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INTRODUCTION

Acute myocardial infarction (AMI) is a major cause of death
and disability worldwide and accounts for one of every six deaths
in the United States.(1) In the years 2007-2009, an average
16.343 persons in Denmark were annually admitted to the hospi-
tal with ischemic heart disease as the primary diagnosis and with
6.303 deaths due to ischemic heart disease.(2) About two-thirds
of deaths from AMI occur before hospital arrival, mostly from
cardiac arrest triggered by ischemia induced lethal arrhythmi-
as.(3) In addition, AMI has been documented in more than 50% of
patients suffering from out-of-hospital cardiac arrest.(4) Out-of-
hospital cardiac arrest is a major contributor of deaths and each
year it affects approximately 275,000 people in Europe.(5) Sur-
vival rates are low, with about 24% surviving to hospital admis-
sion and with only 7.6% being discharged alive.(6)

While cardiac arrest and AMI are leading causes of death in
the middle-aged and elderly, trauma primarily affects the younger
segment of the population.(7-9) Hemorrhagic shock, defined as
life-threatening blood loss, is responsible for 30-40% of early
trauma deaths.7

The aforementioned conditions share several pathophysiolog-
ical features. AMI, cardiac arrest, and hemorrhagic shock are all
characterized by a period of reduced blood flow either regionally
in the heart or globally (whole body), and treatment strategies
target the restoration of normal blood flow. This is achieved by:
1) percutaneous coronary intervention restoring blood flow to the
ischemic myocardium, 2) chest compressions and defibrillations
being the treatment for cardiac arrest, and 3) surgery and volume
resuscitation being standard treatment for hemorrhagic shock.
Together, the treatment strategies restore blood flow to previ-
ously closed vascular beds, causing reperfusion. While reperfu-

sion is essential for recovery of organ function, paradoxically it
contributes to both reversible and irreversible cellular injury in all
three settings.

AMI, cardiac arrest, and hemorrhagic shock are all acute con-
ditions requiring early intervention to prevent progression of
tissue injury. However despite early intervention, morbidity and
mortality rates remain high, in part due to reperfusion injury. This
calls for new early strategies to be implemented at the time of
standard care. Ischemic postconditioning (postcon), defined as
repetitive periods of ischemia applied during early reperfusion,
was in 2003 introduced by the Vinten-Johansen laboratory(10) as
a new potential treatment to limit injury following AMI. The con-
cept of postcon demonstrated that reperfusion injury is initiated
in the early moments of reperfusion. This early appearance of
reperfusion injury implies that what happens first must be treated
first. Therefore pharmacological strategies targeting reperfusion
injury must be applied immediately at the onset of reflow. Anoth-
er lesson learned from postcon was that broad-spectrum or com-
bination therapy targeting several aspects of reperfusion injury is
more effective than monotherapy. Adenosine, an endogenous
signaling molecule formed by the breakdown adenine nucleo-
tides, has shown to be a major mechanism in the cardioprotec-
tion of postcon and exerts broad-spectrum effects on reperfusion
injury. The combination of adenosine and lidocaine (adenocaine)
has been introduced as a new promising treatment with synergis-
tic effects and is currently used as a cardioplegic agent with car-
dioprotective properties.(11)

This thesis will explore the mechanism of ischemic postcon
during regional myocardial ischemia and test the effects of ade-
nocaine as an early pharmacological postcon strategy in models
of global ischemia/reperfusion injury.

ISCHEMIA/REPERFUSION INJURY
ISCHEMIA

Ischemia is defined as either partial or total restriction in
blood supply to tissues or organs. As a consequence of the re-
duced blood flow, oxygen delivery is impaired, which subsequent-
ly results in ATP depletion, intracellular acidosis, and cellular ionic
abnormalities. Cell homeostasis is dependent on the availability
of ATP, and a reduction in ATP content reduces the activity of the
Na+/K+ -ATPase, resulting in intracellular accumulation of sodium
and hydrogen anions.(12) Simultaneously, intracellular calcium
levels increase through a release from the sarcoplasmic reticulum
and a decreased activity of the normal calcium extrusion mecha-
nism, the Na+/Ca2+ antiporter. Furthermore, osmotic active
particles, e.g. sodium, lactate and creatinine, accumulate, leading
to cellular edema.(13) As demonstrated in a canine model of
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myocardial infarction necrosis progresses over time in a wave-
front pattern related to the duration of ischemia.(14) Other de-
terminants of the severity of ischemia in the heart and whole
body include the degree of oxygen supply/demand mismatch, the
basal tissue metabolic rate, heart rate (for myocardium), and
degree of either collateral or supportive blood flow.

REPERFUSION

The concept of timely reperfusion as a strategy to prevent
progression of necrosis and to salvage myocardium was estab-
lished by Maroko et al.(15) This strategy of timely reperfusion is
applicable to ischemia in all organs. Restoration of blood supply
restores aerobic metabolism and is requisite for salvage of organ
function. However; reperfusion also paradoxically triggers addi-
tional injury that had not occurred during the preceding ischemic
period; this is called ischemia/reperfusion (I/R) injury (Figure 1).
Whether the process of reperfusion itself contributes to the
pathophysiology of myocardial infarction has been debated for
years.(16, 17) Matsumura et al.(18) demonstrated that tissue
found to be viable at the end of a period of ischemia lost viability
during reperfusion, which supports the concept of reperfusion
injury. Furthermore, protective strategies such as postcon and
pharmacological interventions administered at the moment of
reperfusion can reduce final injury, which provides additional but
indirect support for the hypothesis of reperfusion injury and
separates it from ischemic injury. Thus, reperfusion injury reduc-
es the therapeutic advantage of timely reperfusion. Reperfusion
injury affects all cell types; not only cardiomyocytes or tubular
cells in the kidney but also endothelial cells, interstitial cells and
circulating cells.(19)
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Figure 1 Cell death during either ischemia and subsequent reperfusion or
prolonged ischemia. Vanden Hoek T L et al. Am J Physiol Heart Circ
Physiol. 2003;284:H141-H150 Reprinted with permission. ©2003 by
American Physiological Society

