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BACKGROUND  

CHRONIC KIDNEY DISEASE - MINERAL AND BONE DISORDER (CKD-

MBD) 

 

Definition 

In Denmark, the prevalence of dialysis patients was 2650 in 

2009.1 Disturbances in the mineral metabolism develop as renal 

insufficiency progress, beginning in chronic kidney disease (CKD) 

stage 3, and are present in most patients when reaching dialysis. 

Ninety-six % of the hemodialysis patients (n = 76) in our depart-

ment were at the time of screening for participants to the present 

study, treated for disturbances in the mineral metabolism. These 

disturbances are associated with alterations in bone morphology, 

termed renal osteodystrophy and increased risk of skeletal frac-

ture. The disturbances in the mineral metabolism are also associ-

ated with vascular and other soft tissue calcification, and in turn 

increased cardiovascular morbidity and mortality. The systemic 

disorder consisting of mineral disturbances, bone abnormalities 

and  extraskeletal calcification, is defined as Chronic Kidney Dis-

ease-Mineral and Bone Disorder (CKD-MBD).2  

 

Secondary hyperparathyroidism and renal osteodystrophy 

When CKD develops 1,25-dihydroxyvitamin D levels decrease.3 

This is partly due to decreased availability of the precursor 25-

hydroxyvitamin D. The most important reason is the decreased 

1α-hydroxylation of 25-hydroxyvitamin D in the kidney. As the 

kidney mass declines the amount of 1α-hydroxylase decreases 

and as glomerular filtration rate (GFR) declines the delivery of 

vitamin D to 1α-hydroxylation via glomerular filtration declines.4 

Apparently, fibroblast growth factor 23 (FGF23) increases in CKD 

patients before changes in calcium, phosphate and parathyroid 

hormone (PTH) develops,5 and the rise is associated with the 

appearance of deficiency in 1,25-dihydroxyvitamin D, which could 

be induced by the rising FGF23.6 Phosphate and C-terminal PTH 

fragments increases when CKD develops and has the potential to 

further decrease the activity of 1α-hydroxylase.7;8 

Secondary hyperparathyroidism (SHPT) is characterised by in-

creased serum levels of PTH and parathyroid hyperplasia. Several 

stimuli may contribute to the development of secondary hyper-

parathyroidism in patients with chronic kidney disease. Hyper-

phosphatemia caused by decreased renal phosphate excretion. 

Hypocalcemia caused by low levels of 1,25-dihydroxyvitamin D 

and hyperphosphatemia. In addition, the expression of the cal-

cium-sensing-receptor (CaSR) are decreased in uraemia, probably 

as a result of hyperplasia and reduced 1,25-dihydroxyvitamin D, 

leading to impaired calcium sensitivity of the parathyroid glands.9 

The 1,25-dihydroxyvitamin D deficiency induces SHPT because of 

the removal of a direct inhibition of PTH transcription and indi-

rectly through a decreased calcium level. The synthesis of the 

vitamin D receptor (VDR) declines and the affinity of the VDR for 

the vitamin D response element decreases as CKD progress, 

which may increase PTH even in early CKD with normal 1,25-

dihydroxyvitamin D level.9;10 Apparently, uraemia per se also 

induce a stability of PTH mRNA leading to decreased degradation 

and thereby increased PTH synthesis.11 

A Randomised Clinical Study of Alfacalcidol and 
Paricalcitol 

Two vitamin D analogs for treatment of secondary hyperparathyroidism in chronic hemodialy-

sis patients 

Ditte Hansen, MD 



 DANISH MEDICAL JOURNAL   2 

Renal osteodystrophy covers different histological patterns of 

bone abnormalities in chronic kidney disease. The three main 

conditions are 1: Osteitis fibrosa cystica with high bone turnover 

and elevated levels of PTH. 2: Adynamic bone disease, osteo-

malacia with low bone turnover and decreased levels of PTH. 3: 

Mixed lesions. The gold standard for description of bone turnover 

are bone biopsy. 12;13 Bone biopsy is seldom used in Denmark. 

At the moment, PTH remains the single most useful biochemical 

parameter predicting bone histology, and changes in PTH is used 

for guidance, when treating renal osteodystrophy.14;15 Low 

and/or high PTH has been associated with increased incidence of 

fracture in CKD patients.16;17 and a case-control study found a 

decreased fracture incidence after parathyroidectomy.18 

Whether this relation is disrupted by new treatment modalities 

and PTH assays, has recently been suggested.2;19 

 

Chronic kidney disease and cardiovascular disease 

Patients with chronic kidney disease have increased mortality 

compared to the general population. In Denmark, the mortality 

rate in hemodialysis patients in 2009 were 21.2 per 100 person-

year (95% CI: 19.2-23.2).1 In 1998 Foley et al. described a 10-20 

fold increased risk of cardiovascular mortality in dialysis pa-

tients,20 and in 2004 Go et al. described that the risk of mortality 

and cardiovascular disease increased with declining kidney func-

tion, beginning at GFR below 60 ml per min per 1.73m2.21 Tradi-

tional risk factors, such as hypertension, dyslipidemia and diabe-

tes are involved in the pathogenesis of cardiovascular disease in 

CKD patients. But non-traditional risk factors are also present.22 

Observational trials have found the disturbances in the mineral 

metabolism to be related to the increased risk of cardiovascular 

disease and mortality.23-33 

 

Calcium, phosphate and parathyroid hormone 

Hyperphosphatemia is associated with cardiovascular dis-

ease,24;27;32 cardiovascular mortality,24;25;27;30;32;33 and is a 

strong predictor of all-cause mortality,23;24;27;29-33 in CKD 3-5D 

patients and elevated calcium levels are associated with in-

creased mortality in CKD 3-5D patients.24;26;28 Experimental 

data support this association, as phosphate and calcium are po-

tent inducers of vascular calcification.34-36 Even in young 20-30 

years old hemodialysis-treated adults, Goodman et al. demon-

strated coronary-artery calcification with a high progression rate, 

which was correlated to the circulating level of phosphate, cal-

cium x phosphate product and calcium intake.37 Coronary artery 

calcification correlates with the presence of cardiovascular dis-

ease and is associated with increased levels of calcium and phos-

phate.38 Likewise, arterial media calcification, a strong predictor 

of cardiovascular mortality, is strongly associated with increasing 

levels of calcium and phosphate.39 On the other hand, very low 

calcium levels also increases the short-term mortality 

risk,28;33;40 perhaps by increasing neuromuscular excitability 

and risk of sudden death.41 

Elevated PTH is associated with increased cardiovascular mor-

tality,25;30 and over-all mortality 24;29;30;33 in CKD 5D. PTH is 

associated with left ventricular hypertrophy,42 and can induce 

cardiomyocyte hypertrophy,43 which may be the underlying 

mechanism. Opposite, very low PTH is also associated with in-

creased cardiovascular,25;30 and over-all mortality,30;44 perhaps 

related to the presence of low bone turn-over disease, increasing 

the risk of vascular calcification45 due to less skeletal buffer of 

calcium. Furthermore, PTH could be a marker of malnutrition.46 

Based on cut-off values from observational studies, guidelines 

propose target levels for phosphate, calcium and PTH lev-

els.2;47;48 These guidelines are stressed by Palmer et al. in a 

recent systematic review and meta-analysis of observational 

trials.49 Palmer et al. found an association between phosphate 

levels and mortality, whereas no significant association between 

PTH and mortality, or calcium levels and mortality was found. 

Importantly, no interventional studies has addressed whether 

these targets improves patient related clinical outcomes, and 

placebo controlled trials of interventions including phosphate-

binders, vitamin D analogs and calcimimetics and their effect on 

patient-level outcome are certainly needed. 

 

Vitamin D 

Low levels of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D 

are associated with increased risk of  mortality during the first 

three month in incident hemodialysis patients,50 increased car-

diovascular disease, and mortality in newly referred patients to 

an Italian nephrology department,51 and have a graded relation 

to mortality in CKD-non-D.52 Likewise, in the general population 

cohorts (Framingham and NHANES) an association between low 

levels of 25-hydroxyvitamin D and cardiovascular morbidity and 

mortality has been found.53-55 

This raises the question whether treatment with vitamin D will 

improve the cardiovascular risk profile. Interestingly, many obser-

vational studies in CKD patients have found an increased survival 

and reduced cardiovascular morbidity in patients treated with 

vitamin D analogs (Table 1). 

There may be an effect of vitamin D itself, as the increased 

survival was found even after adjustment for disturbances in the 

mineral metabolism.58 Increasing doses of vitamin D attenuated 

the improved survival in two dose studies,26;61 leaving the ques-

tion whether active vitamin D possess a U shaped response curve. 

However, it may be the high PTH that triggers the high dose vita-

min D analog, which is harmful. Indeed, the ratio of parical-

citol/PTH has been shown to be positively associated with an 

increased survival.65 Teng et al. found an improved survival with 

paricalcitol a newer vitamin D analog compared to the older 

analog calcitriol.56 This difference was also found in a cohort 

study by Tentori et al., but significance disappeared after adjust-

ment for laboratory values and clinic standardised mortality.59 

There are no interventional studies to address the question 

whether vitamin D and its analogs improve survival and reduce 

cardiovascular risk in CKD patients. A Cochrane systematic review 

of patients requiring dialysis included 76 randomised controlled 

trials, each relatively small with a maximum of 266 participating 

patients. Only five small studies were found to report survival 

data, and there was not enough power in the meta-analysis to 

describe the effect of vitamin D on cardiovascular disease and 

death.69 The Cochrane group also performed a meta-analysis in 

patients not requiring dialysis. 16 studies were included, only four 

reporting survival data with a maximum of 220 participants. No 

survival difference or difference in other patient-centered end-

points was found, although this small amount of data did not 

have enough power to adequately detect an eventual differ-

ence.70 However, a metaanalysis from 2007 of 18 randomised 

controlled trials in people with and without renal disease, did find 

a reduced 0.93 (95% CI: 0.87-0.99) relative risk of death in vitamin 

D treated compared to untreated patients. The patients in the 

analysed studies were mostly older and institutionalised persons, 

with a follow-up of six month to seven years. No cause specific 

mortality reduction could be identified.71 A meta-analysis from 

2010, also encompassing people with and without renal disease, 

analysed the effect of vitamin D, vitamin D plus calcium, and 

calcium on cardiovascular events. Only two studies with vitamin D 
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only, were included. Any difference compared to placebo could 

not be identified in any of the groups.72 

 

Fibroblast growth factor 23 

Fibroblast growth factor 23 (FGF23) is a recently discovered en-

docrine factor, a glycoprotein, synthesized primarily in the skele-

ton in osteocytes and osteoblasts.73 Klotho is synthesised in the 

distal tubular cells of the kidney, in the parathyroid glands, and in 

the choroid plexus,74;75 and is an obligatory co-receptor for the 

binding of FGF23 to the FGF receptors (FGFR) 

