca2+ exchanger, α2 isoform of the Na+-pump and connexin 43 but 
not with the α3 isoform of Na+-pump and caveolin-1. The immunoprecipitates with 
each of these five proteins were tested on Western blot. 

 
Lipid rafts and caveolae are present at high densities in endothe-
lium and smooth muscles 550-553. Caveolae/rafts harbor a subset of 
membrane proteins and signal transduction molecules, which 
allows locally restricted, high-fidelity signaling 550. Interestingly, 
the ouabain-sensitive isoforms of the Na+-pump 530, the NCX-1 554, 
KATP channels 555 and gap junctions 556 have all been shown to be 
localized in the caveolae/rafts, although their interactions within 
these microdomains have never been studied. We have recently 
studied this interaction directly by using immunoprecipitation 
assay (Fig. 8). Interestingly, our preliminary results suggest that 
the α2 isoform of Na+-pump, Na+/Ca2+ exchanger, Cx43 interact 
physically with each other but not with caveolin-1. This suggests 
that this putative microdomain is located outside the caveolae, 
although it is possible that it may move to caveolae in response to 
stimulation, e.g. increase in [Ca2+]i 

530. The dynamics of this inter-
action remain to be studied.  
Caveolae have also been implicated as sites of assembly and 
regulation of signalosomes organized by α1 Na+, K+-ATPase. How-
ever, recently both α1 and α2 isoforms have been localized in 
caveolae in SMCs from pulmonary arteries, although only the α1 
isoform of the Na+, K+-ATPase was seen in the caveolin-free 
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membrane fraction 557. This functional study showed that the α2 
isoform of the Na+, K+-ATPase plays a critical role in modulating 
the local [Ca2+]i via an interaction with the Na+/Ca2+ exchanger as 
well as by some other ways, e.g. Na+ channels, L-type Ca2+ chan-
nels and Na+/H+ exchanger 557. 

9. PERSPECTIVES 

The studies included in this thesis lead in general to a deeper 
understanding of mechanisms involved in smooth muscle cell 
synchronization in the arterial wall (II-IX). They illustrate the 
complexity of coordinated activities in the vascular wall and a 
dramatic need for specific tools which allow manipulation of 
single membrane transporters involved in the synchronization. 
Comprehensive studies are, therefore, often required when one 
or another membrane transporter function should be highlighted. 
For example, no truly specific blocker for Ca2+-activated Cl- con-
ductance is available currently. This means that pharmacological 
approaches attempting to demonstrate chloride channel function 
need to be combined with additional tests, e.g. patch-clamp or 
molecular biological studies (V and 87). A similar problem is seen 
during manipulations of intercellular communication where cau-
tion should be taken in interpreting the results of pharmacologi-
cal experiments (VI-IX). RNA interference is a technique that has 
great potential for solving these problems 360. Our previous study 
demonstrates the efficiency of siRNA to downregulate the mRNA, 
protein and function of the target of interest (V). The current use 
of siRNA in vascular physiology is, however, greatly limited by 
difficulties in transfection of smooth muscle cells in situ 558. We 
were the first to suggest the technique for in vivo transfection of 
arteries with siRNA (V). Our recent experiments show, however, 
that caution should be taken in using this method because of 
different untargeted responses and serious optimization is neces-
sary for each new gene target. Nevertheless, this technique 
seems to have great potential both for basic research and clinical 
applications. There is no doubt that it should be further optimized 
to be more effective and less traumatic for the tissues. This can 
then be used for studying specific membrane transporters in the 
vasculature, e.g. the role of different isoforms of the Na+, K+-
ATPase, the type of connexin forming gap junctions involved in 
smooth muscle cell synchronization and the proteins associated 
with Ca2+-activated Cl- conductances. The great advantage of this 
method in comparison to other approaches, such as pharmacol-
ogical tools and genetically modified animals, is that it is quite 
specific, and that it can be used for acute and reversible down-
regulation which limits compensatory changes in other proteins. 
In the future, it might also be used for correction of disease-
causing vascular abnormalities 559.  
The discovery that a specific form of the Na+, K+-pump is involved 
in the regulation of intercellular communication is of interest 
because of the potential role of endogenous ouabain-like com-
pounds for blood pressure regulation 560;561 although this is still 
under debate 562;563. Although our study indicated that the Na+, 
K+-pump is regulating intercellular communication via local [Ca2+]i 
homeostasis, the detailed mechanism of this action remains 
unclear (VIII). It remains to be unraveled whether this local [Ca2+]i 
acts directly on gap junctions or via other second messengers 
pathways 502;511;516;521;532;564. It will also be important to clarify the 
time scale for ouabain action since the functional effects are 
quick and transient while ouabain binding has a much slower, 
long-lasting profile (VIII and 565). Several processes initiated by 
ouabain could be involved, e.g. an acute inhibition of gap junction 
conductance following changes in the membrane transporters’ 

