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SUMMARY 

 

Multiple myeloma is a fatal B cell neoplasm often result-

ing in focal and in some cases more diffuse destruction of 

bone. The bone destruction is a result of increased activity of 

bone resorbing cells – multinucleated osteoclasts emerging 

through of multiple fusions. In multiple myeloma, clonally 

expanding cancer cells provide a stimulatory signal for os-

teoclast recruitment, differentiation and excessive bone 

resorption. The stimulatory actions of myeloma cells are 

believed to be mediated via the production of cytokines and 

local factors or by modulating bone microenvironment in 

order to stimulate osteoclastic bone resorption. However, 

our recent study revealed potentially a novel and more 

intimate contribution of myeloma cells to the bone destruc-

tion. Our analysis of the bone biopsies from myeloma pa-

tients showed fully integrated malignant nuclei inside osteo-

clasts, which were transcriptionally active. As a result, about 

30% of the osteoclasts in the bone marrow biopsies form 

myeloma patients were in fact osteoclast-myeloma cell 

hybrids. As the functional relevance of this novel cell type 

remained uncertain, the aim of my PhD study became to 1) 

strengthen the evidence of the existence of hybrid cells, 2) 

elucidate the functional differences between hybrid cells 

and non-hybrid OCs and 3) relate these findings to the 

pathogenesis of osteolytic disease in multiple myeloma.  To 

this end, I developed a culture model of osteoclast-myeloma 

cell fusion between (pre)osteoclasts already committed to 

fuse and myeloma cells selected for adherance.  The model 

was applied for testing of the bone resorptive properties of 

hybrid cells identified by labelling with green fluorescence. 

When comparing the highly fluorescent and non-fluorescent 

OCs on bone slices, it seemed that the frequency of highly 

fluorescent osteoclasts actively resorbing bone was in-

creased as compared with non-fluorescent osteoclasts. This 

was assessed in two independent ways. Furthermore, these 

fluorescent osteoclasts appear to resorb deeper compared 

to non-fluorescent osteoclasts. The preliminary data that 

need to be confirmed suggest that formation of hybrid cells 
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by fusion of myeloma cells with osteoclasts may result in 

reprogramming of the osteoclasts and contribute to the 

more aggressive bone resorption by osteoclasts as it is typi-

cally seen in myeloma patients. 

Another aspect of multiple myeloma and associated 

bone disease is the unmet need for novel and more efficient 

therapeutic regiments. Resveratrol (trans-3, 4’, 5-

trihydroxystilbene; RSV) is a natural compound shown to 

target the key players of myeloma bone disease: bone re-

sorbing osteoclasts, bone forming osteoblasts and myeloma 

cells. Our in vitro study on RSV showed that it possessed this 

ideal triad of properties appearing and thus might be of 

interest as a potential drug for the treatment of multiple 

myeloma. RSV suppresses the growth and survival of mye-

loma cells, inhibits osteoclasts and stimulates the formation 

of osteoblasts. However, the need for high concentrations 

combined with low biological availability after oral admini-

stration and risk of important side effects stimulated a 

search for RSV derivates with the same spectrum of actions 

but safer and with better bioavailability. As the other task of 

my PhD, I screened structurally modified RSV analogues in 

cultures of myeloma cells, osteoblasts and osteoclasts. 

Compared to resveratrol, some analogues showed an up to 

5,000-times increased potency to inhibit osteoclast differen-

tiation and could still promote osteoblast maturation but 

they did not antagonize myeloma cells. The potency of the 

best-performing candidate in vitro was tested in vivo in an 

ovariectomy-induced model of osteoporosis, but effect on 

bone loss could not be detected.   

During my PhD, I also participated in the studies of the 

effect of the proteasome inhibitor - bortezomib on osteo-

clasts conducted at the department. Based on its potent 

activity in multiple myeloma, bortezomib was accepted as a 

front-line treatment of myeloma patients by EMEA for the 

European Union. In our study we assessed the effect of 

bortezomib on osteoclasts in cultures under the conditions 

that mimic the pulse-treatment regime used for myeloma 

patients.  The pulse administration of bortezomib signifi-

cantly inhibited OC activity and, moreover, significantly but 

transiently reduced levels of two bone resorption markers 

measured in serum of treated myeloma patients.  

In MM the clonal expansion of malignant plasma cells 

results in the unbalanced bone remodelling, therefore it is 

essential to understand the molecular mechanisms govern-

ing the actions of osteoclasts and osteoblasts. During my 

PhD, I was involved in the investigations of mesenchymal 

stem cells over-expressing delta like protein – 1 (Dlk-1) 

previously shown to inhibit the differentiation of mesen-

chymal stem cells (MSC) into osteoblasts. In results, the 

over-expression of Dlk-1 evoked pro-inflammatory pheno-

type in MSC suggesting the involvement of Dlk-1 in the 

immune response. 