FGF23 increases renal phosphate excretion due to inappropri-

ate phosphate reabsorption in the proximal tubules by decreasing 

the expression and insertion of the Na/Pi co-transporter.73;76 

Klotho-FGF23 system also decreases the level of 1,25-

dihydroxyvitamin D by decreasing the expression of 1α-

hydroxylase in the proximal tubules and increasing the expression 

of 24-hydroxylase in the distal tubules.77;78 FGF23 suppresses 

PTH secretion and parathyroid cell proliferation, and increases 

CaSR and VDR expression in normal parathyroid glands.74;79  

FGF23 does not have the same effect in uremic hyperplastic 

glands,80;81 probably because of reduced expression of FGFR1 

and Klotho protein.82 

Circulating FGF23 rises progressively as kidney function de-

clines,83 and dialysis patients have remarkably high FGF23 levels 

up to 1000 fold higher than healthy individuals.84 The mecha-

nisms responsible for the elevated FGF23 in CKD patients is not 

precisely known. Oral chronic phosphate load and 1,25-

dihydroxyvitamin D independently increase circulating FGF23.85-

89  The rise may therefore be induced by the increasing phos-

phate load due to decreased renal phosphate excretion, or it may 

simply be due to decreased clearance of FGF23. Treatment with 

vitamin D analogs may further increase FGF23, although this can 

not be the only reason because elevated FGF23 levels is also 

observed in hemodialysis patients never treated with vitamin D or 

its analogs.90 PTH can stimulate FGF23 expression directly, or 

indirectly through an increase in 1,25-dihydroxyvitamin D.90-92 

Calcium may also stimulate FGF23 expression although sparse 

knowledge of this mechanism is present at the moment.93 

FGF23 is independently associated with mortality in incident 

and prevalent dialysis patients.94;95 Increased FGF23 is associ-

ated with left ventricular hypertrophy, kidney disease progression 

and vascular disease.96-98 Like the other factors in the mineral 

metabolism, it is unknown whether regulating FGF23 has any 

influence on morbidity and mortality 

 

VITAMIN D TREATMENT IN PATIENTS WITH CHRONIC KIDNEY 

DISEASE 

 

In order to replace the deficiency of 1,25-dihydroxyvitamin D, 

vitamin D compounds are widely used in patients with chronic 

kidney disease 

Calcitriol (1α,25-dihydroxyvitamin D3) is a synthesised drug 

that corresponds to the endogenous active form of vitamin D. 

Alfacalcidol (1α-hydroxyvitamin D3) is classically considered a 

pro-hormone of 1α,25-dihydroxyvitamin D3. Alfacalcidol is con-

verted into 1α,25-dihydroxyvitamin D3 after 25-hydroxylation in 

the liver.99 

Increasing doses of vitamin D analogs are required to sup-

press SHPT with progressing CKD, probably because of a reduc-

tion in the VDR and the CaSR.9 This dose escalation is limited by 

increasing phosphate and calcium levels. New vitamin D analogs 

has been synthesised in order to achieve parathyroid hormone 

suppression without simultaneous hypercalcemia or hyperphos-

phatemia: doxercalciferol (1α-hydroxyvitamin D2) which is 25-

hydroxylated in the liver to become 1,25-dihydroxyvitamin D2, 

paricalcitol (19-nor-1α,25-dihydroxyvitamin D2), maxacalcitol (22-

oxa-1α,25-dihydroxyvitamin D3) and Falecalcitriol (26,27-F6-1,25-

dihydroxyvitamin D2) 

The native form of vitamin D; cholecalciferol (vitamin D3) and 

ergocalciferol (vitamin D2), are increasingly used in daily nephrol-

ogy practice. The presence of the wide distribution of the VDR100 

and 1α-hydroxylase 101-103 in the body, makes a local synthesis 

of 1,25-dihydroxyvitamin D possible, and native vitamin D may be 

needed for paracrine or autocrine functions. 

The active vitamin D analogs used in Denmark are alfacalcidol 

and paricalcitol. Alfacalcidol has been used in Denmark since 

1974.104 Paricalcitol was introduced in Denmark in 2004. Both 

are primarily used because of the classical endocrine actions 

mediated through bone, intestine, kidney and parathyroid glands, 

in order to control the disturbances in mineral metabolism and 

prevent renal osteodystrophy. Whether there is any difference in 

the ability of alfacalcidol and paricalcitol to control the distur-

bances in the mineral metabolism in patients with chronic kidney 

disease are widely unknown, as the comparative data of these 

two analogs are sparse. In order to address this question we 

collaborated with a group of Danish nephrologists from different 

Danish departments to make an intervention study possible.105 

 

Alfacalcidol 

Alfacalcidol is a vitamin D3 hydroxylated at the 1α position. Alfa-

calcidol was synthesised from cholesterol in 1973 and found to be 

an easy and cheap way to produce an 1,25-dihydroxyvitamin D 

derivative.106 At first, alfacalcidol was used in order to increase 

the intestinal calcium absorption in patients with chronic kidney 

disease and thereby improve the skeletal abnormalities.106;107 

Later, the direct suppressive effect of 1,25-dihydroxyvitamin D on 

parathyroid synthesis and secretion was discovered.108-110 

A suppressive effect of alfacalcidol on hyperparathyroidism has 

been demonstrated in CKD 5D patients in controlled oral stud-

ies,111;112 and in uncontrolled long-term intravenous stud-

ies,113 and in CKD 3-5 patients in randomised placebo controlled 

studies of 11 weeks and 18 month.114;115 A concomitant cal-

cium increase was observed in all these studies. 

Alfacalcidol is classically considered as a prohormone to 1,25-

dihydroxyvitamin D, which exerts its effects after 25-

hydroxylation in the liver.  However, comparative studies of alfa-

calcidol and calcitriol indicates that there may be a difference in 

their pharmacokinetics and pharmacodynamics.  

In single dose studies, 4 µg doses of alfacalcidol and calcitriol 

had the same acute suppressive effect on PTH.116 This in spite of 

alfacalcidol leading to lower levels of 1,25-dihydroxyvitamin D3 , 

measured as area under curve (AUC) and maximal concentration 

(Cmax), than calcitriol. This may indicate an effect of alfacalcidol 

even before 25-hydroxylation.104 This is supported by in vitro 

studies showing equal suppression of PTH secretion from bovine 

parathyroid cells in response to alfacalcidol  and 1,25-

dihydroxyvitamin D.117 Indeed, a direct suppressive effect of 

alfacalcidol and doxercalciferol (1α-hydroxyvitamin D2) on PTH 

production in bovine parathyroid cells has been observed, and for 

doxercalciferol this was further explored and found to persist 

after blocking the local 25-hydroxylation. This 25-hydroxylation 

independent effect could probably be applied to alfacalcidol 

too.118 

Opposite, in direct comparative studies of high dose (10µg) al-

facalcidol and calcitriol, a higher potency of calcitriol was found, 

as an increased s-calcium and a significant greater decrease in 
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PTH.119 This could be due to the need of 25-hydroxylation of 

alfacalcidol, which delay the response. Supported by studies in 

osteoblasts from neonatal rats, where the nuclear uptake of 3H-

alfacalcidol were found to be delayed and sustained compared to 

3H-calcitriol.120 

Long-term comparative studies of alfacalcidol and calcitriol 

have been performed in three small randomised clinical trials, 

with conflicting results. El-Rashaid et al.121 found an equal sup-

pression of PTH during intravenous calcitriol and alfacalcidol, 3 µg 

weekly, in 20 hemodialysis patients, in a 3 month cross-over 

study. Similar changes in calcium, phosphate and 1,25-

dihydroxyvitamin D levels were observed in both groups. The 

similar changes in 1,25-dihydroxyvitamin D and PTH supports the  

hypothesis that, alfacalcidol is a pro-drug to calcitriol. This was 

questioned in a recent study of intermittent oral alfacalcidol and 

calcitriol in Asian hemodialysis patients by Kiattisunthorn et 

al..111 Twenty-four weeks of treatment induced equal PTH sup-

pression, and no difference in calcium or phosphate increase. The 

final dose of alfacalcidol was 70% higher than the calcitriol dose. 

But the oral bioavailability of calcitriol is 140% higher than alfacal-

cidol in acute pharmacokinetic studies 116 and Kiattisunthorn et 

al. speculate that the lower maintenance dose could  be due to a 

direct effect of alfacalcidol. It should be emphasised that levels of 

1,25-dihydroxyvitamin D were not measured, and long-term 

pharmacokinetic studies demonstrated an increased AUC for oral 

alfacalcidol after 12 weeks daily treatment, probably because of 

an increased basal 1,25-dihydroxyvitamin D level.122 

The third randomised study by Moe et al. compared alfacalci-

dol and calcitriol in five Canadian hemodialysis patients in a cross-

over study. Six weeks of intervention with oral calcitriol sup-

pressed PTH, whereas no change was observed during oral alfa-

calcidol treatment. The calcium and phosphate levels were un-

Table 1  

 

Observational studies of the influence of vitamin D analogs on cardiovascular morbidity and mortality 

 Population/Treatment Design/Results 

Teng et al. 2003 56 
67,399 HD patients Paricalcitol vs. Calcitriol. US 

Baseline Cox models 

Mortality 16% lower with paricalcitol  

Shoji et al. 2004 57 

242 HD patients Oral alfacalcidol vs. no treatment. Japan  

Baseline Cox models 

CVD mortality 71% lower in treated pt  

HR 0.287 (95% CI 0,127-0,649)  

Total mortality: no difference  

Teng et al. 2005 58 
51,037 HD patients Calcitriol/paricalcitol vs. no treat-

ment. US 

Time dependent Cox, marginal structural model. 

Increased survival in treated HR 0,80 (95% CI 0,76-

0,839 

Tentori et al. 2006 59 

7,731 HD patients Calcitriol/doxercalciferol/paricalcitol 

vs. no and each other. US non profit- dialysis 

Baseline and timedependent cox model. 

Increased mortality in untreated: HR 1.20 (95% CI 

1.10-1.32). 

No difference between treatments in adjusted 

models 

Melamed et al. 2006 29 

1,007 HD patients.Calcitriol vs. no treatment. US 

Baseline and time dependent Cox models 

Decreased all cause mortality in treated: HR 0.75 

(95% CI 0.56-1.00) 

Kalantar-Zadeh et al. 2006 26  

Lee et al. 2007 60 

58,058 HD patientsParicalcitol vs. no treatmentUS 

16,004 HD patients Calcitriol/alfacalcidol vs. no treat-

ment. Latin America 

Baseline and time dependent cox models. 