In the myocardium, I/R injury is manifested as either reversi-
ble injury, e.g. myocardial stunning and myocardial arrhythmias
or irreversible lethal injury (necrosis/apoptosis). Since the mech-
anisms involved in reversible and irreversible injury differ, I/R
injury will be discussed below in light of lethal myocardial injury.
However, the mechanisms of tissue/organ injury also apply for I/R
injury in other organs following either regional or global ischemia,
e.g. cardiac arrest or hemorrhagic shock.

Calcium

Histological analysis of the myocardium after reperfusion re-
veals that infarcts almost exclusively consist of contraction band
necrosis, reflecting excessive activation of the contractile machin-
ery initiated upon reperfusion.(20) Upon reperfusion the mito-
chondria, if not severely injured, resume ATP production, activat-
ing the contractile machinery. However, this occurs before
intracellular calcium levels have been normalized. At the end of a
prolonged period of ischemia, the cytosol is overloaded with
sodium, calcium, and hydrogen anions.(21) Intracellular acidosis is
rapidly corrected by the efflux of H+ through the Na+/H+ ex-
changer and by influx of bicarbonate anion through the
Na+/HCO3- symporter, both located in the sarcolemma. This
sustains the elevated intracellular levels of sodium, keeping the
major calcium extruder, the Na+/Ca2+ exchanger, in reverse
mode. The excess calcium is temporarily sequestrated in the
sarcoplasmic reticulum. However, if the calcium storage capacity
in the sarcoplasmic reticulum is exceeded, it will lead to a cycle of
continuous release and reuptake of Ca2+ between the sarcoplas-
mic reticulum and the cytosol. The activation of the contractile
machinery, concomitant with high intracellular calcium levels,
promotes excessive force generation and hypercontracture. In
addition to hypercontracture, high calcium levels also lead to
activation of endogenous proteases.(22)
pH

After a prolonged period of ischemia, anaerobic glycolysis
leads to accumulation of H+ and a decrease in intracellular pH.
Reperfusion causes a rapid normalization of pH through extrusion
of hydrogen anion through the Na+/H+ exchanger and by influx of
bicarbonate ions through the Na+/HCO3- symporter.(21) Normal-
ly, a low intracellular pH attenuates activation of the contractile
machinery; however, the rapid extrusion and normalization of pH
removes a potentially protective mechanism. Furthermore, stud-
ies have shown that maintenance of a low intracellular pH at
reoxygenation protects cardiac cells from reperfusion injury.(23)
Therefore, rapid correction of pH favors calcium accumulation
and allows for activation of systems that were otherwise inhibited
during low pH.
Reactive oxygen species

Although oxygen is essential for tissue survival, the rapid re-
introduction of oxygen after a period of ischemia can be detri-
mental. Oxygen free radicals or reactive oxygen species (ROS) are
molecules with unpaired electrons that render the molecule
unstable, highly reactive and short-lived. ROS are continuously
produced in small amounts as products of normal metabolism
where they play important roles in homeostasis and signaling.(24)
The formation of ROS is initiated during ischemia, but limited
oxygen supply prevents a large-scale production of ROS. Howev-
er, reperfusion elicits a prominent burst in the ROS production,
which can overwhelm endogenous defense mechanisms such as
superoxide dismustase (SOD), catalase and glutathione peroxi-
dase that normally scavenges ROS.(25, 26) The excessive produc-
tion of ROS elicits cellular damage by: 1) causing lipid peroxida-
tion of cell membranes, 2) stimulating chemotaxis of neutrophils
(PMNs), 3) causing denaturation of proteins including ion chan-
nels, and 4) opening of the mitochondrial permeability transition
pore (mPTP). Numerous sources of ROS production have been
proposed, with the three most important being 1) xanthine oxi-
dase, primarily within endothelial cells, 2) the mitochondrial
electron transport chain, and 3) Nicotinamide adenine dinucleo-
tide phosphate (NADPH) oxidase, primarily within leukocytes.(24)
Furthermore, evidence that ROS is a mediator of I/R injury has
been supported by several studies in which oxidant scavengers
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reduced post-ischemic injury.(27) However, in recent years it has
emerged that ROS may not always be detrimental but may also
serve as important signaling molecules.(28)

Inflammation

Ischemia/reperfusion initiates an acute inflammatory re-
sponse contributing to myocardial injury. Reperfusion prompts
the release of cellular contents from damaged cardiomyocytes to
interact with toll-like receptors, and thereby activate the innate
immune response.(29) The inflammatory response is complex
and composed of both humoral and cellular factors, with the
complement system, ROS, and cytokines as humoral factors.(30)
In addition to its contribution to myocardial injury, inflammation
is also prerequisite for healing and scar formation.(31)

Upon reperfusion, the complement system is activated, and
cardiac lymph demonstrates PMN chemotactic activity, which is
attenuated by neutralization of the complement factor C5a.(32)
In addition to the complement system, cytokines are also up-
regulated, leading to an activation of cellular factors.(33, 34) The
PMN and its interactions with the endothelium represent a major
component of the cellular inflammatory response.