 

1.1. INTRODUCTION 

 1.1. BONE STRUCTURE AND REMODELLING 

 

Bones are rigid organs that form part of endoskeleton in 

vertebrates. They function as 
(1)

 a mechanical support and 

protection for various organs of the body, 
(2)

 main producers 

of red and white blood cells and 
(3)

 homeostatic buffers for 

mineral (mainly calcium) metabolism. Bones of the body 

could be divided in two types, long bones and flat bones 

formed by two different mechanisms during embryonic 

development [49]. Both flat and long bones consist of two 

morphologically distinct types of bone, cortical bone consti-

tuting 85% of total bone in the body and mainly responsible 

for mechanical protection, and trabecular bone that consti-

tutes 15% of the bone conveying metabolic functions. The 

spaces between the bone trabeculi in long bones are com-

posed of blood vessels and bone marrow, which is the site of 

hematopoiesis (Figure 1). Bone marrow contains of two 

separate and distinct stem cell populations: the hemapoietic 

stem cells and the mesenchymal stem cells and their respec-

tive progeny. 

 

 
 

Bone consists of bone matrix and bone cells. Bone matrix 

is composed of an organic component, comprising in 90% of 

collagen, out of which type I is the most abundant form and 

represents the majority of bone collagen. Collagen is 

strengthened by deposits of inorganic calcium salts. The 

remaining 10% of the organic matrix is composed of non-

collagenous proteins and proteoglycans mostly responsible 

for cell attachment and growth (Figure 1). 

1.1.1. Bone cells 

Bone cells are responsible for the metabolic activity and 

constant renewal of bone, and include 
(1)

 osteocytes, 
(2)

 

osteoclasts, 
(3)

 osteoblasts, 
(4)

 reversal cells and 
(5)

 bone lining 

cells.  

Osteocytes are the most abundant cell type of the bone 

representing almost 95% of bone cells [164]. Osteocytes 

descend from osteoblasts that have been embedded in the 

new deposed bone matrix [73]. They lose a large part of 

their organelles but gain long, slender cell processes by 

which they remain in contact with earlier incorporated 

osteocytes and with other bone cells. Osteocyte function is 

still poorly understood, although there is increasing body of 

evidence that they sense the mechanical stress to bone and 

therefore can regulate bone remodelling process 

[1;41;42;73]. 

Osteoclasts are multinucleated cells know to be the only 

cell type resorbing bone. Osteoclasts differentiate from 

macrophage-monocyte hematopoietic precursors that un-

dergo multiple cellular fusions forming multinucleated os-

teoclasts with up to 100 nuclei [21;46;227;228]. The osteo-

clast differentiation requires different environmental 

factors, of which macrophage-colony stimulating factor (M-

CSF) and receptor activator for NF-κB ligand (RANKL) seem 
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to play crucial roles. M-CSF signalling is essential for the 

expansion of osteoclast precursors while RANKL provides a 

turn-on signal for cell fusion, differentiation and subsequent 

activation of mature osteoclasts [238]. RANKL signalling is 

blocked by its decoy receptor osteoprotegerin (OPG) ex-

pressed mainly by osteoblasts but also other cells in the 

bone marrow [43]. Osteoclasts resorb bone by acidification 

that causes elution of bone minerals followed by digestion of 

the organic matrix by use of  several proteolytic by enzymes, 

of which cathepsin K is of the greatest importance [184;223]. 

The formation of new bone is the responsibility of os-

teoblasts that originate from multipotent mesenchymal 

stem cells. These precursor cells, in response to various 

hormones or local factors, may give rise to osteocytes and 

extracellular matrix, but can also differentiate along other 

pathways to become adipocytes, chondrocytes, myoblast or 

fibroblasts [6]. Osteoblasts produce and secrete the major 

part of the organic bone matrix that in tightly regulated 

process becomes calcified to form mineralized bone. Os-

teoblasts do not function individually but are found in clus-

ters along the bone surface depositing the layer of bone 

matrix that they are producing.  

The existence, origin and function of reversal cells at-

tracted a considerable scientific attention since the discov-

ery of osteoblastic cells in resorption pits vacant of osteo-

clasts. Reversal cells seem responsible for the removal of 

residual organic matrix and the deposition of primary colla-

gen in the resorption pit, initiating further bone formation 

[72;149].  

In the adult skeleton, the majority of surfaces are cov-

ered by flat, thin elongated bone lining cells, which are 

thought to represent the inactive form of osteoblasts in 

terms of matrix production. The main function of bone lining 

cells seems the mechanical protection of bone surface. An 

important aspect concerning bone lining cells is that the 

retraction or removal of these cells is a mandatory step in 

starting osteoclastic bone resorption [246]. In agreement, 

recent data suggest that bone lining cells can cooperate with 

osteocytes and sense  mechanical strain and translate it to 

biochemical signal regulating bone remodelling [42].  

 

1.1.2. Bone remodelling 

Bone is continuously renewed throughout adult life in a 

process of bone remodelling implementing the removal of 

old bone by osteoclasts followed by osteoblast-mediated 

formation of new bone at the place of removal. This process 

is believed to occur at discrete sites named basic multicel-

luar units (BMU), where the actions of osteoclasts and os-

teoblasts are tightly coupled spatially and temporally to 

retain balance between resorption and formation of bone 

[173]. A fully developed BMU consist of bone-resorbing 

osteoclasts in front, followed by osteoblasts forming bone. 