Increased survival in paricalcitol treated 

Naves-Diaz et al. 2008 61 
16,004 HD patients Calcitriol/alfacalcidol vs. no treat-

ment. Latin America 

Time dependent Cox models. 

Decreased mortality in treated: HR 0.55 (95% CI 

0.49-0.63) 

Kovesdy et al. 2008 62 

520 CKD 3-5 male Calcitriol vs. no treatment. US 

Poisson Regression models 

Decreased mortality in treated RR: 0.35 (95% CI 

0.23-0.54) 

Shoben et al. 2008 63 

1,418 CKD 3-4 Calcitriol vs. no treatment. US  

Baseline dependent Cox model 

Increased survival in treated: HR 0.76 (95% CI 0.60-

0.95) 

Tentori et al. 2008 64 

38,066 HD patients Oral 

paricalcitol/calcitriol/doxercalciferol vs. no treatment. 

(Europe, Japan, North America, Australia, New Zealand) 

Baseline cox model no difference in survival. 

Departments with high versus low rate of vitamin 

D analog use. RR 0.99 (95% CI 0.94-1.04) 

Survival benefit in treated in timevarying cox 

models and marginal structural models 

Shinaberger et al. 2008 65 

34,307 HD patientsParicalcitol vs. no treatment. US 

Baseline cox models. 

Higher paricalcitol/PTH ratio associated with 

lower mortality 

St. Peter et al. 2009 66 
193,830 HD 

patientsCalcitriol/paricalcitol/doxercalciferol vs. no 

treatment. US 

Time-varying Cox model 

All-cause mortality decrease with increasing doses 

and shorter dialysis duration. No effect on cause 

specific mortality 

Sugiura et al. 2009 67 

665 CKD 3-5 Alfacalcidol vs. no treatment. Japan 

Cox proportional analysis 

All-cause mortality no difference after adjustment. 

Decreased CVD events in treated. 

Jean G et al. 2010 68 

648 HD patientsAlfacalcidol vs. no treatment. France 

Cox proportional hazard  

Survival increase in low dose disappeared after 

adjustment 
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changed.123 The lack of effect in the alfacalcidol group was 

probably due to equal low oral dosing in both groups of 0.75 µg 

thrice weekly. Levels of 1,25 dihydroxyvitamin D was not measu-

red 

In a retrospective study published in Spanish, with an English 

abstract,124;125 21 hemodialysis patients were changed from 

intravenously calcitriol treatment into alfacalcidol treatment and 

followed for 15 month. The PTH increased after the conversion 

without any significant changes in s-calcium and with improved s-

phosphate control. This may also be due to a too low dose of 

alfacalcidol, which was reported as 1.5 times the calcitriol dose. 

 

Paricalcitol 

Paricalcitol differs from calcitriol, as it has a D2 side chain and 

lacks the exocyclic C19. Paricalcitol was developed in order to 

posses a suppressive effect on PTH synthesis and parathyroid 

hyperplasia with less activity on bone and intestine, and thereby 

less elevated calcium and phosphate levels. 

In uremic rats, paricalcitol suppressed PTH and PTH mRNA with-

out significant changes in s-calcium or s-phosphate, whereas the 

calcitriol doses leading to the same degree of PTH suppression, at 

the same time induced hypercalcemia and hyperphos-

phatemia.126 In a following study in the uremic rat, paricalcitol 

was found to decrease the parathyroid gland growth, with no 

effect of calcitriol.127 However, a decrease in parathyroid size 

has been described in uremic rats, when treated with calcit-

riol.128 

The efficacy and safety of intravenous paricalcitol was com-

pared to placebo in three phase III studies. In 78 hemodialysis 

patients treatment by forced titration were given for 12 weeks 

after a 4 week long wash out period, and 68% of the paricalcitol 

treated patients experienced a decrease in PTH of more than 

30%. Serum phosphate did not change significantly during the 

study, serum calcium increased significantly in the paricalcitol 

treated group although still inside the normal range.129 Episodes 

of hypercalcemia were associated with marked decreases in 

PTH.130 In a paediatric dialysis population, paricalcitol sup-

pressed PTH more than placebo, without difference in changes of 

calcium, phosphate or calcium-phosphate product.131 Later oral 

paricalcitol was shown to decrease PTH, while calcium and phos-

phate were kept inside the clinical recommended level in  CKD 3-

5D patients.132;133 

The long term efficacy and safety of intravenous paricalcitol 

was evaluated in 164 hemodialysis patients in an open label study 

with follow up for 13 months.134 In this population the mean 

PTH level reached the recommended level (100-300 pg/ml) after 

five month. The calcium and phosphate levels were kept inside 

the appropriate range 

In order to address whether this apparently less hypercalce-

mic and hyperphosphatemic compound did present any differ-

ences to standard therapy in the US, paricalcitol was compared to 

calcitriol. A six fold greater dose of paricalcitol led to significantly 

less increase in phosphate and calcium levels, while the same 

degree of PTH suppression were achieved as after calcitriol, in 

acute intravenous administration in hemodialysis patients.135 

During 32 weeks, paricalcitol and calcitriol were compared in 263 

hemodialysis patients treated with escalating doses. Paricalcitol 

treated achieved a more rapid decrease in PTH. The mean PTH 

were lower at the end of study in the paricalcitol group, although 

no significant difference in the proportion of patients reaching 

>50% decrease in PTH was found. The paricalcitol treated group 

presented less episodes of persistent hypercalcemia and elevated 

Ca x P product 136. Calcitriol and paricalcitol were also compared 

in a small randomized study of 25 hemodialysis patients with 

severe hyperparathyroidism (>50 pmol/ml). Unfortunately 

changes in PTH were not compared between groups, leading to a 

missing conclusion from these data.137 The changes in biochemi-

cal measurements were described in a retrospective study of 59 

patients followed for 12 month before and after changing from 

calcitriol to paricalcitol. A decrease in PTH, calcium, phosphate, 

alkaline phosphatase and episodes of hypercalcemia and hyper-

phosphatemia was found. The observational design has several 

limitations and the presence of changes in phosphate binders 

were not reported.138 

The mechanisms leading to lack of hypercalcemic and hyperphos-

phatemic properties of paricalcitol compared to calcitriol has not 

yet been fully explored. 

In parathyroidectomized rats with dietary calcium and phos-

phorous restriction paricalcitol induced 10 times less increase in 

calcium and phosphate levels than calcitriol. At the same time 

only calcitriol induced an increase in renal urinary calcium levels. 

This points to a decreased bone mineral mobilization by parical-

citol.139 Furthermore, in mice paricalcitol stimulated anabolic 

bone formation more, and bone resorption less, compared to 

calcitriol.140 

In rats with and without renal insufficiency, paricalcitol 

were10 times less active stimulating intestinal calcium and phos-

phate absorption and paricalcitol was less potent in stimulating 

the expression of intestinal vitamin D dependent genes, CaT1, 

calbindin and PMCA1, involved in calcium transport.141;142 This 

may be explained by a diminished induction of the intestinal VDR 

by paricalcitol compared to calcitriol as shown in the uremic 

rat.127 The decrease in VDR may be caused by the simultaneous 

falling endogenous 1,25-dihydroxyvitamin D level, induced by an 

induction of 24-hydroxylase mRNA, which has been shown as a 

response to paricalcitol treatment in rat intestine.127 In a ran-

domized cross-over study of 22 hemodialysis patients, the intesti-

nal calcium absorption was measured by a single tracer method. 

In a 1:3 dosing of calcitriol:paricalcitol, paricalcitol induced a 

lower intestinal calcium absorption. However, the overall intesti-

nal calcium absorption was low, and the authors suggest a gen-

eral defect intestinal calcium absorption in this group of pa-

tients.143 This suggests that, the vitamin D induced 

hypercalcemia may be mediated by other mechanisms than in-

creased intestinal absorption in hemodialysis patients. It could 

however also be a question of dosing 

The pharmacokinetics of paricalcitol does not explain any differ-

ences compared to calcitriol. 

Paricalcitol is found to have nearly the same vitamin D binding 

protein affinity, tissue distribution and circulating half life as 1,25-

dihydroxyvitamin D.144;145 The affinity for VDR is 33% of the 

affinity of 1,25-dihydroxyvitamin D, which should not be enough 

to explain the observed differences.127;139;144 

 

Comparison of alfacalcidol and paricalcitol 

Alfacalcidol has not been compared to paricalcitol in a random-

ised study, before the present. 

Until the present study an observational and two small switch 

studies comparing alfacalcidol and paricalcitol has been reported. 

Their information was the only available knowledge to guide the 

nephrologists, when choosing between the available vitamin D 

analogs in Denmark for treatment of the CKD patient 

In the Swedish observational study, an unselected population 

of 92 hemodialysis patients was treated with paricalcitol and 

efficacy and safety was registered. Ninety-three% were former 

treated with alfacalcidol. A significant decrease in PTH was found 
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especially in the group with elevated PTH (>300pg/ml). Calcium 

levels increased significantly in the patients with elevated PTH, 

while phosphate levels were unchanged. It is unknown whether 

improved dose titration of alfacalcidol  would have reached com-

parable results.146 

Two small switch studies published as conference abstracts 

compared alfacalcidol and paricalcitol. In the first study six hemo-

dialysis patients with uncontrolled hyperparathyroidism were 

treated with intravenous paricalcitol for 3 months and afterwards 

they were converted to alfacalcidol.  The level of PTH declined 

significantly after 3 month of paricalcitol treatment compared to 

the level after 3 month of alfacalcidol treatment. The level of s-

phosphate and s-calcium remained unchanged.147 We described 

an observational study of 20 hemodialysis patients with moder-

ate-severe secondary hyperparathyroidism uncontrolled by alfa-

calcidol treatment. After a minimum of 18 month treatment with 

alfacalcidol they were converted to paricalcitol treatment and 

data was collected 18 month after treatment switch. Paricalcitol 

decreased iPTH significantly. This effect was probably mediated 

through a normalization of ionized s-calcium, as ionized s-calcium 

had decreased while iPTH increased during the alfacalcidol treat-

ment. S-phosphate remained unchanged although still elevated 

during paricalcitol treatment.148 Both of these studies also lack 

the information of whether optimisation of alfacalcidol treatment 

had reached the same results. 

These studies generates the hypothesis that paricalcitol may be 

superior to alfacalcidol concerning the control of disturbances in 

the mineral metabolism. However, the observational nature of 

these studies with lack of randomisation, comparison during the 

same time, and scheduled treatment makes them unable to 

answer whether such a difference exists. 