PMNs have been suggested to participate in the pathogenesis
of reperfusion injury;(35) this view is, however, controversial.(36)
Upon reperfusion, the recruitment of PMNs into the ischemic
myocardium is accelerated.(37) The release of pro-inflammatory
cytokines and complement activates the coronary vascular endo-
thelium to express P-selectin, which then recruits PMNs to inter-
act with the vascular endothelium. The process of rolling and
loose adherence that characterizes the first stage of PMN re-
cruitment primes the PMNs for later full activation of the NADPH
oxidase system.(38) Full activation of the PMNs can occur after
interactions with the activated endothelium.

Shandelya et al.(39) demonstrated that perfusion of hearts
with activated PMNs lead to a marked elevation in the production
of ROS when compared to buffer perfused hearts, establishing
PMNs as the major contributor of ROS during reperfusion. Acti-
vated PMNs can induce myocardial injury in several ways, includ-
ing lipid peroxidation and damage to DNA secondary to release of
ROS, and by direct damage from further release of pro-
inflammatory cytokines and proteolytic enzymes. Endothelial
dysfunction is, in part, mediated by ROS and PMN adherence.(40)
In addition, PMNs can accumulate and embolize in capillaries,
thereby contributing to blood flow defects (no-reflow). These
events may occur in the early phase of reperfusion before tran-
sendothelial PMN migration into the myocardial parenchyma has
taken place.(41) Studies have demonstrated that both infarct size
and PMN accumulation increase in parallel over time during
reperfusion, and that infarct size correlates with PMN accumula-
tion,(37) consistent with but not proving a causative relationship.
This correlation has been extended to the clinical setting, with
intervention in patients with AMI.(42) Numerous interventions
designed to inhibit PMNs and their functions have reduced infarct
size. These interventions include 1) depletion of circulating PMNs,
(43) 2) inhibition of PMN recruitment by pro-inflammatory media-
tors, e.g. platelet-activating factor,(44) and 3) inhibitors of PMN-
endothelial cell adhesion molecule interactions.(45) However,
some in vivo studies fail to show an effect of PMN inhibition
strategies.(46) This discrepancy could be due to timing of therapy
delivery (i.e. not at onset of reperfusion), dose of the drug, or
inefficiency of antibody binding or the redundant pathways of
inflammation that are not addressed by mono-therapies. For
instance in the study by Tanaka et al.(46), the CD18 antibody was
administered at half dose before ischemia and half dose 30

minutes after reperfusion, which could explain the lack of effect
with regard to infarct size reduction.

The finding that similar durations of I/R in vitro and in vivo re-
sult in comparable infarct sizes is used to dispute the role of
PMNs in lethal I/R injury.(36, 47) In buffer-perfused hearts, in
which PMNs and blood-borne pro-inflammatory mediators, and
endogenous anti-oxidants are absent, post-ischemic damage
occurs, in part, due to ROS produced by cardiomyocytes and
endothelial cells.(39, 48) The early burst of ROS production during
reperfusion is associated with a decrease in non-enzymatic en-
dogenous antioxidants in the ischemic heart.(49) This depletion
makes the heart dependent on antioxidants delivered by the
circulation, and may therefore exacerbate oxidant-induced injury.
Glutathione peroxidase and catalase are important antioxidants
involved in the removal of hydrogen peroxide, with high levels in
erythrocytes.(50, 51) The heart is deprived of these antioxidant
defense mechanisms in in vitro studies not using blood as the
perfusate. Furthermore, the heart is also deprived of neural (opi-
oids) and humeral mediators (EPO, cytokines) with known cardio-
protective effects.(52, 53) In contrast, PMN repletion in in vitro
preparations has been associated with a further decrease in post-
ischemic endothelial function (40) and contractile function (39,
54) relative to the PMN-free cohort, making buffer perfused
hearts less susceptible to damage.

No-reflow

Despite adequate restoration of blood flow at the macrovas-
cular level, reperfusion is associated with a significant impairment
of blood flow at the microvascular level, termed the no-reflow
phenomenon.(55) This is observed as severely hypoperfused
zones within the previously ischemic tissue. This no-reflow phe-
nomenon after ischemia was first observed in the heart by Krug et
al.(56) in 1966 and in the brain by Ames et al.(57) in 1968. The
impaired post-ischemic blood flow may further compromise the
already vulnerable myocardium by imposing secondary ischemia
despite restored macrovascular blood flow, and thereby extend
post-ischemic injury. The exact mechanism of the no-reflow phe-
nomenon is not fully elucidated, but injury to endothelial cells is a
key component. After a period of prolonged ischemia with subse-
quent reperfusion, endothelial swelling, endothelial gaps, and
intravascular accumulation of PMNs and red blood cells are ob-
served.(58) In the normal state, the endothelium expresses a
phenotype that appropriately regulates microvascular blood flow
and inhibits coagulation and inflammation. Within minutes, I/R
causes endothelial dysfunction at both the functional 59 and
structural level,(60) changing the phenotype of the endothelium
from its normal homeostatic state to one that promotes interac-
tions between endothelial cells, PMNs and platelets, and one that
generates oxidant species and pro-inflammatory mediators.(61,
62) This dysfunction is, in part, related to an impaired release or
synthesis of NO, which has vasodilatory and anti-PMN proper-
ties.(41, 63) PMNs amplify the release of ROS, with inflammatory
and vasoconstrictive agents (platelet activating factor) further
compromising microvascular flow.