Further studies provided evidences that the BMU is not in 

direct contact with bone marrow but is separated from the 

bone marrow cavity by the canopy of made up by a single 

layer of flat osteoblast-like cells. This closed structure was 

renamed bone remodelling compartment (BRC, Figure 2) 

[94]. The integrity of the canopy seems to be essential for 

balanced bone turnover [15]. Bone remodelling occurs in a 

sequential and cyclical manner referred to as the Activa-

tion/Resorption-Reversal-Formation cycle [89]. One of the 

initial events activating bone resorption is believed to be 

apoptosis of osteocytes in response to local mechanical 

stress. Additionally, hypoxic conditions can also act as a local 

stimulatory factor triggering the formation of osteoclasts 

and initiating bone resorption [20]. Apoptotic osteocytes 

send the recruitment signal for osteoclast precursors thus 

initiating osteoclastogenesis and bone resorption [86;212]. 

During the resorption phase osteoclasts work in a concen-

trated fashion, removing both mineral and organic compo-

nents of bone matrix leaving scalloped erosion areas also 

called the eroded surface. After the completion of bone 

resorption, osteclasts undergo apoptosis and this is followed 

by a reversal phase, during which osteoblast precursors are 

recruited to bone surface. The first osteoblasts that enter 

the area are called reversal cells and they prepare and condi-

tion the resorbed areas and provide recruitment signals for 

more osteoblast differentiation and migration into area [72]. 

The formation phase follows with osteoblasts laying down 

new bone matrix until the resorbed area is completely re-

placed. The bone remodelling is believed to be terminated 

by action of osteocytes producing sclerostin that inhibits 

bone formation by antagonising Wnt signalling pathway in 

osteoblasts (Figure 2) [234].   

 

  

Under the normal circumstances, the actions of osteo-

clasts and osteoblasts are tightly coupled, and bone resorp-

tion and formation occurs in balanced fashion. Abnormali-

ties of bone remodelling can lead to either extensive loss or 

gain of bone mass as seen in several skeletal disorders (Table 

1). Altered bone turn-over with development of osteoporo-

sis is a severe problem in modern Western population with 

drastic effects on the quality of life and global health.  
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1.2. MULTIPLE MYELOMA AND ASSOCIATED BONE 

DISEASE 

 

Multiple myeloma is a clonal malignancy of terminally 

differentiated plasma cells accumulating in the bone mar-

row. Myeloma accounts for approximately 1% of all malig-

nant diseases in a Caucasian population with around 300 

new cases annually in Denmark. The median age at diagnosis 

is 68 years and 55% patients who present with multiple 

myeloma are aged 60 or older whereas only 3% cases are 

detected in patients younger than 40. Multiple myeloma 

remains incurable at present with median survival ranging 

between 3.5 and 5 years.  

Multiple myeloma is characterised by the presence 

of plasma cells in bone marrow (>10%) and the increased 

levels of monoclonal proteins detected in either blood or 

urine of more than 95% of patients. The infiltration of mye-

loma cells in the bone marrow may cause symptoms due to 

bone destruction, immunodeficiency and renal impairment. 

Skeletal complications, including bone pain, osteolytic le-

sions, pathological fractures and hypercalcemia cause sig-

nificant morbidity in about 80% of patients at the time of 

diagnosis [16].  

 

 
 

Biologically, the infiltration of myeloma cells in the bone 

marrow results in the activation of osteoclastogenesis and 

osteoclast-mediated bone resorption in the vicinity of mye-

loma cells. In return, activated osteoclasts provide a feed-

back stimulatory signal facilitating proliferation and survival 

of myeloma cells often referred to as the vicious cycle of 

myeloma-osteoclast interaction. At the same time, bone 

formation by osteoblasts is inhibited in the presence of 

myeloma cells that secrete soluble factors such as Dickkopf-

1 protein that antagonise osteoblast activity. Thus, myeloma 

bone disease develops as a consequence of unbalanced 

bone remodelling with extensive bone resorption, which is 

not compensated by increased bone formation (Figure 3) 

[27;213;233].  

 

1.3. OSTEOCLASTS AND BONE RESORPTION IN 

MULTIPLE MYELOMA 

 

1.3.1. Osteoclasts 

 

The hallmark of multiple myeloma is enhanced bone de-

struction mediated by multinucleated osteoclasts in areas 

adjacent to myeloma cells. Bone resorption is a multistep 

process initiated by the proliferation of immature osteo-

clasts progenitors, the commitment of these cells to osteo-

clast phenotype, and finally degradation of inorganic and 

organic matter of bone by the mature osteoclasts. The func-

tional cycle of the osteoclast consists of matrix adherence 

and bone resorption followed by detachment and move-

ment to a new site of bone degradation [75]. Actively re-

sorbing osteoclasts are highly polarized cells in contrast to 

osteoclasts inactive in terms of bone resorption. The mem-

brane areas of actively resorbing osteoclasts can be sepa-

rated into following domains: 
(1)

 the sealing zone, 
(2)

 the 

ruffled border, 
(3)

 the basolateral membrane and 
(4)

 the 

functional secretory domain [185]. The sealing zone is a 

structure rich in F-actin and largely devoid of organelles 

organised as a ring surrounding the ruffled border [111;226]. 