 

AIM OF THE STUDY  

In order to compare the vitamin D analogs available for treatment 

of secondary hyperparathyroidism in Denmark, a randomised 

cross-over multicenter trial was set up in a collaboration of eight 

Danish nephrology departments. The study design and methods 

are published in Paper I.105 

The primary objective of this study was to evaluate the ability 

of paricalcitol and alfacalcidol to suppress secondary hyperpara-

thyroidism in hemodialysis patients, while keeping phosphate and 

calcium inside the acceptable range. Paper II (accepted for publi-

cation in Kidney International) 

In a substudy the arterial stiffness was assessed in order to 

address the influence of alfacalcidol and paricalcitol on this car-

diovascular risk parameter. Data presented in this thesis 

During the intervention study blood was frozen in a bank for 

later analysis. FGF23 entered the field as an important regulator 

of the phosphate metabolism and predictor of mortality while the 

study was running. The influence of alfacalcidol and paricalcitol 

on FGF23 was explored. Paper III (submitted) 

 

METHODS 

STUDY DESIGN 

 

The design of the study is thoroughly described in paper I. It 

will be briefly described here and some aspects will be discussed. 

 

Participants 

Eligible patients represented the population of chronic hemo-

dialysis patients, candidates for treatment with vitamin D analogs 

according to the present guidelines.48 Therefore an iPTH > 350 

pg/ml, p-phosphate < 1.8mmol/l and p-ionised calcium < 1.25 

mmol/l were inclusion criterions. A maximal dose of 1600 mg 

calcium-containing phosphate-binders a day was allowed. 

 

 
 

Figure 1 
Treatment periods and treatment arms 

 

Intervention 

86 patients were randomised into two treatment arms of the 

cross-over study after a minimum of 6 weeks wash out or directly 

if former untreated (4 patients) Figure 1 

During 16 weeks of treatment the dose of alfacalcidol and 

paricalcitol was increased 50% by forced titration every second 

week. The dose was increased until PTH was suppressed below 

150 pg/ml, or p-phosphate increased above 1.80 mmol/l, or p-

ionised calcium increased above 1.30 mmol/l. 

The forced titration was chosen in order to reach the maximal 

possible suppression of the hyperparathyroidism, while keeping 

the calcium level and phosphate level inside the target range.  

The intervention period was 16 weeks in this study based on 

earlier interventional studies showing a plateau of PTH at this 

time when treated with paricalcitol149 or alfacalcidol.150 How-

ever, in a study of dialysis patients with PTH >600 pg/ml and 

resistance to calcitriol, switching to paricalcitol decreased PTH 

levels after 6 month and even further after 12 and 16 month.151 

It cannot be rejected that, a further decrease in PTH levels would 

be present if the intervention was prolonged. 

The initial dose ratio was alfacalcidol:paricalcitol in 1:3. According 

to a conversion study, where hemodialysis patients with PTH 

levels higher than 600 pg/ml during calcitriol treatment had the 

smoothest PTH control without increase in calcium after switch to 

paricalcitol in 1:3 dose ratio.151 It may be questioned whether 

enough calcitriol was given prior to conversion, as this was not 

reported. However, this was the recommended conversion ratio, 

when our study was designed.  

This assumes an equal potency of alfacalcidol and calcitriol. 

An acute study of intravenously 4 µg116 and long-term study with 

maintenance dose 1 µg iv thrice weekly121 found equal PTH 

suppression by alfacalcidol and calcitriol, with no difference in 

calcium and phosphate levels. This supports an equal potency of 

alfacalcidol and calcitriol. 

The discussion of the conversion ratio is omitted by the 

forced titration where dosages were increased until the treat-

ment goal was reached. 

 

Blinding and randomisation 

The study was un-blinded. The many different doses (29 possible 

doses) made it unreachable to blind the study medication. The 

endpoints was laboratory data and therefore not prone to bias. 
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But there could be a bias concerning concomitant treatment in an 

un-blinded design. Obvious differences could be: Different use of 

phosphate-binders, this was registered. Different degree of die-

tary advice and dialysis dosage, this was not registered. Calcium 

in the dialysate, this was fixed at 1.25 mmol/l. Calcimimetics 

usage, which was not allowed. 

The patients were randomised by concealed allocation using 

opaque sealed envelopes that was opened consecutively. Ran-

domisation in blocks of ten 1:1, secured an equal distribution at 

each centre. 

 

Outcome 

The primary end point was the proportion of patients reaching 

≥30% reduction in PTH from baseline until the last four weeks of 

treatment. This endpoint has been used in other studies evaluat-

ing the efficacy of vitamin D analogs.129;131;133;135;152;153  

This dichotomous outcome reduces the information from the 

present data. Therefore the numerical changes and the percent-

age changes were also compared. Furthermore, the proportion 

reaching a suppression of iPTH below 300 pg/ml, which were the 

target in the K/DOQI guidelines, was analysed.47 

The data were analysed with baseline levels as covariates and 

there was significant treatment x baseline interaction. Therefore 

the data was also described in patients with high baseline; PTH 

>600 pg/ml and low baseline; PTH <600 pg/ml. This separation of 

data is interesting as the acceptance of an even higher PTH level 

2-9 times the upper normal limit is present in the current KDIGO 

guidelines, calling for a less aggressive dosing approach in the 

patients with PTH <600 pg/ml.2 The wider PTH interval is estab-

lished because PTH in recent studies is not as predictive of low 

and high bone turnover as in older studies.154  Perhaps because 

of different PTH assays, as used in the present study or because 

of the influence from new treatment modalities. Furthermore, 

the epidemiological studies points to higher, although varying, 

inflection points above which PTH is associated with decreased 

survival.33 

 

Sample size 

117 patients were planned to be included based on former stud-

ies, where the proportion of patients achieving ≥ 30% reduction in 

PTH in the last four weeks of the treatment period was 50% dur-

ing alfacalcidol treatment and 68% during paricalcitol treat-

ment.129;150 Reaching a power of 80% to detect a significant 

difference (P = 0.05, McNemars test). The power calculation was 

supervised by Eastern Danish Research Forum for Health Sci-

ences. 

Patients were recruited for 30 month. The trial was stopped 

before reaching the 117 patients because of lack of eligible pa-

tients. No interim analysis was performed, and the centres were 

prompted to do a final effort to recruit participants before the 

final date of inclusion. A number of 86 patients were included. 

Because of a period effect in the PTH level, and drop outs, only 

data from 80 patients fulfilling the first treatment period were 

analysed for the effect on hyperparathyroidism. The power to 

detect a difference in PTH reduction of 10%, 20% and 30% be-

tween alfacalcidol and paricalcitol were calculated for the 

achieved sample size. 

In the present trial, the alfacalcidol group (n = 38) had an av-

erage decrease in PTH (SD) 53.1% (33.2) and the paricalcitol group 

(n = 42) had an average decrease in PTH (SD) 63.8% (23.1). A two-

tail test (α = 0.05) gives a power of 33% to detect a 10% differ-

ence, a power of 86% to detect a 20% difference and a power of 

99.6 % to detect a 30% difference between groups. 

In order to describe the ability of the present study to detect 

any differences in changes of calcium and phosphate between 

alfacalcidol and paricalcitol a calculation of the power to detect 

differences of 5% and 10% were performed. These differences did 

not give a power of 80% concerning the phosphate changes, and 

the power to detect a difference of 20% was also determined for 

phosphate changes. 

A calcium increase of 5% and 10% is detected with a power of 

77.5% and 99.9% respectively, based on the observed increase in 

ionised calcium in alfacalcidol 10.4% (9.0) and paricalcitol 11.1% 

(7.2) in the present study. 

A phosphate increase of 5%, 10% and 20% is detected with a 

power of 11%, 28% and 79% respectively, based on the observed 

increase in phosphate levels of 15.1% (29.2) in alfacalcidol treated 

and 13.4% (34.8) in paricalcitol treated in the present study. 

 

BIOCHEMICAL MEASUREMENTS 

 

All blood samples were drawn from the line of the dialyzer prior 

to hemodialysis 

 

Parathyroid hormone 

The PTH 1-84 is stored in secretory granules together with inac-

tive fragments before secretion. The half-life of PTH 1-84 is 2-4 

minutes. Both before and after secretion PTH 1-84 are cleaved 

into C-terminal, mid-region and N-terminal fragments, which are 

metabolised in the liver and the kidney. Therefore both PTH 1-84 

and PTH fragments are circulating in the blood 

The level of parathyroid hormone is measured by immunoas-

says. Three generations of PTH assays exist. 

The first generation assays were radioimmunoassays and con-

sisted of an antibody directed against one sequence of PTH, most 

of them against the C-terminal region. These assays measured 

also the circulating C-terminal fragments. The C-terminal frag-

ments have a longer half life than PTH 1-84, are eliminated by the 

kidney and accumulate in CKD patients.155 Therefore, the first 

generation assay measured high levels of PTH in CKD and are no 

longer used for clinical purposes. 

The analysis methods most widely used to measure PTH is the 

second generation methods, also called the intact-PTH assays. It is 

two-site sandwich immunoassays where a captured antibody 

directed against the N-terminal region of PTH and a labelled 

antibody directed against the C-terminal region of PTH binds to 

PTH 1-84. However, these assays also detect large C-terminal 

fragments, a mixture of four PTH fragments similar in size to PTH 

7-84.156 

The third generation assays are also two-site immunoassays, 

but detects only the full length PTH 1-84 (whole-PTH or total-PTH) 

with a C-terminal antibody directed against the very first amino 

acids 1-4. However, a new PTH, the amino-PTH (N-PTH) is recently 

discovered. N-PTH differs from PTH 1-84 in the 15-20 region, 

perhaps by a phosphorylated serine residue. N-PTH are measured 

by the third generation and some of the second generations 

methods.157 

The K/DOQI guidelines were the clinical guidelines when writ-

ing the primary protocol of the study and recommended to main-

tain the iPTH inside the interval of 150-300 pg/ml using a second 

generation assay.47 This was derived from studies that compared 

histomorphometric data in dialysis patients with iPTH measure-

ments by a second generation assay, the Allegro assay.15 The 

Allegro assay is not currently available. In order to evaluate the 

other available PTH assays, a study compared the Allegro assay 

with 14 other commercial assays, including the Elecsys PTH (used 
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by four study sites) and Immulite 2000-intact PTH (used by 3 

study sites), and found a difference in iPTH by a factor >2.5  be-

tween the assays.158 As the different immunoassays are gener-

ally highly correlated Souberbielle et al has recently proposed a 

correction factor for some of the common used measurement 

kids, including the methods used in this study.159 

The reason for the intermethod discrepancies may be found 

in the mixture of different molecules that make up the circulating 

PTH. C-terminal fragments are not detected by the second gen-

eration assays, but N-terminal truncated PTH fragments and 

amino-PTH (N-PTH) are both detected in different degrees by the 

second generation assays.12;160 Furthermore, there is no inter-

national standard against which the assays are calibrated. 