Apoptosis

As referred to above, I/R injury results in lethal cellular injury.
Two distinct forms of cell death exist, namely necrosis and apop-
tosis, both developing over time following I/R.(37, 64) It is not
clarified whether apoptosis is triggered during ischemia or reper-
fusion. However, it is well documented that restoration of oxygen
and energy stores at reperfusion accelerates the development of
apoptosis.(65) In general, necrosis occurs rapidly with cellular
swelling, membrane defects and increased permeability, release
of cellular debris and activation of the inflammatory process. In
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contrast, apoptosis is an energy-dependent process, with enzyme
activation and DNA degradation without inflammation. Apoptosis
is generally triggered by a receptor-independent mechanism
through factors released from the mitochondria or by receptor-
dependent mechanisms through activation of death receptors
located at the cellular surface [tumor necrosis factor —alpha (TNF-
a) receptor and the FAS receptor].(66) This leads to sequential
activation of a series of cytosolic proteases termed caspases.(67)
Caspases are a family of pro-enzymes that on activation are in-
volved as both initiators and effectors of apoptosis, which ulti-
mately leads to proteolytic cleavage of proteins involved in cell
survival. The receptor-dependent pathway activates caspase-8,
while the receptor-independent pathway activates the caspase-9,
leading to activation of the final common pathway of apoptosis
caspase-3.(68)
Mitochondria

Mitochondria serve as the cell powerhouse by production of
ATP through oxidative phosphorylation. The outer mitochondrial
membrane is relatively permeable, whereas the inner membrane
is impermeable to all, but a few selected molecules. However, at
reperfusion, a sudden loss of the mitochondrial membrane po-
tential and opening of an unspecific pore in the inner membrane
called the mitochondrial permeability transition pore (mPTP) has
been described.(69) The molecular structure of the pore remains
unknown, but it has gained much interest in recent years as the
final effector of I/R injury.(70) Several factors associated with
ischemia reperfusion injury such as calcium overload, oxidative
stress, normalization of pH, and adenine nucleotide depletion
induce mPTP opening. However, mPTP opening is inhibited by
acidosis which prevents opening during ischemia, but upon reper-
fusion tissue pH is normalized which allows mPTP opening.(69,
71) The opening of the mPTP results in uncoupling of oxidative
phosphorylation, swelling, and the release of pro-apoptotic fac-
tors such as cytochrome C, which will activate caspase-9 which, in
turn, activates caspase-3. The importance of the mPTP during I/R
is highlighted by several studies in which modulation of mPTP has
attenuated I/R injury.(72)

CARDIAC ARREST

The annual incidence of out-of-hospital cardiopulmonary ar-
rest in Europe is 38 per 100,000 people, 5 with more than 60% of
adult deaths from coronary heart disease being due to sudden
cardiac arrest.(73) In 25-30% of the victims, the initial heart
rhythm is ventricular fibrillation (VF). This percentage has de-
clined over the last 20 years,(74) with more victims found having
either asystole or pulseless electrical activity(PEA). Survival rates
in victims with VF are around 21%, while overall mortality rates
are as low as 8%.(75)

Survival from cardiac arrest is dependent on early recognition,
cardiopulmonary resuscitation (CPR), defibrillation, and post-
resuscitation care, all linked together in the chain of survival.(76)

Cardiac arrest is the sudden cessation of mechanical activity
and the inability of the heart to pump blood to maintain organ
perfusion, ultimately leading to global ischemia. Basic CPR, con-
sisting of chest compressions and ventilation, provides blood
supply to the heart and brain albeit critically below normal le-
vels.(77, 78) Quality CPR enhances the chance of restoring a
normal rhythm when defibrillation is performed in the case of a
shockable rhythm or enhances the chance of obtaining a shocka-
ble rhythm if asystole or PEA is present.(79) The delivery of defib-
rillation is a crucial factor following cardiac arrest because of its
ability to restore a cardiac rhythm that can support cardiovascular

circulation and hemodynamics. In recent years, the importance of
post-resuscitation therapy as the final link in the chain of survival
has been increasingly recognized, despite its introduction years
ago.(80, 81) In a study by Olasvengen et al.,(82) 40% of patients
treated with standard care achieved restoration of spontaneous
circulation (ROSC), while 30% were admitted to the intensive care
unit. However, only 10% survived to hospital discharge, which
illustrates the need for effective post-resuscitation care.4 Imme-
diate post-resuscitation treatment has the potential to alter the
dismal outcomes after cardiac arrest and resuscitation. Proof of
this assertion comes from studies demonstrating that therapeutic
hypothermia improves clinical outcome.(83, 84)

One study in this thesis will investigate the effects of treat-
ment in the immediate resuscitation phase with adenocaine on
hemodynamic stability, organ function and PMN activation.