In addition to F-actin, the sealing zone contains several 

matrix-recognizing proteins and integrins such as vinculin, 

CD44 and αvβ3 integrin allowing a tight interaction of the 

osteoclast with the bone [111]. The ruffled border is a highly 

convoluted plasma membrane domain under which the 

actual resorption takes place. Bone degradation occurs in 

the extracellular space between bone matrix and the ruffled 

border called the resorption lacuna [186]. In the middle of 

the basolateral membrane is the secretory domain that 

appears when collagen degradation is started (Figure 4). 

Bone demineralization involves acidification of the iso-

lated extracellular microenvironment between the osteo-

clast and the bone surface, a process that is mediated by a 

vacuolar ATPase proton pump located in the ruffled border 

generating acid pH in the resorption lacuna [97;182;198]. 

This acidic milieu first mobilizes bone mineral; subsequently 

the demineralised collagen component of bone is degraded 

by a lysosomal protease cathepsin K [184;214;223]. The 

products of bone degradation are endocytosed by the os-

teoclast, transported to and released at the secretory do-

main.  
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1.3.2. The indirect effect of myeloma cells on bone resorp-

tion 

It is widely accepted that in multiple myeloma cancer 

cells operate via the production of cytokines and local fac-

tors or by modulating bone microenvironment in order to 

stimulate osteoclastic bone resorption [152]. Osteoclast 

activating factors were subsequently found to include inter-

leukins (IL)-1β, -6 and -11, tumour necrosis factor (TNF)-α, 

transforming growth factor (TGF)-β, hepatocyte growth 

factor (HGF), RANKL (antagonised by OPG), macrophage 

inflammatory protein (MIP)-1α and β, stromal derived factor 

(SDF)-1α and vascular endothelial growth factor (VEGF) but 

more factors are emerging. The characteristics of the best 

known osteoclast activating factors are depicted in Table 2. 

 

  

1.3.3. The direct effect of myeloma cells on bone resorption 

 

Based on these observation, it has been generally ac-

cepted that bone resorption in multiple myeloma is medi-

ated by osteoclasts considered to be the only cells that are 

able to degrade bone. Myeloma cells are believed to play an 

indirect role, however recent data suggest that myeloma 

cells may be more directly involved in the generation of 

osteolytic lesions. Under appropriate culture conditions 

myeloma cell lines U266 and MCC-2 can phenotypically 

differentiate into osteolcast-like cells showing to some ex-

tend the ability to resorb bone [50;51]. These results were in 

accordance with those of McDonald and colleagues who 

showed that myeloma cells of a mouse plasmacytoma model 

were able to resorb bone directly without the involvement 

of osteoclasts [143]. A recent study, based on FISH and 

immunohistochemistry applied on bone marrow biopsies 

from myeloma patients, demonstrated an unexpected new 

contribution of myeloma cells to the formation of osteo-

clasts [14]. Bone-resorbing osteoclasts from myeloma pa-

tients contained nuclei with translocated chromosomes of 

myeloma clone origin: t(4;14) and t(11;14). The level of 

integration of myeloma nuclei varied from patient to patient 

but was often around 30% of the osteoclasts, and these 

myeloma nuclei were demonstrated to be transcriptionally 

active and integrated amongst the other nuclei. Interest-

ingly, the occurrence of such osteoclast-myeloma cell hy-

brids correlated with the proximity of myeloma cells to bone 

resorbing osteoclasts. Similar hybrid cells could be gener-

ated in myeloma cell-osteoclast co-cultures under osteo-

clast-forming conditions. These observations indicate that 

hybrid cells that appear like bone resorbing osteoclasts can 

originate through fusion between myeloma cells and osteo-

clasts both in vitro and in vivo, and suggest a possible novel 

role of myeloma cells in bone resorption if the fusion results 

in reprogramming of the osteoclast and render it more 

aggressive with regard to bone resorption. 

1.3.4. Osteoclast-myeloma cell vicious cycle  

 

The fact that myeloma cells grow and expand almost ex-

clusively in the bone marrow suggests the importance of the 

bone marrow microenvironment in supporting myeloma cell 

growth and survival. Recently, especially the role of osteo-

clasts in promoting the growth of myeloma cells became 

evident. Studies of Yaccoby and colleagues had previously 

showed that in an animal model of human myeloma using 

SCID-human host system, myeloma cell growth was sup-

pressed by inhibition of osteoclast activity with bisphospho-

nates [242]. This complex interdependence was further 

investigated in a culture system between primary myeloma 

cells and osteoclasts derived from peripheral blood mono-

nuclear cells [8;95;243]. Growth of myeloma cells was 

potently enhanced by cell-to-cell interaction with osteoclasts 

and largely dependent on the increased production of IL-6 

by osteoclasts.IL-6, known as myeloma growth factor, is the 

most potent stimulator of myeloma cell expansion; however 

there are several candidates that may mediate the cellular 

interactions between myeloma cells and osteoclasts. B-cell 

activating factor (BAFF) and a proliferation inducing ligand 

(APRIL) have been implicated as growth and survival factors 

[148] and blocking of their actions with a decoy receptor 

significantly induced apoptosis in myeloma cells [9]. Because 

myeloma cells become refractory to chemotherapeutic 

agents in advanced stages, there is a possibility that the 

interaction with osteoclasts may have a protective role 

against cytotoxic effects of anti-cancer therapies. Indeed, 

cell-to-cell interaction with osteoclasts not only enhances 

myeloma cell growth but also causes marked resistance to 

doxorubicin [8]. These observations are in agreement with 

clinical data that myeloma patients at advanced stages with 

extensive osteolytic lesions show refractoriness to chemo-

therapies, and suggest that increased osteoclast number and 
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activity may contribute to aggressiveness and drug resis-

tance of adjacent myeloma cells.      