The PTH results are also under influence from other factors. 

PTH differs between plasma and serum, and depends on how the 

samples are handled preanalytically.161  In addition, PTH fluctu-

ates in the individual as it is secreted from the parathyroid glands 

in seasonal, circadian and ultradian pulsatile rhythm.162 

The many factors influencing the result of a PTH measure-

ment calls for standardization of the sample collection, processing 

and use of assay in every day clinic. As the third generation assay 

has not been shown to improve the predictive value of  bone 

disease, and are not widely spread at the moment, the current 

KDIGO guidelines recommend using the second generation as-

say.2 

The level of parathyroid hormone was measured by the par-

ticipating sites standard routine analysis. Three different analysis 

methods were used. Table 2. The same analysis method was used 

in each site during the study. The block randomisation and cross-

over design eliminates the concerns regarding different types of 

assays and sample handling a each site 

 

Calcium 

Calcium was measured consecutively at the local laboratory by 

ion-selective electrodes. The ionized calcium is the fraction of 

circulating calcium important for physiologic processes. As it is 

dependent on pH, we measured ionized p-calcium corrected to 

pH 7.4. 

 

Phosphate 

Phosphate was measured consecutively at the local laboratories. 

The ammonium-molybdat method was applied. Phosphate reacts 

with ammonium-molybdat to form phosphomolybdat in the 

presence of sulphuric acid. This can be measured by colorimetric 

method 

 

Alkaline phosphatase 

Alkaline phosphatase was measured at the local laboratories at 

the participating centres by colorimetric analysis. P-

nitrophenylphosphate is separated by alkaline phosphatase into 

phosphate and p-nitrophenol in the presence of zinc and magne-

sium ions. The light absorption of p-nitrophenol is direct propor-

tional with the activity of alkaline phosphatase. 

 

25 hydroxyvitamin D 

The level of 25 hydroxyvitamin D was measured at the laboratory 

of each participating centre. This led to analysis performed by 

four different methods. Two types of automated immunoassay 

[trial centre according to table 2]: Diasorin Liaison Total [04, 05, 

07], IDS iSYS [10]. Two direct detection methods: HPLC [08], LC-

MS/MS [03, 06, 09]. 

The results from different assays at different laboratories has 

been shown to differ up to 38%.163 Until recently a lack of a 

common calibrator has hindered the standardization of the avail-

able methods. For the immunoassays over or under-estimation of 

vitamin D2, cross-reactivity with other vitamin D metabolites and 

matrix effects may influence on the result.164 

The same method was used for the whole period at each trial 

centre and the level of 25 hydroxyvitamin D were considered as 

the sum of vitamin D2 and vitamin D3 where both were stated. 

 

1,25 dihydroxyvitamin D 

The 1,25-dihydroxyvitamin D level was measured by a complete 

assay with monoclonal immunoextraction followed by quantita-

tion by radioimmunoassay. AA-54F2 IDS Ltd, UK (normal range 

51-177 pmol/l). This analysis was performed consecutively in 

included patients at one centre [05]. 

 

FGF23 

FGF23 was measured in blood serum samples stored in a freezer 

at the beginning and at the end of each treatment period. Sam-

ples from 57 participants were available for analysis. 

There are currently two types of FGF23 assays. The C-terminal 

assay recognizes two epitopes in the C-terminal end of FGF23 and 

capture both intact FGF23 and its C-terminal fragment.165 In 

contrast, the intact assay binds two epitopes placed on each side 

of the cleavage site166 and therefore only measures the intact 

FGF23 molecule. Several studies have shown high correlation 

between these assays in CKD and at least in peritoneal dialysis 

patients all circulating FGF23 is intact.166-169  At the moment 

both assays seems appropriate for use in CKD. The intact assay 

was used in the present study 

 

PULSE-WAVE PARAMETERS 

 

Pulse wave velocity and pulse wave morphology was assessed at 

the beginning and at the end of each study period. 

The measurement was performed by applanation tonometry. 

A pencil shaped high-fidelity micromanometer registers the intra-

arterial pulse-wave, when applied over a peripheral artery (a. 

radialis, a. carotis and a. femoralis). 

Ten seconds record of the arterial pressure in a. radialis was 

transformed to a central aortic wave form. This was done by the 

general transfer function in a validated software program; 

SphygmoCor® (version 8.0, AtCor Medical, Sydney, Australia).  

The measurements were calibrated by the brachial blood pres-

sure. From the central blood pressure curve the augmentation 

index (AIx) was calculated by the software. AIx is a measurement 

of the pulse wave amplification due to peripheral reflexion of the 

pulse wave. AIx is calculated as the difference between the first 

and second systolic peak as a percentage of the central pulse 

pressure (difference between central systolic and diastolic pres-

sure). 

The measurement of aortic pulse wave velocity was done by 

measurement of pressure wave forms in a. carotis and a. femor-

alis and a simultaneous electrocardiogram (ECG). The transit time 

was calculated as the time between the R-spike in the ECG and 

the arrival of the foot of the pulse wave (intersecting tangent) at 

the peripheral recording sites. The travel distance was measured 

by subtracting the carotid-suprasternal notch distance from the 

suprasternal notch-femoral distance.170 

All measurements were done in duplicate. The sphygmocor 

software provides a quality control of the recorded pressure 
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Tabel 2 
Parathyroid hormone  assays used in the participating centres  

Trial centre: Holbæk: 03, Holstebro: 04, Roskilde: 05, Viborg: 06, Aalborg: 07,  

Odense: 08, Skejby: 09, Esbjerg: 10. (Trial centre 01 and 02 did not recruit any 

participants). Reference ranges from Product Summary. The assay results reported in 

SI units were converted into metric units according to K/DOQI guidelines 47:  

pmol/ml = pg/ml x 0.11 

 

waveforms. If these control criteria’s was not met the measure-

ment was discarded and replaced by a new measurement.171 

A standard operating procedure was thoroughly described, in 

order to standardize the assessment in the three participating 

centres [05, 07, 08] and the assessors were trained at each par-

ticipating site. 

Examinations were performed before hemodialysis on the 

first day of dialysis in the week. The measurements were per-

formed after ten minutes rest in a calm environment and at a 

constant room temperature. The participants were not allowed to 

speak or sleep during the examination. The patient was not al-

lowed to eat, drink or smoke three hours before and consume 

any alcoholic beverage ten hours before the examination. It is 

well known that  the examination conditions influences the 

hemodynamic parameters.172  Therefore, the measurements 

were performed according to the present guidelines.173 

 

STATISTICS 

 

Continuous data are described as mean (SD), and for differences 

mean (SEM), if normal distributed, and median (range) if not 

normal distributed and for very small groups. Paired t-test for 

normal distributed and Wilcoxon test for not normal distributed 

data were used for comparing changes before and after treat-

ment within groups. Unpaired t-test for normal distributed and 

Mann-Whitney test for not normal distributed data compared 

changes between groups. Proportions were compared by 

Fischer’s Exact Test. All tests were two-sided. A P-value <0.05 was 

considered statistical significant 

Correlations were described by Pearson correlation coeffi-

cient. General linear models and multiple logistic regression mod-

els were used for the analyses of differences between effects of 

treatment by alfacalcidol and paricalcitol. AUC for receiver oper-

ated curves was compared with the null-hypothesis: AUC = 0.50 

Statistical analysis was performed using SPSS® Statistics 17.0 

(SPSS Inc., Chicago, IL) software and SAS 9.1 (SAS Institute Inc., 

Cary, BC, USA) 

The presented studies are in compliance with the Helsinki 

Declaration of 1975, revised 1983, and approved by the Danish 

National Committee on Biomedical Research Ethics (SJ-27), the 

Danish Medicines Agency (EudraCT: 2006-005981-37), Danish 

Data Protection Agency (2007-41-0503) and registered in Clinical-

Trials.gov (NCT004695) 

 

RESULTS AND DISCUSSION 

STUDY POPULATION 

 

The randomised population was a representative cohort of the 

Danish dialysis population, evenly distributed across renal diagno-

sis. Diabetes was present in 17% of the patients compared to 22% 

in incident Danish patients with end stage renal disease.1 A high 

proportion of males; 64% corresponds to the proportion reported 

at dialysis initiation.174 The mean age of the studied patients was 

64.5 years (SD 14.5) and the median time of dialysis was 37 

month (range 3-262 month) at randomisation, this corresponds to 

a mean age in the Danish hemodialysis population of 64.7 years 

(SD 14.9) at the first of January 2011 (unpublished data, personal 

communication by James Heaf MD DMSc, Danish Nephrology 

Registry) 

The study population may be in better condition than the 

overall hemodialysis population, as they had a slightly higher 

haemoglobin 7.31mM (SD 0.76) vs. 7.19 mM (SD 2.27)  and albu-

min 40.2 g/l (SD 3.7) vs. 38.8 g/l (SD 4.8).1 Not surprising, as the 

patients were excluded if the expected survival was less than 12 

month 

 

SUPPRESSION OF SECONDARY HYPERPARATHYROIDISM 

 

The analysis of the cross-over data for the percent changes in 

PTH, revealed a significant period effect (t = -3.946; P <0.001). No 

treatment-period interaction was found (t = 1.297; P = 0.199). The 

wash out interval between period 1 and 2 was insufficient. Base-

line PTH in period 1 (552 pg/ml (SD 202)) was higher than period 

2 (453 pg/ml (SD 249)); (P = 0.01). PTH levels before and after 

second wash out period was significantly correlated (r = 0.398; P = 

0.001). A more pronounced suppression of PTH after treatment 

period 1 (219 pg/ml (SD 187)), than in the everyday clinic (P 

<0.001) illustrated by PTH before wash out period 1 (317 pg/ml 

(SD 155)) probably prevented the PTH increase during the second 

wash out period. A longer wash out period would be recom-

mended for future studies. The half life of 1,25-dihydroxyvitamin 

D (assumed to reflect  the half life of alfacalcidol) is 36 hours and 

paricalcitol 13-30 hours,116;144 therefore, the period effect is 

not mediated through a direct vitamin D analog effect but a pro-

longed biologic effect. A possible mechanism may be an up-

regulation of the vitamin D receptor175;176 or the calcium sens-

ing receptor177 by vitamin D analogs withholding the PTH sup-

pression by increased sensibility to endogenous vitamin D and 

calcium. 

Because of the period effect, the cross-over data were not ac-

cessible for further analysis. 

Both vitamin D analogs suppressed secondary hyperparathy-

roidism significantly during both treatment periods. We could not 

detect any statistically significant difference in % changes be-

tween groups, and there were not any statistically significant 

difference in the proportion of patients reaching a 30% reduction 

in PTH. Table 3 and 4. 