Organ dysfunction occurring after ROSC is termed “the post-
cardiac arrest syndrome,” and is comprised 1) systemic I/R, 2)
cardiovascular dysfunction, 3) brain injury, and 4) the precipitat-
ing pathology.(85)

It is important to consider that cardiac arrest post-
resuscitation injury has distinct features when compared to focal
I/R injury, with a prolonged period of total body ischemia fol-
lowed by complete macrovascular reperfusion. In the setting of
cardiac arrest, the heart is often fibrillating and has an increased
oxygen demand, and with the start chest compressions, only
insufficient levels of blood flow are provided.(86, 87) Although
only low levels of blood flow are provided by chest compressions
is also contributes to I/R injury. In addition, cardiac arrest treat-
ment involves repeated periods of ischemia due to interruptions
of chest compression and the injection of pharmacological
agents. The administration of vasoconstrictive agents during CPR
to enhance myocardial and cerebral blood flow may even further
compromise visceral organ blood flow.(88) Moreover, epineph-
rine administered during CPR adds to endogenously released
catecholamines, both of which may impair microcirculatory blood
flow, (89) while defibrillations my further impair myocardial func-
tion.(90) Despite ROSC, hemodynamic instability and the admin-
istration of vasopressors may further impair visceral organ blood
flow and oxygen consumption in the post-resuscitation phase.(91)

SYSTEMIC ISCHEMIA/REPERFUSION INJURY

Compared to focal tissue ischemia caused by myocardial or
cerebral infarction, the ischemic period during cardiac arrest and
resuscitation is measured in minutes rather than hours. With the
relatively short ischemic period during cardiac arrest, most organs
are without any significant degree of necrosis and most extra-
cerebral organs tolerate ischemic intervals of extended durati-
on.(92, 93) Despite the lack of obvious tissue necrosis morbidity
(organ failure) and mortality remain high. Individually, each organ
can tolerate short periods of ischemia; however the ability to
tolerate ischemia may be reduced when all organs are affected as
during global ischemia. This suggests a synergistic effect of con-
comitant organ injury reducing individual organ tolerance to
ischemia, and that organs affected by I/R, release inflammatory
mediators with harmful effects on other organ systems.(81, 94)

Cerchiari et al. (95) were the first to systematically investigate
the impact of visceral organ dysfunction after cardiac arrest on
cerebral outcome. Using a canine model of VF-induced cardiac
arrest, they found that cardiac arrest was associated with system-
ic bacteremia, transient elevations in liver enzymes, and coag-
ulopathy. In patients resuscitated after cardiac arrest, similar
results are found, including a generalized activation of the im-
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mune and coagulation system comparable to patients with sep-
sis.(96-98) This systemic activation of the immune system has
been confirmed in other studies in which up to 60% of cardiac
arrest patients fulfilled the criteria for the systemic inflammatory
response syndrome (SIRS), whereas 36% developed sepsis.99 In
another clinical study, endotoxin was detected in blood samples
in 46% of the patients.(98, 99) Patients with SIRS had significantly
higher levels of soluble P-selectin, which is an adhesion molecule
involved in the early events of leukocyte-endothelial interactions,
that has been detached from endothelium. Endothelial and leu-
kocyte activation have been demonstrated by other investigators,
who have found increased levels of circulating adhesion mole-
cules and an increased release of the enzyme elastase from
PMNs.(100-102) Two studies also demonstrated a significant
correlation between duration of CPR and either the PMN enzyme
elastase or the number of circulating endothelial cells.102, 103
The unspecific activation of the immune system following cardiac
arrest also involves production of ROS (104, 105) and the release
of cytokines.(98, 106) The increased levels of circulating cytokines
are comparable to levels seen in septic patients and with signifi-
cantly higher levels in non-survivors vs. survivors at hospital ad-
mission.(98) However in experimental models of cardiac arrest
cytokine levels are in the low range and several of them are be-
low detection limit.(106, 107)

CARDIOVASCULAR DYSFUNCTION

Cardiovascular dysfunction contributes to the high mortality
seen after cardiac arrest, especially in the early phase after
ROSC.(98, 108) Hemodynamic instability is observed as early as 4
hours after ROSC, with full recovery seen within 72h in surviving
patients.(108) The observed hemodynamic instability is primarily
attributed to myocardial dysfunction and secondarily attributed
to vascular dysfunction.

Several animal studies report a severe abrupt decrease in my-
ocardial function following cardiac arrest that normalizes within
48-72 hours after ROSC.(92, 109, 110) The existence of myocardi-
al dysfunction in patients was first reported by Deantonio et
al.(111) and later by others.(108, 112, 113) The decrease in con-
tractile function is characterized by both systolic and diastolic
dysfunction.

In a porcine study of cardiac arrest, Gazmuri et al.(110) used
left ventricular pressure-volume relationships to evaluate cardiac
function after cardiac arrest. After 4 minutes of VF and 8 minutes
of chest compressions, systolic function was severely impaired,
illustrated by a marked rightward shift of the pressure-volume
loops concomitant with a decrease in the slope of the end-systolic
pressure-volume relationship (ESPVR). In the same year Kern et
al.(92) demonstrated a significant reduction in ejection fraction
(EF) and decreased fractional shortening analyzed by Doppler-
echocardiographic. Despite a decrease in cardiac function, myo-
cardial blood flow was unchanged, and minimal myocardial ne-
crosis was detected. Diastolic dysfunction was evidenced by
increases in left ventricular end-diastolic pressure, the isovolu-
metric constant tau, and a decrease in compliance.(92, 110)

The phenomenon of reversible post-ischemic myocardial dys-
function in the absence of necrosis is termed myocardial stun-
ning.(114) Myocardial stunning refers to reversible ventricular
dysfunction that follows a period of non-lethal ischemia despite
restoration of normal blood flow.(114, 115) First described in
models of regional ischemia with short durations of coronary
occlusion, myocardial stunning was later confirmed in models of
cardiac arrest.(92)