 

1.4. OSTEOBLASTS AND BONE FORMATION IN MUL-

TIPLE MYELOMA 

 

1.4.1. Wnt signalling in osteoblasts 

 

Deposition of new bone is mediated by osteoblasts that 

are believed to originate from bone marrow mesenchymal 

stem cells (MSCs). Due to their pluripotent differentiation 

ability, MSC are ultimately capable of differencing into cells 

of different lineages, including not only osteoblasts, but also 

chondrocytes, adipocytes and myocytes. The commitment 

and fate of MSCs seem to be governed by canonical and 

non-canonical Wnt signalling, differently regulated among 

various MSC-derived cell lineages.  Non-canonical Wnt 

pathway has been less characterised and the molecules and 

interactions involved are known to be diverse.  As oppose to 

the canonical signalling, it does not operate through β-

catenin but invokes several other cascades including PCP 

(planar cell polarity), JNK (c-Jun N-terminal knase), calcium 

and Rho signalling [133]. As the relevance of non-canonical 

Wnt pathway in the osteoblast differentiation is still under 

extensive investigation and detailed discussion is beyond the 

scope of the thesis, this chapter will mostly concentrate on 

the canonical Wnt signalling. 

Activation of the canonical Wnt pathway occurs upon 

binding of Wnt to the frizzled receptor and low-density 

lipoprotein receptor-related protein 5 and 6 (LRP5/6) co-

receptors. Signals are generated through the proteins Di-

sheveled (Dsh), Axin and Frat-1, which disrupt the protein 

complex and inhibit the activity of glycogen synthase kinase 

3 (GSK3), thus causing hypophosphorylation of its substrate 

β-catenin. Stabilized β-catenin then accumulates in cytosol 

and translocates to the nucleus where it acts on gene tran-

scription (Figure 5). Wnt signalling is tightly regulated by 

members of several families of secreted antagonists. Inter-

actions between Wnt and frizzled receptors are inhibited by 

members of the secreted frizzled-related protein (sFRP) 

family [34] and Wnt inhibitory factor 1 (WIF-1) [55]. LRP5/6 

co-receptor activity is inhibited by the members of the scle-

rostin (SOST) family [130;191] and Dickkopf-1 (Dkk-1) pro-

tein [44]. Interaction of Dkk-1/LRP with internalizes the 

complex for degradation, thus diminishing the number of 

Wnt co-receptors available for signalling [139] (Figure 5). 

   

 

1.4.2. Adipocyte/osteoblast transdifferentiation 

 

MSCs can give rise to both osteoclastic and adipogenic 

cells, and there is a compelling evidence for a reciprocal 

relationship between these cells. Single MSC-derived clones 

were shown to have the ability to differentiate into adipo-

cytes, dedifferentiate, and subsequently differentiate into 

osteoblasts in vitro [202]. Also mature osteoblasts or adipo-

cytes were able to inter-differentiate, when cultured under 

respectively adipogenic or osteoblast-promoting conditions 

[112]. Moreover, adipose-derived stem cells isolated from 

extramedullary fat display differentiation capacity to both 

adipocytes and osteoblasts [90;250;251]. The differentiation 

fate of MSC precursors is differently regulated for both 

osteoblast and adipocytes and there are mutual interactions 

controlling the MSC development. The factors that induce 

adipogenesis inhibit osteoblast differentiation and, vice 

versa, factors that promote osteogenesis suppress adipocyte 

formation (Figure 6). The overexpression of transcription 

factors such as: core-binding factor (CBFA1/Runx2) [119], 

osterix [157] and lipoprotein related receptor 5 (Lrp5) [176] 

leads to osteoblast differentiation, while peroxisome prolife-

rator-activated receptor gamma 2 (PPARγ2) [128] induces 

adipocyte lineage. In addition, bone microenvironment 

facilitates several factors inducing osteogenesis such as bone 

morphogenic proteins (BMPs) [136] and Wnt [77], or regu-

lating adipogenesis such as Dlk1/Pref-1 [4] and Noggin [181]. 