Analysis of data from period 2 confirmed the data from pe-

riod 1. As described this study should have enough power to 

detect a difference of 20% in PTH reduction between groups. A 

larger sample size may have detected a significant difference 

between groups, but probably of less than 20% PTH reduction. 
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Tabel 3 
Changes in PTH during each period of alfacalcidol and paricalcitol treatment 

 

 

 
 

Tabel 4 
Number of patients reaching treatment goal during each period of alfacalcidol and 

paricalcitol treatment 

 

 

 

CHANGES IN CALCIUM AND PHOSPHATE LEVELS 

 

The overall equal PTH response was accompanied by equal % 

changes in calcium (P = 0.758) and phosphate (P = 0.819). Both 

groups increased ionised calcium (alfacalcidol: 9.3% (SEM 1.5); P 

<0.001 and paricalcitol: 9.9% (SEM 1.1); P <0.001) and phosphate 

(alfacalcidol: 15.1% (SEM 4.7); P = 0.028 and paricalcitol: 13.4% 

(SEM 5.4); P = 0.023). Mean ionised calcium increased just above 

the recommended target range (≤1.25 mmol/l) in both groups 

(1.26 mmol/l (SD 0.09)). However, according to the protocol, the 

upper limit for ionised calcium was 1.35 mmol/l in order to leave 

room for dose adjustment. Phosphate final levels were kept in-

side recommended target range (<1.80 mmol/l) in both groups: 

Alfacalcidol 1.67 mmol/l (SD 0.32 mmol/l), and paricalcitol 1.58 

mmol/l (SD 0.34 mmol/l)). There were no differences in incidence 

of hypercalcemic and hyperphosphatemic episodes. 

These results points to an equal ability of alfacalcidol and parical-

citol to control secondary hyperparathyroidism, with no differ-

ence in their adverse effects on calcium and phosphate levels. 

We did not find any major differences in phosphate binder 

use, except for an increased prevalence of decreased sevelamer 

usage in the alfacalcidol group, which could disguise a lower 

phosphate level in the alfacalcidol group. Calcimimetics were not 

allowed. Dialysate calcium concentration was fixed at 1.25 

mmol/l. The dialysis dose was only measured by urea reduction 

rate, where no difference in changes was present, and dietary 

intervention was not assessed. Dialysis dose and dietary interven-

tion could influence the present results, as the study was open 

label. 

Alfacalcidol is classically considered a pro-drug to calcitriol ac-

tivated by 25-hydroxylation in the liver.99 On this background, 

the present study was expected to show results similar to the 

study by Sprague et al.149 comparing calcitriol and paricalcitol in 

north-American-European hemodialysis patients (n = 263). The 

proportion of subjects reaching a PTH suppression of 50% were 

analysed by Sprague et al., and like in the present study, no dif-

ference between groups were found. 

A reduced incidence of hypercalcemia and/or elevated Ca x P 

for at least two consecutive blood draws and a reduced incidence 

of hypercalcemia for two blood draws and/or Ca x P for four 

blood draws were found in the paricalcitol treated group by Spra-

gue et al. Analysing our data for the same composite end points 

revealed no difference between groups Table 5. 

This difference may be due to a type 2 error in the present 

study (failing to reject the null hypothesis, where a difference 

does exist), with fewer participants than in the study by Sprague 

et al., and half the interventional time period. It may be due to a 

type 1 error (rejecting the null hypothesis, when it is true) when 

analysing this composite end point by Sprague et al. Finally, it 

may be due to a difference in the effect of alfacalcidol and calcit-

riol, which is a possibility, as discussed in section 1.2.1. 

As demonstrated in Table 4 more than 60% did not reach tar-

get concerning the combined end point of ionised calcium, phos-

phate and PTH after 16 weeks. Elevated calcium and PTH coex-

isted in 55% of the patients. This could probably be improved by 

additional treatment with calcimimetics which were not allowed 

in the present study.178;179. 

 

 
 

Tabel 5 
Number of patients with prolonged hypercalcemia or elevated Ca x P product during 

alfacalcidol or paricalcitol treatment in period 1. 

 

 

 

RESPONSE TO VITAMIN D ANALOGS ACCORDING TO SEVERITY OF 

HYPERPARATHYROIDISM 

 

The mean PTH during the last four weeks of treatment was ana-

lysed with baseline PTH as covariate and a significant baseline 

PTH x treatment interaction was found (P = 0.012). Which means, 

the treatment response depended on baseline PTH in the parical-

citol group, whereas alfacalcidol suppressed PTH across all base-

line PTH values. This interaction was also found for numerical 

changes in PTH (P = 0.012), percentage changes of PTH (P = 0.036) 

as for number of patients reaching a 30% decrease in PTH (P = 

0.047). Mean PTH during the last four weeks of period 2 were 

analysed in order to describe the reproducibility of this interac-

tion. The same tendency was found, although not statistically 

significant (P = 0.10). However, as there were only 71 patients in 

this analysis a decreased power could explain the lack of signifi-

cance. 

The differentiated paricalcitol response is in accordance with 

a switch study from ordinary calcitriol to scheduled paricalcitol for 

6 to 12 month in hemodialysis patients with SHPT. The baseline 

PTH level and size of ultrasound examined parathyroid glands 

were independently associated with response to paricalcitol 

treatment. The patients with the largest parathyroid glands and 

highest PTH responded least to paricalcitol treatment.180. Oppo-

site, Llach et al.151 converted hemodialysis patients with  
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Figure 2 
iPTH and ionised calcium changes during period 1 in patients with baseline iPTH >600 

pg/ml.§; unpaired t-test, P <0.05 

 

 
 

Figure 3  
iPTH and phosphate changes during period 1 in patients with baseline 

iPTH>600pg/ml.§; unpaired t-test, P<0.05. 

 

 

calcitriol resistant hyperparathyroidism to scheduled paricalcitol 

treatment. A significant PTH decrease was found in both moder-

ate (600 pg/ml < PTH > 800 pg/ml) and severe (PTH >800 pg/ml) 

hyperparathyroidism. In addition, Coyne et al.132 showed a con-

sistent effect of oral paricalcitol across baseline PTH severity in 

CKD stage 3-4 patients in a placebo controlled study. 

In the present study, the differentiated PTH response to pari-

calcitol across baseline PTH levels may be largely due to the pro-

nounced suppression of PTH at the low baseline levels. Actually 

48% of the paricalcitol treated and 29% of the alfacalcidol treated 

patients reached a PTH level less than 150 pg/ml (P = 0.110). The 

concern about increased risk of adynamic bone disease and in-

creased mortality at low PTH levels would make the clinician keep 

the PTH above this level.26;33;44;181 It could be speculated that 

this interaction was not found if dosing schedule had kept the 

desired PTH between 150-300 pg/ml. 

The observed difference in the effect of alfacalcidol and pari-

calcitol on PTH could be due to differences in calcium levels. We 

did not find any statistically significant difference between the 

calcium levels in the alfacalcidol group compared to the parical-

citol group, when groups were separated according to baseline 

PTH. Although, a tendency towards a higher ionised calcium was 

observed in the alfacalcidol treated patients with high baseline 

PTH. Figure 2 

Increased phosphate stimulates PTH secretion by binding cal-

cium, thereby decreasing calcium, and by stabilising PTH 

mRNA.182 The presence of a phosphate receptor has not been 

demonstrated in human at the moment. The changes in PTH and 

phosphate in patients with high baseline PTH is presented in 

Figure 3. Except from the final visit, an inverse relation between 

PTH and phosphate appears, reflecting the vitamin D induced 

phosphate increase, concomitant with the PTH suppression, 

overruling the physiologic phosphate-PTH regulation. 

Only some of the possible differences in the direct effect of al-

facalcidol and paricalcitol on the parathyroid gland have been 

explored. Alfacalcidol binds to the vitamin D receptor, with only 

0.4% of the affinity of calcitriol.183 The affinity for paricalcitol is 

33% of calcitriol.127 A direct suppressive effect of alfacalcidol and 

doxercalciferol (1α-hydroxyvitamin D2) on PTH production in 

bovine parathyroid cells has been observed, and for doxercalcif-

erol this was further explored and found to persist after blocking 

the local 1α-hydroxylase.118 Given the low affinity for the VDR a 

suppressive mechanism by alfacalcidol may be possible if alfacal-

cidol is accumulated intracellular in the parathyroid cells. This 

accumulation is possible indeed as, paricalcitol has the same 

affinity for vitamin D binding protein (VDBP) as calcitriol, whereas 

alfacalcidol has a low affinity for VDBP, and alfacalcidol may 

therefore be rapidly taken up by peripheral tissues, including the 

parathyroid gland, before 25 hydroxylation by the liver.145 An-

other mechanism was proposed when Panda et al.184 demon-

strated a suppressive effect of cholecalciferol on parathyroid 

hyperplasia in VDR null mice, whereas parathyroid glands 

enlarged in VDR null and 1α-hydroxylase null mice. This argues for 

the presence of a non-VDR receptor which could theoretically be 

activated by 1α-hydroxylated vitamin D lacking the 25 hydroxyla-

tion, such as alfacalcidol.  Alfacalcidol and paricalcitol may induce 

different conformational changes in VDR when binding, differ in 

their interaction with co-repressor and co-activators required for 

VDR function,185 differ in their binding to intracellular proteins 

(i.e. Hsc-70, Bag-1) and differ in their induction of catabolic en-

zymes, i.e. 24-hydroxylase, affecting the local metabolism of 

active vitamin D.145 Vitamin D may induce rapid non-genomic 

responses through interaction with the cell membrane. The iden-

tity of a vitamin D membrane receptor is debated,7 and the rele-

vance of the rapid response are not clarified, but may be a media-

tor of differentiated effects of the vitamin D analogs.145 

 

TIME UNTIL SUPPRESSION OF SECONDARY HYPERPARATHYROID-

ISM 

 

Both in the first period of the cross-over population (n = 71) and 

when comparing the groups going through period 1 (n = 80), it 

was found that paricalcitol decreased PTH faster than alfacalcidol 

and reached a 30% reduction (P = 0.034) or a PTH level beneath 

300 pg/ml (P = 0.011), four and six weeks before the alfacalcidol 

treated patients. This difference was not found in the second 

period of the cross-over study, probably because the baseline 

level (week 28) was lower than the baseline level in the first pe-

riod (week 6). The difference could be based on not equipotent 

dosing during titration.  It is unknown whether a difference of 

four to six weeks before reaching the goal has any clinical impor-

tance for the long-term prognosis regarding bone fracture, and 

the cardiovascular disease risk apparently associated with ele-
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vated PTH.24;65;186  In SHPT the parathyroid cells proliferate, 

initially diffuse polyclonally hyperplasia, turning into nodular 

clonal proliferation in long standing, severe hyperparathyroid-

ism.187 In the clonal stage the VDR density is decreased188 and 

responds less well to vitamin D treatment.189  Early administra-

tion of calcitriol prevents the development of hyperplasia, 

whereas treatment of existing hyperplasia can not reverse the 

condition in uremic rats.128  Whether a rapid reduction in SHPT is 

important in preventing further progression of the parathyroid 

hyperplasia, is unknown. 