In experimental models of cardiac arrest, myocardial recovery
was observed within 48—72 hours, while some clinical studies
report that recovery is prolonged to weeks.(113) Acute myocardi-
al infarction has been reported in approximately 50% of patients
admitted after resuscitation from cardiac arrest.(4, 116) Most
experimental studies induce VF in healthy animals by applying an
electric current through a pacing catheter placed in the right
ventricle. This makes the duration of global myocardial ischemia
very short in contrast to patients with cardiac arrest subsequent
to myocardial infarction.(4, 116) In patients with cardiac arrest
subsequent to myocardial infarction myocardial dysfunction is a
result of both regional ischemia due to the AMI and global ische-
mia due to cardiac arrest. The definition of stunning requires the
absence of lethal myocardial injury, which is not be the case for
patients with cardiac arrest due to myocardial infarction. Alt-
hough not significant (p=0.06), Laurent et al. showed a strong
trend towards a higher incidence of hemodynamic instability if
AMI was the cause of cardiac arrest.(108) In addition, studies
comparing pacing and ischemic-induced VF have shown that
ischemic-induced VF is characterized by lower survival rates and
more profound cardiac dysfunction.(117, 118)

This implies that where myocardial dysfunction following ex-
perimental models of VF induced cardiac arrest is simply a result
of stunning, it is in cardiac arrest patients with AMI more severe
and more than simply just stunning.

Many of the pathophysiological features responsible for lethal
myocardial I/R injury are also involved in the pathogenesis of
myocardial stunning despite the absence of lethal myocardial
injury.(114) This includes calcium overload, production of ROS,
inflammation, and the mPTP. However, some mechanisms such
as apoptosis appear only to play a role in the long-term after focal
1/R.(119, 120) During VF, the thickness of the left ventricular wall
increases with a concomitant decrease in ventricular complian-
ce.(121) Simultaneously, calcium levels rise, with a decrease in
the myofilament responsiveness to calcium.(122) In addition,
compelling evidence supports that a burst in ROS production at
reperfusion mediates myocardial stunning.(114) Following resus-
citation, the levels of ROS increase and in a rat model of VF, the
administration of a lipid peroxidation inhibitor improved myocar-
dial function suggesting that ROS plays a causative roll in contrac-
tile dysfunction.(104, 105, 123, 124) Also, as with regional I/R, an
increase in inflammatory mediators has been associated with
myocardial dysfunction.(106, 125) Lately, the importance of the
mitochondria in post-resuscitation injury has been highlighted. In
a mouse model of cardiac arrest, activity in mitochondrial com-
plex I-1ll and complex IV was significantly impaired 60 min after
ROSC concurrent with an augmented production of ROS and
tyrosine nitration from peroxynitrite.(126) The mPTP has been
suggested as the final effector of I/R injury. Several models of
regional I/R have demonstrated that inhibitors of mPTP opening
are protective.(72, 127) The importance of the mPTP in the set-
ting of cardiac arrest was highlighted by Cour et al., who adminis-
tered two different inhibitors of mPTP opening during resuscita-
tion.(128) Both inhibitors attenuated cellular injury and cardiac
function after 15 min of cardiac arrest.

NEUROLOGICAL DYSFUNCTION

In patients resuscitated from cardiac arrest, the cause of
death is neurological injury in about 70% of the cases.(82, 129,
130) Compared to the other organs, the brain is very vulnerable
to even short periods of ischemia, with ischemic depolarization
occurring within minutes of cardiac arrest.(131) Despite chest
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compressions, cerebral blood flow is not sufficient to restore
membrane polarization. Therefore the duration of global cerebral
ischemia is measured from the time from of arrest until
ROSC.(132, 133) The chance of achieving ROSC after prolonged
cardiac arrest is low therefore total cerebral ischemia time is
often below 30 min or less. If the ischemic period is prolonged
(>30min) pan-necrosis will develop however since this is not the
case after cardiac arrest the pathologic result is varying degrees
of selective neuronal death with the most vulnerable neurons
placed in hippocampus, cerebellum, striatum and cortex. (134-
136)

Ischemia/reperfusion injury in the brain shares many similari-
ties with I/R in other organs, i.e. involving calcium accumulation,
ROS generation, protease activation, mitochondrial dysfunction,
and inflammation. However, cerebral I/R also has features distinct
from other organs. In the brain, excitotoxicity injury is induced by
the release of the excitotoxic neurotransmitters, with glutamate
as the most abundant. Glutamate increases the expression of
cytotoxic cascades and amplifies calcium dyshomeostasis through
the opening of calcium channels.(130, 137, 138) Intracellular
calcium accumulation increases the proteolytic enzyme phospho-
lipase A2 associated with a rise in free fatty acids which potenti-
ates radical-meditated peroxidation of fatty acids in selective
vulnerable regions.(139, 140) Neuronal death progresses over
time, a phenomenon called delayed neuronal death. However,
the pathogenesis of delayed neuronal death is unresolved but
does involve secondary calcium accumulation, ROS, protease
activation, and up-regulation of inducible nitric oxide (iNOS) and
COX 2.(131, 141)

Following ROSC there is an initial phase of hyperemia in the
brain typically lasting 5-40 minutes depending on the insult.(142-
144) This is followed by a prolonged phase of cerebral hypoperfu-
sion, in contrast to normal perfusion in other organs. Although
delayed secondary hypoperfusion has been proposed as a cause
of secondary brain injury after cardiac arrest, human data provide
evidence that decreased cerebral blood flow is matched to de-
creased oxygen consumption,(142) suggesting that cerebral blood
flow is under autoregulatory control. Whether the hypoperfusion
is a cause of reduced metabolism due to injury or the reduced
consumption is due to hypoperfusion remains unanswered.