However, not only chemical cues, but also physical activa-

tion such as cell density and cell shape appear to play a role 

in lineage commitment. Lower cell densities seem to support 

osteoblast differentiation of MSCs, whereas higher cell 

densities cause the cells to condensate, forcing adipocyte 

formation [142]. 
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1.4.3. Delta-like protein 1 

 

 Another regulatory mechanism of osteblast/adipocyte 

differentiation is mediated via delta-like protein 1 / fetal 

antigen 1 (Dlk 1/FA1, also named preadipocyte factor 1) 

signalling. Dlk 1 is a member of the epidermal growth factor-

like homeotic protein family, which expression is known to 

modulate the differentiation fate of MSC in bone marrow 

[125]. Abdallah and collegues, using a stable retroviral 

transduction, identified Dlk 1 as a novel factor controlling 

the differentiation of MSC rending them in the progenitor 

status and inhibiting the formation of osteoblasts and adipo-

cytes [5]. Dlk 1 has been shown to be highly expressed in 

preadipocytes during adipogenesis but its expression is 

abolished after differentiation to adipocytes. Dlk 1 is acting 

inhibitory for adipocyte differentiation, and only when 

down-regulated, it allows adipocyte differentiation to occur 

[201]. These observations suggest that Dlk 1 may be a 

unique inhibitor of adipogenesis produced and secreted by 

preadipocytes that keeps the cells in undifferentiated stage 

and prevents differentiation. Additionally to its prevention 

actions on adipocyte differentiation, Dlk 1 was also shown to 

negatively regulate the formation of osteoblasts from MSC 

precursors [5] thus being an unique endocrine regulator of 

bone mass. Furthermore, the novel role of Dlk 1 in the 

modulation of the expression of several pro-inflammatory 

cytokines by MSC was discovered using DNA microarray 

technology [2]. This modulator effect of Dlk 1 may further 

influence MSC differentiation by controlling the composition 

of their microenvironment.  

1.4.4. Bone formation in multiple myeloma 

 

In typical destructive bone lesions of multiple myeloma, 

enhanced bone resorption is accompanied by impaired bone 

formation, which is the cause of the “punched-out” lesions 

visible on X rays. Analyses of bone turnover by biochemical 

bone markers also suggest imbalance with enhanced bone 

resorption and suppressed bone formation [215;235]. These 

and other findings suggest that myeloma cells effected 

osteoblastic bone formation by mutually blocking the differ-

entiation of osteoblastic precursors and inducing apooptosis 

in mature osteblasts [82]. In agreement, Tian and coworkers 

reported a significant increase of the levels of Dkk1 in serum 

of newly diagnosed myeloma patients [219]. Notably, the 

severity of bone lesions was correlated with elevated Dkk1 

levels in these patients [219]. Interestingly, patients with 

advanced disease, as well as human myeloma cell lines, did 

not express Dkk-1, suggesting that Dkk-1 may mediate bone 

destruction in the early phases of disease [219]. Knowing its 

role in Wnt-mediated osteoblast development, Dkk1 

emerged as one of the most potential mediator of os-

teoblast dysfunction in myeloma bone disease. Furthermore, 

secreted Frizzled-related protein-2 (sFRP-2), a soluble an-

tagonist of Wnt signalling, has been shown to be expressed 

by myeloma cells [162]. In vitro studies proved the role of 

myeloma-cell derived sFRP-2 in the suppression of bone 

formation, raising the possibility that sFRP-2 may play a role 

in the development of lytic lesions observed in multiple 

myeloma [162]. Moreover, myeloma cells were found to act 

downstream of Wnt signalling, inhibiting Runx2 activity and 

reducing osteoblast differentiation mediated by both cell-

cell contact and IL-7 [80]. Also cytokines and local factors are 

implemented in altered bone formation in multiple mye-

loma. TGF-β, released from bone matrix during osteoclastic 

bone resorption, has a dual role, not only stimulating os-

teoblast activation, but negatively effecting osteoclast dif-

ferentiation [150]. HGF is produced by myeloma cells and 

increased in the serum of patients with multiple myeloma 

[190]. Increased levels of HGF are correlated with poor 

prognosis [13] and negatively correlated with levels of bone 

specific alkaline phosphatase, a marker of bone formation 

[203]. In agreement, HGF was found to inhibit BMP-induced 

osteoblastogenesis and the expression of transcription fac-

tors Runx2 and Osterix [203]. In addition to blocking os-

teoblast differentiation, myeloma cells were shown to in-

duce apoptosis of osteoblasts when cultured with human 

osteoblastic cells [220]. 

1.5. TREATMENT OF MULTIPLE MYELOMA 

 

Altered activity of osteoclasts and osteoblasts in multiple 

myeloma leads to osteolytic lesions and compromised qual-

ity of life for myeloma patients. Currently available treat-

ments are only palliative and not curative, extending the life 

span of myeloma patients to 3 - 5 years but not leading to 

cure. A very important contribution to anti-myeloma ther-

apy, in terms of prolongation of survival, has been obtained 

with stem cell transplantation, where the patient receives an 

autologous or allogenic stem cell graft proceeded by high 

dose of myelo-ablative chemotherapy. Allogenic stem cell 

transplantation with use of stem cells from a family or 

matched unrelated donor remains experimental. However, 

many myeloma patients are not allocated to stem cell trans-

plantations because of their advanced age, poor perform-

ance status, pronounced renal failure or comorbidity. These 

patients receive a standard dose of conventional chemo-

therapy or a suitable alternative therapeutic regimen with 

addition of one and more “novel agents” that have been 

available in recent years. For decades, an oral regimen of 

melphalan combined with prednisolone remained the cor-

nerstone of anti-myeloma therapy with the overall response 

of 50% [155]. Many investigators have sought to improve 

the results obtained with melphalan plus prednisolone by 

using more sophisticated treatment regimens, but real im-

provement of the outcome has not been obtained until the 
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introduction of “novel agents” in the treatment programs 

(first and foremost thalidomide, lenalidomide and borte-

zomib). 