 

CHANGES IN PULSE WAVE VELOCITY AND MORPHOLOGY 

 

Pulse wave velocity (PWV) and augmentation index (AIx) are both 

strong predictors of cardiovascular mortality in hemodialysis 

patients.190;191 These are related to arterial calcification esti-

mated by ultrasound in hemodialysis patients,192 and the pres-

ence of coronary artery calcification in coronary angiography in 

CKD patients.193 

Levels of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D in 

adult hemodialysis patients and levels of 1,25-dihydroxyvitamin D 

in adult CKD 1-5 patients are negatively correlated with pulse 

wave velocity.194;195 AIx is negatively correlated with 1,25-

dihydroxyvitamin D in CKD 2-4 patients.196 In children on dialysis 

no relation between PWV and levels of 25-hydroxyvitamin D and 

1,25-dihydroxyvitamin D was found. Meanwhile a U-shaped rela-

tion between 1,25-dihydroxyvitamin D, and arterial thickness and 

cardiac calcification was found in the same study.197 These ab-

normalities probably precede changes in PWV and AIx. Therefore 

it seems possible that, vitamin D or its analogs may influence on 

PWV and AIx 

In order to participate in the exploration of a possible im-

proved  cardiovascular risk profile by vitamin D analogs, we initi-

ated a substudy where aortic PWV and AIx was measured at the 

beginning and at the end of treatment. The substudy was planned 

to include 30 patients based on recently published data showing 

that 10 patients in each intervention-group should be enough to 

detect a difference in 1 m/s in aortic PWV, and 3 patients in each 

group to detect a difference in AIx of 10%, with a significance 

level of 5% and a power of 80%.198 

Unfortunately, only ten patients completed the first treat-

ment period (alfacalcidol=3; paricalcitol=7) and six patients com-

pleted both treatment periods (alfacalcidol=2; paricalcitol=4). 

There was no overall significant changes in AIx or PWV when 

comparing baseline with final value for all vitamin D analog 

treated (Wilcoxon signed rank test). The changes in each group 

during period 1 are shown in Table 6. 

A statistical significant difference in % changes in PWV was 

found on the background of an increase in the alfacalcidol treated 

group and a decrease in the paricalcitol treated group.  

Although the differences between treatments in PWV are in-

teresting it is only hypothesis generating because of sparse data. 

It has been shown that patients with calcification progress over 

time, whereas patients without calcification are less prone to 

progress.199 Although no statistical significant difference was 

found in baseline PWV, the patients in the alfacalcidol-group  

 

 
 

Tabel  6 
Changes in hemodynamic parameters and mineral metabolism during period 1 in the 

subgroup where pulse wave morphology and pulse wave velocity were measured.  

Comparison between groups. Mann-Whitney test; *, p<0.05 

Comparison within groups. Wilcoxon signed rank test; ¤, p<0.05 

PP: Pulse pressure, Tr: Time to reflection, PWV: Pulse wave velocity, Aix@HR75: 

Augmentation index adjusted to heart rate 75 

 

tended to start at a higher level of PWV and may be prone to 

progression. 

The effect of vitamin D or its analogs on PWV and AIx has not 

been explored in CKD patients in other interventional human 

trials. However, cholecalciferol has been shown to decrease PWV 

in black youth normotensives with normal renal function.200  

These findings were not associated with any changes in iPTH or 

calcium, arguing for an effect of vitamin D not related to the 

classical effect on the mineral metabolism. We are currently 

investigating, whether the same effect will be found in Caucasian 

adults in winter month (clinicaltrials.gov NCT00952562). In the 

CKD patient the effect of vitamin D on arterial stiffness is even 

more complex to explore, because of the impaired activity of 1α-

hydroxylase. An effect of vitamin D on the arterial system may be 

mediated through autocrine or paracrine effects of 25-

hydroxyvitamin D after local 1α-hydroxylaion. Alternative, there 

may be an effect of the endocrine active 1,25-dihydroxyvitamin D. 

Or it may be a combination of both. Furthermore, a difference 

between the available vitamin D analogs may exist. Our data 

insinuate that, there could be a difference in the effect of these 

analogs. Likewise, in uremic rats doxercalciferol were found to 

increase PWV and in high dose to increase aortic calcification, 

whereas PWV and calcification was unchanged after paricalcitol 

treatment, although similar increases in phosphate and calcium 

was induced.201 

There are several mechanisms through which vitamin D could 

influence on aortic stiffness, i.e. PWV and AIx, and mediate a 

cardiovascular protective effect as seen in observational stud-

ies.202 

Vitamin D down-regulates the renin-angiotensin system (RAS) 

in animal studies by inhibiting the renin synthesis,203;204 and 

suppress development and progression of renal insufficiency in 

uremic rats, with a synergistic effect to ACE-inhibitors and Angio-

tensin II antagonists.205-207 A randomized placebo controlled 

trial has recently shown a dose dependent reduction in 24h-

albuminuria excretion by paricalcitol in type 2 diabetics with 

albuminuria, which may be mediated through an inhibitory effect 

on RAS.208 Furthermore, a controlled but not randomised study 

found a regression in myocardial hypertrophy in hemodialysis 

patients during calcitriol treatment, which also could be a RAS 

inhibitory effect.209 In Dahl salt sensitive rats paricalcitol attenu-

ated the salt induced left ventricular hypertrophy,210 and in 

spontaneously hypertensive rats paricalcitol and doxercalciferol  
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reduced left ventricular hypertrophy, which was almost pre-

vented when combined with losartan.211 An influence on the 

RAS could indeed affect the pulse wave velocity and morphology, 

as ACE-inhibitors and Angiotensin-II antagonist has been shown 

to reduce the central arterial stiffness.212 

The influence of vitamin D on vascular calcification is still not 

fully explored. Calcium and phosphate stimulate vascular calcifi-

cation,34;213 and as vitamin D increase calcium and phosphate it 

is an important side effect of vitamin D treatment, that targets 

the nephrologists in everyday practice. Observational stud-

ies214;215 has linked the use of vitamin D therapy to increased 

vascular calcification in CKD, whereas others have shown less 

calcification in vitamin D treated CKD patients.216  Both low and 

high 1,25-dihydroxyvitamin D levels have been associated with 

vascular calcification in paediatric hemodialysis patients.197 

Vitamin D analogs, including calcitriol, alfacalcidol, and parical-

citol has been shown to induce vascular calcification in vivo and in 

vitro,217-221 although two comparative studies in uremic ani-

mals found no calcification in rat aorta, when treated with pari-

calcitol, whereas calcitriol and doxercalciferol induced calcifica-

tion, independently of calcium-phosphate levels.222;223  It may 

be a question of dose, as in mice where treatment with low dose 

calcitriol and paricalcitol were protective against vascular calcifi-

cation, whereas high dosages stimulated calcification.224 

Only one interventional vitamin D study measured vascular 

calcification in CKD patients.  In a five year randomized placebo 

controlled trial of intravenous calcitriol in 76 hemodialysis pa-

tients, extraskeletal calcifications were evaluated by x-ray of 

hand, foot, pelvis and chest. There was no difference in tendency 

to development or progression of vascular calcification.225 

Additionally, vitamin D analogs may have anti-inflammatory 

properties.226 Inflammatory processes are known to play a role 

in the atherosclerotic process, and the malnutrition-inflammation 

complex are common in dialysis patients and is a risk factor for 

increased morbidity and mortality.227 Elevated inflammatory 

markers is associated with increased aortic PWV228-230 and anti-

inflammatory therapy has been shown to decrease arterial stiff-

ness.231 

FGF23 is associated with arterial stiffness in subjects with re-

duced renal function.232 We did not find any significant correla-

tion between baseline levels of FGF23 and baseline PWV (r = 0.77; 

P = 0.083) or Aix@HR75(r = -0.486; P = 0.154) in our small mate-

rial (n = 14) nor did we find any correlation between changes in 

FGF23 and changes in PWV (r = 0.104; P = 0.790) or changes in 

Aix@HR75 (r = -0.248; P = 0.488) during the first treatment pe-

riod. But the small sample size (n = 10) should be emphasised. 

Whether FGF23 has a direct influence on arterial stiffness and 

vascular calcification is a question for further research.233 

 

CHANGES IN FGF23 

 

We found a significant increase in FGF23 during treatment with 

alfacalcidol and paricalcitol (Table 7). The influence of alfacalcidol 

on FGF23 has never been described before, whereas paricalcitol 

has been shown to increase FGF23 in dialysis patients in one 

former study.234 There was no difference between treatment 

groups concerning the increase in FGF23. Interventional studies 

has consistently described an increased FGF23 during treatment 

with calcitriol,235 paricalcitol and doxercalciferol in adult hemo-

dialysis patients,234 and of calcitriol and doxercalciferol in paedi-

atric peritoneal dialysis patients,169 and in vitro studies has dem-

onstrated a calcitriol induced increase in FGF23 expression in 

bone derived cell cultures.85;87;236 

The interaction between FGF23 and the other factors in the 

mineral metabolism are presently unresolved. We explored this 

issue. We found baseline levels of FGF23, changes in phosphate, 

changes in ionised calcium and cumulative dose of vitamin D 

analog to be associated with changes in FGF23. If the multivariate 

analysis for repeated measures were performed with the mean 

final vitamin D analog dose instead of cumulative dose of vitamin 

D, the mean final dose were not found as a predictor of FGF23 

change. This is in accordance with Nishi et al.235 which also 

found an association with cumulative dose of vitamin D analog 

and FGF23 changes, whereas Wetmore et al.234 and Wesseling-

Perry et al.237 did not find any association with mean final dose 

of vitamin D analog. Whereas FGF23 has a halftime of minutes in 

patients with tumour induced osteomalacia and normal renal  

 
 

Tabel 7 
Changes in log FGF23, FGF23, PTH, ionised calcium and phosphate in patients enrolled in FGF23 study 
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Figure 4  
Receiver operated curves (ROC) to detect the usefulness of FGF23, phosphate, 

ionised calcium and PTH to predict secondary hyperparathyroidism refractory to 

treatment with vitamin D analogs. 

 

function,238 this may be prolonged in CKD patients as FGF23 is in 

some degree cleared by the kidneys.83 Therefore, there might be 

an accumulation of FGF23 proportional with the cumulative dose 

of vitamin D analogs. 