HEMORRHAGIC SHOCK

Trauma is the leading cause of death in the younger popula-
tion,(145) and since it primarily affects the younger generation, it
represents a heavy burden for society due to the loss of potential
years of productive life. Hemorrhage and subsequent exsanguina-
tion are the most frequent causes of acute death in the pre-
hospital setting. Overall CNS injury is the most common cause of
death,(146) while in patients admitted to the ICU multiple organ
failure is the leading cause of mortality.(146, 147)

Hemorrhagic shock is a life-threatening condition defined as a
period of reduced perfusion of vital organs, leading to inadequate
delivery of oxygen and nutrients. During hemorrhagic shock,
tissue oxygen levels are inadequate due to hypoperfusion and
decreased oxygen delivery resulting in an increase oxygen debt,
i.e. oxygen supply-demand mismatch.(148) Oxygen debt is de-
fined by the cumulative difference between the baseline (nor-
mal) oxygen consumption and oxygen consumption at any given
time point. As with focal ischemia, hypoperfusion causing low-
flow ischemia during shock leads to disturbances in cell homeo-
stasis with a reduction in ATP, cell ionic dyshomeostasis and
intracellular edema due to accumulation of osmotically active

particles.(149, 150) During the early phase of shock, a neuroen-
docrine response is activated as a compensatory mechanism.
However, if the duration of shock is prolonged and resuscitation
is inadequate, irreversible shock will develop.149 Hemorrhagic
shock is divided into three phases: 1) compensated hemorrhagic
shock, 2) decompensated hemorrhagic shock that is reversible,
and c) irreversible hemorrhagic shock.(151)

In the first phase compensatory mechanisms are composed of
increases in 1) circulating hormones, 2) heart rate, 3) myocardial
contractility, and 4) peripheral vascular tone.(149) Peripheral
vasoconstriction maintains perfusion of the heart and brain at the
expense of blood flow to other organs such as the kidney and
intestines. In the later phases of decompensated and irreversible
hemorrhagic shock the compensatory mechanisms are insuffi-
cient to maintain perfusion of the vital organs.

The primary treatment of hemorrhagic shock is surgical con-
trol and volume resuscitation with fluids and blood. Final surgical
control is rarely obtained before arrival at the operating theater,
and concern has been raised regarding the unrestricted use of
fluids before admittance to hospital with regards to the “lethal
triad” of hypothermia, acidemia, and coagulopathy.(152, 153) In
contrast to unrestricted fluid administration, hypotensive resusci-
tation is an emerging concept of maintaining a lower systemic
arterial pressure that ensures adequate tissue perfusion without
prompting re-bleeding in the early out-of-hospital environ-
ment.(152, 154) The potential protective mechanisms for hypo-
tensive resuscitation include: 1) providing sufficient perfusion to
the organs without causing extravasation and edema, 2) main-
taining 02 delivery, and 3) a reduction in the likelihood of re-
bleeding by preventing dilution of coagulation factors or by “pop-
ping the clot”.(155, 156) The optimal composition of fluids is
unknown; however, the addition of pharmacologic agents to the
resuscitation fluid that target the mechanisms of resuscitation
injury represents a novel strategy to improve outcomes after
hemorrhagic.(157)

Organ dysfunction following trauma is not only a conse-
guence of hypovolemia, but may also in the later phase develop
due to resuscitation injury (I/R injury) (Figure 2).(158)
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The inflammatory response following hemorrhagic shock can
be evoked not only during the shock phase but also during the
post-resuscitation phase,(159) and therefore represents a “two-
hit” model of injury. Several factors such as iNOS, COX-2, and
CD14 are up-regulated during shock, whereas other factors such
as nuclear factor-kappa B (NF-kB), IL-6, and G-CSF are up-
regulated after resuscitation.(160, 161) This up-regulation of NF-
KB, IL-6 and G-CSF is accompanied by an increased accumulation
of PMNs in the organs, suggesting that PMNs are an important
mediator of organ injury after hemorrhagic shock.(160, 162) That
PMNs are mediators of organ injury is further supported by stud-
ies demonstrating improved survival when anti-PMN strategies
are applied.(163) The first step in PMN extravasation is interac-
tion with endothelial adhesion molecules, enabling rolling, adhe-
sion and extravasation. In both animal models and in patients
following resuscitation from hemorrhage shock, endothelial dys-
function has been observed.(164, 165) Subsequent to the early
exaggerated inflammatory response, a state of hypo-
responsiveness or immune dysfunction eventually follows over
time, with an increased risk for sepsis and sepsis-induced organ
failure.(166, 167)

CARDIOVASCULAR DYSFUNCTION

During hemorrhagic shock myocardial contractility is initially
increased as a compensatory response to hypotension. However,
as the shock period is extended myocardial function decreas-
es.(168, 169) Despite adequate resuscitation with fluid and blood
myocardial function remains impaired when assessed by echo-
cardiography in a porcine model of shock and resuscitation, and
by in vitro perfusion in guinea pigs.(170, 171) In the early post-
resuscitation phase TNF-a and IL-1B levels are increased in the
myocardium, and when antibodies targeting TNF-a were given
before hemorrhagic shock myocardial dysfunction was prevent-
ed.(172) Similarly, using an IL-6 knock-out mice model, myocardi-
al function is preserved and activation of NF-kB and expression of
ICAM-1 is attenuated.(173) A potential mechanism for the in-
creased expression of cytokines in the myocardium could be by
al receptor activation since blockage of the receptor improves
cardiac function and prevents TNF-a expression.(174) These
studies highlight that early anti-inflammatory strategies have the
potential to improve myocardial function after hemorrhagic
shock.