expression and localization (VIII and 500). Direct visualization of 
the membrane proteins will be necessary to solve this question. 
This could be helpful for understanding how ouabain-like sub-
stances are involved in elevating blood pressure 566-568. 
One has to accept that the identification of the protein responsi-
ble for the Ca2+-activated Cl- conductance is still lacking whilst the 
number of potential candidates continues to grow 277;298. Future 
studies involving mutagenesis in the putative pore-structures, 
detection of membrane localizations and endogenous characteri-
zation remain to be done 276;330;332. It also remains to be shown 
how the potential protein candidates interact with each other 
and with other membrane proteins – for example, whether be-
strophin and ANO1 proteins are both involved in the same type of 
Ca2+-activated Cl- current or represent two distinct channel fami-
lies. 
The accumulated knowledge suggests that transporters do not 
function independently but rather interact in a spatially and tem-
porally restricted manner, organizing complicated cascades and 
functional pathways. These interactions may be either direct, via 
protein-protein interactions, or indirect, via interactions through 
signaling cascades or via modification of local ion concentrations. 
Most information presently available is based on functional data, 
which suggest that activity of one transporter locally can modu-
late the activity of another, but do not provide detailed insight 
into the mechanism of this interaction. It can therefore be sug-
gested that future research will be focused on understanding 
these interactions. Such interaction of membrane transporters in 
functional and structural microdomains is a concept with substan-
tial potential for enhancing our understanding of cell biology and 
is relevant probably for all cells in the body and hence for a vari-
ety of disciplines from the molecular biologic level to the clinic. 