The association between change in phosphate levels and 

change in FGF23 levels is expected as prolonged increase of 

phosphate load stimulates FGF23, although the exact mechanism 

remains to be determined.239 Furthermore, our data suggest a 

regulatory mechanism of calcium. The same association was 

described in former clinical studies,234;240 and was proposed in 

a sole experimental study.93 This mechanism remains to be fur-

ther explored. 

We found FGF23 to be an independent positive predictor for 

the final level of PTH after 16 weeks of treatment with any of the 

vitamin D analogs. In the study population of the FGF23 study, 

25% of the patients never reached a PTH level beneath 300 

pg/ml. FGF23 may be a screening tool in order to describe the 

candidates for treatment with vitamin D analog.241 Receiver 

operated curves for discriminating patients with refractory sec-

ondary hyperparathyroidism (PTH >300 pg/ml after 16 weeks of 

vitamin D analog treatment) are demonstrated in Figure 4. Area 

under curve obtained by FGF23 (AUC = 0.717; P = 0.016) was 

larger than phosphate (AUC = 0.700; P = 0.025), ionised calcium 

(AUC = 0.709; P = 0.019) and PTH (AUC = 0.600; P = 0.266). 

It is possible that vitamin D analogs in addition to a direct and 

indirect (through elevated calcium levels) PTH suppression, also 

suppress PTH by increasing FGF23. Elevated baseline FGF23 may 

be a marker of parathyroid resistance to the PTH suppressive 

effect of FGF23 in the uremic patients.82 How to prevent this 

parathyroid resistance to FGF23 is a question for further research, 

but early intervention before parathyroid hyperplasia and auton-

omy evolves is probably of great importance. 

 

CHANGES IN ALKALINE PHOSPHATASE 

 

The physiological role of alkaline phosphatase is not fully under-

stood, but alkaline phosphatase is essential for bone mineralisa-

tion.242  Elevated alkaline phosphatase is associated with secon-

dary hyperparathyroidism243 and renal osteodystrophy244 in 

dialysis patients. We did not find any significant changes in total 

alkaline phosphatase in any of the groups during treatment. This 

is opposite to the finding by other groups during treatment with 

alfacalcidol or paricalcitol,149;153;245-247 where a decrease in 

alkaline phosphatase were described even after 12 weeks of 

treatment in hemodialysis patients.153 Bone specific alkaline 

phosphatase is more specific in describing bone remodelling, than 

total alkaline phosphatase,248 and a change might have been 

observed if alkaline phosphatase had been fractionised. 

Alkaline phosphatase >120 U/l has been associated with in-

creased hospitalisation and mortality in hemodialysis patients 

independent of calcium, phosphate and PTH levels.249;250 Alka-

line phosphatase >120 U/l was present in 17% (A: n = 5; P: n = 7) 

of the patients at baseline and 11% (A: n = 5; P: n = 4) after 16 

weeks of treatment, with no overall difference during treatment 

(P = 0.183). 

 

LEVELS OF 25 HYDROXYVITAMIN D AND 1,25-DIHYDROXYVITAMIN 

D 

 

In the present study 25-hydroxyvitamin D deficiency (<50 nmol/l) 

was observed in 72% at baseline. In the Danish healthy popula-

tion 42% has vitamin D deficiency in the wintertime.251 High 

prevalence of vitamin D deficiency has been reported among 

other CKD populations, especially in those with a GFR less than 30 

ml/min/1.73m2.252-254  The reasons for this increased preva-

lence is probably multiple, including aging, diabetes, proteinuria, 

lack of sun exposure and decreased synthesis in the skin, de-

creased 25-hydroxylation by the liver of the uremic patient, and 

dietary restrictions.255-257 Furthermore, it is shown in healthy 

man that, 1,25-dihydroxyvitamin D may inhibit hepatic 25-

hydroxylation.258 

Treatment with vitamin D analogs did not influence on the 

level of 25-hydroxyvitamin D. However, six week wash out is too 

short to conclude about the influence of treatment versus no 

treatment on 25-hydroxyvitamin D, which has a half time of 18-25 

days in normal man.259;260 

Deficiency of 25-hydroxyvitamin D is associated with in-

creased risk of mortality in non-dialysis CKD patients and incident 

hemodialysis patients.50;52 No randomised study has been per-

formed evaluating whether substitution with cholecalciferol or 

ergocalciferol improves survival or other clinical endpoints in CKD 

patients. It is unknown whether this deficiency is sufficiently 

substituted by active vitamin D analogs. The presence of vitamin 

D 1α-hydroxylase and VDR in almost every tissue makes an 

autocrine-paracrine function of 25-hydroxyvitamin D possi-

ble.261-263 This may require substitution with native analogs to 

achieve the local effect. Apparently, 1,25-dihydroxyvitamin D 

levels are important for the local function of 25-hydroxyvitamin D 

in CKD patients, as in monocytes where 25-hydroxyvitamin D 

uptake is normalised after 1,25-dihydroxyvitamin D substitu-

tion.264 It seems likely that both should be supplemented in CKD 

patients. 

The median 1,25-dihydroxyvitamin D level at baseline was 7 

pmol/l (2.5-80) compared to the reported level of 105 pmol/l in 

subjects with GFR>80ml/min/1.73m2.3 

In animal studies in 5/6 nephrectomised rats, paricalcitol de-

creased levels of 1,25-dihydroxyvitamin D.265 As 1,25-

dihydroxyvitamin D exerts a negative feedback on its own synthe-

sis,100 it was speculated that paricalcitol decrease 1,25-

dihydroxyvitamin D synthesis through this feed-back mechanism.  

Contrary, we did not find any changes in 1,25-dihydroxyvitamin D 
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in the paricalcitol group, although 1,25-dihydroxyvitamin D was 

measured only in a small fraction of our participants. As expected 

the level of 1,25-dihydroxyvitamin D increased during treatment 

with alfacalcidol, because of the 25-hydroxylation of the drug. 

 

CONCLUSION 

This thesis describes a randomised 2 x 16 week cross-over study 

comparing alfacalcidol and paricalcitol in a group of Danish 

chronic hemodialysis patients with secondary hyperparathyroid-

ism. 

 

The main results were: 

After forced titration of the vitamin D analogs, we found no 

difference in their ability to suppress secondary hyperparathy-

roidism, while keeping phosphate and ionised calcium inside the 

desired range 

We found no difference in the incidence of hypercalcemia or 

hyperphosphatemia during 16 weeks of dose titration 

We found a former not described interaction between base-

line PTH and treatment. Pointing to alfacalcidol had an equal 

effect across all levels of PTH, while paricalcitol suppressed PTH 

better at lower PTH levels than at higher PTH levels 

FGF23 increased significantly and equally during treatment 

with alfacalcidol and paricalcitol 

FGF23 levels predicted PTH response to treatment with vita-

min D analogs 

Paricalcitol decreased pulse wave velocity, whereas alfacalci-

dol increased pulse wave velocity in a small group of patients. 

These results need to be confirmed, because of the small sample 

size with different baseline levels. 

16 weeks of treatment with alfacalcidol or paricalcitol did not 

influence on the level of 25-hydroxyvitamin D 

16 weeks of treatment with alfacalcidol increased 1,25-

dihydroxyvitamin D, whereas the level was unchanged after pari-

calcitol treatment 

 

On the basis of the present study, we find alfacalcidol and 

paricalcitol to be equal candidates, when treating mineral distur-

bances in patients with chronic kidney disease. 

 

ABBREVIATIONS 

AIx: Augmentation index 

AIx@HR75: Augmentation index corrected to heart rate 75 

AUC: Area under curve 

aSR: calcium sensing receptor 

CI: confidence interval 

CKD: chronic kidney disease 

CKD-MBD: chronic kidney disease – mineral and bone disorder 

Cmax: Maximal concentration 

CVD: cardiovascular disease 

FGF23: fibroblast growth factor 23 

GFR: glomerular filtration rate 

HD: hemodialysis  

iPTH: intact parathyroid hormone 

PTH: parathyroid hormone 

PWV: pulse wave velocity 

RAS: renin angiotensin system 

SHPT: secondary hyperparathyroidism 

Tr: time to reflection 

VDR: Vitamin D receptor 

 

SUMMARY 

Vitamin D analogs are used for treatment of secondary hyper-

parathyroidism in patients with chronic kidney disease in order to 

prevent renal osteodystrophy, bone fracture and pain. Calcium 

and phosphate levels increase with increasing doses of vitamin D 

analogs and are associated with increased risk of vascular calcifi-

cation and cardiovascular morbidity and mortality. Therefore, in 

everyday clinical practice, hypercalcemia and hyperphosphatemia 

often limits the ability to suppress secondary hyperparathyroid-

ism in patients with chronic kidney disease. In Denmark, alfacalci-

dol and paricalcitol are the most frequently used vitamin D ana-

logs 

The present thesis describes the first comparative study of al-

facalcidol and paricalcitol and their ability to control the distur-

bances in the mineral metabolism in hemodialysis patients 

In a multicenter randomised 2 x 16 week cross-over study (n = 

86), with a 6 week wash out period preceding and between 

treatment periods, intravenous alfacalcidol and paricalcitol were 

given by forced titration (50% dose increase) every second week, 

until parathyroid hormone were sufficiently suppressed or ionised 

calcium and/or phosphate levels were elevated 

Due to the presence of a period effect, only data from the ini-

tial 16-week intervention period (n = 80) were available for statis-

tical tests of effect on parathyroid hormone. The proportion of 

patients achieving a 30% decrease in parathyroid hormone over 

the last four weeks was similar in the two groups (alfacalcidol 

82%, paricalcitol 93% (P = 0.180)). A significant interaction effect 

between baseline parathyroid hormone and treatment was found 

(P = 0.012), suggesting the effects of alfacalcidol to be independ-

ent of baseline parathyroid hormone level, whereas paricalcitol to 

be more efficient at low than at high baseline levels. There were 

no differences in incidence of hypercalcemia and hyperphos-

phatemia. 

FGF23 increases renal phosphate excretion and decreases 

levels of 1,25-dihydroxyvitamin D 

FGF23 is elevated in hemodialysis patients by mechanisms not 

fully understood. We explored the influence of alfacalcidol and 

paricalcitol on FGF23 in stored blood samples from the beginning 

and the end of each treatment period. FGF23 increased signifi-

cantly and equally during treatment with alfacalcidol and parical-

citol. Furthermore, we found baseline FGF23 to predict PTH levels 

after 16 weeks of vitamin D analog treatment. 

Overall, alfacalcidol and paricalcitol are equal candidates for 

treatment of disturbances in mineral metabolism in hemodialysis 

patients. 
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