Bisphosphonates are effective in the treatment of mye-

loma bone disease, however limited by their inability to 

promote new bone formation [11;132]. Furthermore, 

bisphosphonates have recently been associated with the 

development of osteonecrosis of the jaw, identified in 4-6% 

patients receiving intravenous bisphosphonates [24]. Intro-

duction of “novel agents” into the treatment programs may 

offer advantages especially when a rapid reduction of tu-

mour burden is required or in cases with extensive osteolytic 

bone lesions. In this context bortezomib seems to be of 

particular interest as shown in Table 3 that gives an over-

view of actions and major side effects of some of the drugs 

used for treatment of multiple myeloma with focus on their 

activity towards osteoclasts, osteoblasts and myeloma cells. 

 

 

1.5.1. Novel therapeutic targets  

 

Since cure for multiple myeloma still cannot be achieved 

with currently available treatment modalities, there is an 

urgent need to search for new therapeutic agents. A detailed 

and comprehensive review of available therapies is beyond 

the scope of the thesis; however some areas of particular 

interest are summarized in Figure 7 and include: 

 

(1) The improvement of existing therapeutic regiments 

and avoiding side effects – novel group of proteasome 

inhibitors is being tested in phase I clinical trials 

[53;121;146]. 

 

(2) Tumour neoangiogenesis – neovasuclarization is be-

lieved to be critical for growth and metastasis of tu-

mours [93;200]. In multiple myeloma several clinical 

observations indicate that the presence of myeloma 

cells within the bone marrow compartment is associ-

ated with increased activity of endothelial cells result-

ing in neo-angiogenesis [153;179;229-231]. The den-

sity of newly formed blood vessels in multiple 

myeloma seems to positively correlate with the ex-

pression of VEGF by myeloma cells and number of 

plasma cells in myeloma bone marrow samples [30]. 

Therefore targeting angiogenesis has become a prom-

ising strategy for multiple myeloma and a variety of 

therapies directed at interfering this process are cur-

rently under development [104;110]. 

 

(3) Pro-apoptotic regiments for myeloma cells – inhibiting 

proliferation and inducing apoptosis of malignant 

plasma cells seems the key therapeutic regimen for 

multiple myeloma. Several strategies have been im-

plemented to achieve this goal and the some promis-

ing therapies that have emerged recently are kinase- 

[28;144] and telomerase-inhibitors [194] drugs that 

modulate the duration of cell cycle or target cell-death 

receptors [63;76], heat shock proteins [71;161] or en-

vironmental stimuli facilitating myeloma cell survival 

[222;236;237]. Moreover, recently mammalian target 

of rapamycin (mTOR) has emerged as a critical effector 

in cell-signalling pathways commonly deregulated in 

human cancers [88]. Also in vitro and in vivo findings 

[74;178] support its importance in multiple myeloma 

and mTOR antagonists are currently in clinical trials 

[29]. 

 

(4) Immunotherapy – since myeloma cells express various 

potential target antigens, active immunotherapy is be-

ing investigated as a novel treatment modality for mul-

tiple myeloma. Accordingly, few cell surface molecules 

have been identified as suitable targets for the devel-

opment of passive immunotherapy against multiple 

myeloma. Some of the possible targets  for antibody 

therapy are CD74 [205], CD40 [118;129;171;172] and 

CD20 [45;114] all involved in the proliferation and sur-

vival of myeloma cells. In addition, the immune system 

is largely impaired in patients with multiple myeloma 

with significant dysfunction of dendritic cells [48], 

regulatory T cells [31;174] and natural killer cells [68]. 

Therefore it may be important to stimulate the host 

immune response towards myeloma cells. Several vac-

cination strategies are being explored to achieve this 

goal.  

 

(5) OPG/RANKL system - RANKL, the main inducer of 

osteoclast activation during myeloma bone disease, is 

expressed at the surface of myeloma cells [192;193] 

and largely induced in bone marrow stromal cells. The 

therapeutic opportunities that may arise from interfer-

ing with RANKL were tested with OPG, a soluble decoy 

receptor for RANKL and antibody to RANKL, both sup-

posed to regulate osteoclast activation upon the expo-

sure to RANKL. Initial attempts with a recombinant 

OPG construct (AMGN-0007) were well tolerated and 

caused a rapid and sustained dose-dependent de-

crease of bone resorption [36]. More recently, a hu-

manized monoclonal antibody specifically binding to 

RANKL has been developed (Denosumab, AMG 162), 

and proved safe and efficient in preliminary studies on 
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patients with multiple myeloma with radiological con-

firmed bone lesions [35]. 