10. SUMMARY 

Although the function of rhythmic contractions in the vascular 
wall – vasomotion – is still under debate, it has been suggested to 
play a significant role for tissue oxygen homeostasis and under 
pathological conditions where tissue perfusion is affected 35. 
Vasomotion has further been suggested to be important for blood 
pressure control and has been shown to be reduced in diabetes. 
Vasomotion is initiated by the coordinated activation of smooth 
muscle cells (SMCs) in the vascular wall leading to rhythmic con-
tractions. We have suggested the model for generation of this 
rhythmic activity (I) and have shown that vasomotion initiates via 
interaction between intracellular calcium released from the sar-
coplasmic reticulum and changes in membrane potential. Rhyth-
mic changes in intracellular calcium induce, under certain condi-
tions (in the presence of sufficient concentration of cGMP (II)), 
changes in membrane potential that lock the electrically-
connected SMCs into phase. Synchronized depolarization induces 
synchronous calcium influx and thus produces rhythmic contrac-
tion of blood vessels (I, II, VI-VIII and 46-48;87). 
I have demonstrated and characterized a new chloride channel in 
vascular SMCs (I), which has properties necessary to coordinate 
SMCs in the vascular wall (III). Chloride channels have been inves-
tigated for many years but remained somewhat in the shadow of 
cation channels. We know now the molecular structures of some 
chloride channels, i.e. GABA receptors, ”cystic fibrosis transmem-
brane conductance regulator” (CFTR) and the ClC chloride chan-
nel family. There is one particular group of chloride channels, the 
calcium activated chloride channels (CaCCs), whose molecular 
structure is debated still. There are currently no pharmacological 
tools that activate or inhibit CaCCs with any significant selectivity. 
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The existence of CaCCs in almost all cells in the body has been 
known for many years based on electrophysiological and other 
functional studies. CaCCs have been suggested to be important 
for regulation of membrane potential and cellular volume, as well 
as for body homeostasis. CaCCs are well characterized in vascular 
tissues but only at the functional level 247. The lack of their mo-
lecular structure makes it difficult to study the clinical significance 
of these channels. 
Based on patch clamp measurements of ion currents, I have 
previously characterized in SMCs a chloride current with unique 
properties (III). This chloride current activates by cGMP, has very 
high sensitivity to calcium and can be inhibited by low concentra-
tions of zinc ions, while the traditional inhibitors of CaCCs affect 
this current only at very high concentrations. This cGMP-
dependent, calcium-activated chloride current has a linear volt-
age-dependence, which differs from previously characterized 
CaCCs, and it has characteristic anion permeability (III). This cur-
rent has been detected in SMCs isolated from a number of differ-
ent vascular beds but, importantly, it has not been detected in 
pulmonary arteries (IV). Moreover, this current has been shown 
in SMCs isolated intestine indicating its broad distribution. Based 
on unique characteristics I have suggested that the cGMP-
dependent calcium-activated chloride current can synchronize 
SMCs in the vascular wall and that bestrophin protein could be 
the molecular substrate for this current.  
Bestrophin has been characterized first as a gene in which muta-
tions cause vitelliform macular dystrophy (VMD) or Best diseases 
247. Based on heterologous expression it has been suggested that 
bestrophin is a chloride channel 330. This question is nevertheless 
controversial since caution should be taken in heterologous ex-
pression of calcium-activated chloride channel candidates 301. The 
presence of chloride channels in virtually all living cells is an es-
sential problem as well as the dependence of ion channel proper-
ties on the complex interaction of many cellular proteins.  
I was the first who coupled the endogenous chloride current to 
one of four known bestrophin isoforms. PCR and Western blot 
studies on different blood vessels demonstrated the presence of 
bestrophin-3 protein with the exception of pulmonary arteries (V) 
(where the cGMP-dependent current is also absent (III and IV)). 
There was a strong indication that bestrophin-3 expression could 
be essential for the cGMP-dependent calcium-activated chloride 
current. To couple bestrophin-3 expression and this current I have 
used small interfering RNA (siRNA) technique to downregulate 
the expression of the candidate (bestrophin-3) and have studied 
the effect of this specific downregulation on chloride currents. I 
showed that bestrophin-3 expression is associated with the 
cGMP-dependent calcium-activated chloride current (V). This 
study does not tell us whether bestrophin-3 forms the channel or 
it is an essential subunit but the previous mutagenic experiments 
247 suggested the first possibility. 
Electrical communication between SMCs is essential for success-
ful synchronization (I) and depends on channels between the cells 
called gap junctions. The majority of cardiovascular diseases (e.g. 
hypertension and atherosclerosis) are associated with defects in 
intercellular communications or in gap junction regulation. The 
molecular mechanisms responsible for these defects are un-
known because of lack of specific experimental tools. Our com-
prehensive study on the often used gap junction inhibitors hep-
tanol and 18β-glycyrrhetinic acid demonstrated unspecific effects 
of these drugs at the concentrations where they have no or little 
gap junctions effects (VI). Other drugs, e.g. 18α-glycyrrhetinic acid 
and connexin-mimetic peptides are better to inhibit gap junctions 
but also have demonstrated unspecific effects (VI and VII). 

Previous studies suggested that channels and transporters in the 
cell membrane do not function independently but interact as 
functional units in the spatially restricted areas of the cell. I have 
demonstrated a close functional interaction between gap junc-
tions and Na+,K+-ATPase, Na+/Ca2+-exchanger and ATP-dependent 
K+ channels in the spatially restricted manner (VIII). I have shown 
that inhibition of the ouabain-sensitive Na+, K+-ATPase inhibits 
calcium efflux by the Na+/Ca2+-exchanger and this lead to the local 
elevation of intracellular calcium and inhibition of intercellular 
communications. This explains the inhibitory action of ouabain on 
vasomotion (VIII). I have also found that the ATP-dependent K+ 
channel is an important player in this functional unit and this 
interaction is reciprocal, since K+ channel supplies Na+, K+-ATPase 
with K+ ions (VIII) while the ATP-dependent K+ channel current 
also regulates the Na+, K+-ATPase (IX). 
This dissertation is based on nine scientific publications where I 
have suggested the model for generation of vasomotion and 
characterized the essential elements of this model. 
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