                                    

 

1.5.2. Bortezomib 

 

The most promising of emerging therapies for multiple 

myeloma is the inhibition of ubiquitin / proteasome path-

way. Proteolysis is a normal cellular process and thus sub-

strates for proteasomes include many cellular proteins that 

maintain normal cell cycle progression, growth and survival 

[26]. Conversely, pharmacological inhibition of proteasome 

function hampers the normal elimination of misfolded pro-

teins, thereby causing a build-up of unwanted proteins and 

eventual cell death. These laboratory observations were 

recently translated to the clinical application of proteasome 

inhibitors as cancer therapies supported by studies suggest-

ing favourable therapeutic index. Indeed, proteasome inhibi-

tors exhibit higher cytotoxicity towards proliferating malig-

nant cells than quiescent normal cells.  In context of multiple 

myeloma, the first proteasome inhibitor bortezomib was 

shown to target simultaneously the three critical players of 

myeloma induced bone disease: myeloma cells, OCs and 

OBs. Bortezomib is a potent inhibitor of myeloma cell 

growth and survival in vitro seen in both myeloma cell lines, 

freshly isolated primary myeloma cells [100] and using ani-

mal models [167]. Bortezomib triggers apoptosis in myeloma 

cells mainly by inhibiting the inducible NF-κB activation 

[98]but, on the other hand, induced the canonical NF-κB 

activation [99]. However, the actions on NF-κB alone are 

unlikely to account for the overall anti-myeloma activity of 

bortezomib. Studies to date suggest that bortezomib affects 

both various apoptotic signalling cascades and blocks 

growth/ survival mechanism in myeloma cells. Osteoclasts 

are also sensitive to bortezomib treatment, and we and 

other groups have recently shown the inhibitory effects of 

bortezomib on osteoclasts formation and function [38;249]. 

Clinical studies show that bortezomib leads to decrease in 

bone resorption markers regardless of the overall treatment 

outcome [216]. In addition to inhibiting osteoclasts, borte-

zomib was demonstrated to possess a beneficial anabolic 

effects on the skeleton in vitro as it induces the osteoblast 

differentiation from mesenchymal precursors [81]. In sup-

port of this observation, clinical studies have demonstrated 

significant increases in markers of bone formation, including 

alkaline phosphatase and osteocalcin in patients responding 

to treatment [96;247]. In addition to changes in markers of 

bone formation, bortezomib treatment has also been shown 

to result in a reduction of serum Dkk1 and RANKL [216].   

Bortezomib, has been initially approved as a treatment 

for relapsed/refractory multiple myeloma patients who 

already received two of other types of chemotherapy. Re-

cently, bortezomib had been also accepted as a front-line 

treatment for multiple myeloma independently of the previ-

ous treatment history. The drug is administered as a single 

intravenous injection given at day 1, 4, 8 and 11, and fol-

lowed by 10-day break in the treatment.  

1.5.3. Resveratrol and its analogues 

 

Multiple myeloma remains an incurable disease despite 

the progress in treatment during recent years. Therefore 

there is still an urgent need for new drugs with better effi-

cacy and less toxicity. Nature has been a source of medicinal 

agents for many years and an impressive number of modern 

drugs have been isolated from natural sources or derived 

from natural product molecules, especially in cancer thera-

pies. Resveratrol (trans-3, 4’, 5-trihydroxystilbene; RSV) is a 

natural compound present in the skin of red fruits, seeds, 

berries and is concentrated in derived-products such as red 

wine [87]. RSV is raising a lot of interest because of its possi-

ble anti-tumor and cancer-chemopreventive properties, 

suggested by observations on different cancer cell lines in 

vitro, and also in animal cancer models such as breast cancer 

[25], skin cancer [106], liver cancer [244], colorectal and 

intestinal cancers [188;218], lung cancers [117] and neuro-

blastoma [54]. RSV has been shown to affect a series of 

critical events associated with tumor initiation and progres-

sion, including up regulation of p53 and p21 levels, induction 

of NO, inhibition of COX, protection against reactive oxygen 

intermediates, down-regulation of survival factors and pro-

teinases [69;168].  

In context of  RSV as a potential drug candidate for 

treatment of multiple myeloma, a recent in vitro study re-

vealed that RSV can induce apoptosis in myeloma cells, 

prevent osteoclast differentiation and their bone resorption, 

and promote differentiation of bone mesenchymal stem 

cells into bone forming osteoblasts [37]. The proapoptotic 

actions of RSV towards tumour cells were shown to be me-

diated by antagonising the activation of NF-κB [208] and 

downstream abrogation of the expression of genes respon-

sible for cell survival [32]. Furthermore, RSV was also shown 

to potentiate the apoptotic effects of conventional chemo-

therapeutic agents [23;107], as well as suppressing the 
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expression of MMPs by myeloma cells [209] and inhibiting 

bone marrow aniogenesis [103]. 

In light of these observations, RSV was considered to be 

a potentially interesting drug that could affect all key aspects 

of multiple myeloma and the associated bone disease. How-

ever, the in vitro studies showed that, in order to elicit its 

biological effect, RSV must be used at very high concentra-

tions unlikely to be achievable in vivo. The administration of 

high doses of RSV carries a risk of severe adverse effects 

observed in rodents [60]. Furthermore, recent studies sug-

gest that the target organs of resveratrol are liver and kid-

ney, where it is concentrated after absorption and is mainly 

converted to an inactive form - glucuronide conjugate [122]. 

As RSV shows a very limited therapeutic potential, efforts 

are directed to search for its natural or synthetic analogues 

with higher bioavailability and safer [22;154]. Currently, a 

RSV derivate (STR501) is being tested in phase II clinical trial 

to assess its safety and efficacy towards multiple myeloma, 

alone or in combination with bortezomib.  
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