ACUTE KIDNEY INJURY

Acute kidney injury (AKI) following trauma is a frequent com-
plication and is associated with increased mortality and morbidi-
ty.(175) In contrast to the heart, blood flow is red(istributed
away from the kidney even after small changes in the circulating
blood volume.(176) This decrease in renal blood flow during
hemorrhage results in impaired renal function measured as a
decrease in glomerular filtration rate (GFR) and despite adequate
resuscitation with fluid and blood GFR was in one study not re-
stored to baseline levels until 21 days after the insult.(177, 178)
The cause of AKI following shock and resuscitation is multifactori-
al, asitis in I/R, and involves impaired endothelial function (vas-
cular reactivity), tubular injury, and an accelerated inflammatory
response at reperfusion.(179, 180) As with cardiac dysfunction
following hemorrhagic shock, the production of inflammatory
mediators is proposed as a mechanism of hemorrhage-induced
AKI, as evidenced by the amelioration of AKI with inhibitors of
either TNF-a or iNOS.(181, 182) Production of ROS and intracellu-
lar calcium accumulation are implicated in the pathogenesis of I/R

injury, and in rats, strategies targeting both ROS and calcium
accumulation attenuate AKI.(177, 183)

In summary, resuscitation from cardiac arrest and hemorrhag-
ic elicits global I/R injury, thus sharing pathophysiological features
with regional I/R. However, the unique setting of cardiac arrest
and hemorrhagic shock with complex resuscitation and involve-
ment of multiple organs makes it a syndrome of its own; more
studies are warranted to explore the mechanisms.

INTERVENTIONAL STRATEGIES
POSTCONDITIONING

The relationship between infarct size and acute mortality,
morbidity and heart failure suggests that reducing infarct size
may be an important therapeutic goal.(184)

In 2003, Zhao et al.(10) showed that relief of myocardial is-
chemia in a stuttered manner, a strategy termed postcon, repre-
sents a novel and powerful approach to attenuate the deleterious
sequelae of I/R injury. In the experimental laboratory setting,
postcon was performed by sequentially releasing and reapplying
an external ligature around the coronary artery, thereby imposing
intermittent interruption of blood flow at reperfusion.(10, 185)
More recently, studies have used fluoroscopically guided angio-
plasty balloon catheters to sequentially occlude and reperfuse the
target vessel in closed-chest preparations,(186) a model which
more closely simulates the clinical situation of PCl for AMIL.The
first postcon study demonstrating a protective effect was per-
formed in the canine model using three cycles of 30 seconds of
reperfusion and 30 seconds of re-occlusion (ischemia) applied
immediately at the onset of reperfusion.(10) Since the original
study by Zhao et al. reporting significant reduction in infarct size
by postcon, myocardial salvage has been demonstrated in every
species tested, e.g. rat,(185) rabbit,(187) canine,(188) swine,(189)
and most promising in man.(190) The introduction of postcon
highlighted the importance of timing, since the protective effect
is abrogated if the start of postcon is delayed.(191, 192) This
demonstrates that I/R injury is initiated at the onset of reflow,
and what comes first must be treated first.(193) Although infarct
reduction is the most investigated endpoint of postcon, the pro-
tective phenotype also includes a reduction in the number of
arrhythmias(194) and apoptosis.(195) The protective characteris-
tics of postcon can be categorized into 1) molecular triggers, 2)
physiological mechanisms, 3) molecular targets, and 4) effectors
(Figure 3).
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Molecular triggers

The best known local mediators implicated in the protective
mechanisms of poston are the autacoids adenosine, bradykinin,
and opioids, which trigger cardioprotection by receptor-mediated
mechanisms.

The repetitive occlusions and re-occlusions by postcon delay
the washout of metabolites accumulated during ischemia, such as
adenosine.(196) Kin. et al. demonstrated that postcon delayes the
washout of endogenous adenosine, enabling adenosine receptor
(AR) activation.(197) As for adenosine, postcon maintains opioid
peptide content early in reperfusion, whereas the non-selective
opioid-receptor antagonist naloxone-abrogated protection by
poston.(198) Finally, studies have demonstrated that postcon
activated bradykinin receptor subtype 2 and mediated protection
through NO and prostaglandin synthesis.(199) In addition, several
other naturally occurring mediators have been demonstrated to
exert protective properties when administered early in reperfu-
sion. However, their involvement as a mechanism in postcon has
not been confirmed.

Physiological mechanisms

Calcium

It is recognized that calcium accumulation during I/R causes
lethal injury. Sun et al. (200) demonstrated in isolated cardiomyo-
cytes that postcon reduced calcium accumulation and lethal
injury following hypoxia and re-oxygenation. This finding was
recently confirmed by Dong et al., (201) who found a reduction in
calcium levels both intracellularly and in the mitochondria.

Recovery of pH

One physiological mechanism by which postcon may protect
the heart is by delaying the normalization of tissue pH. Reperfu-
sion results in a rapid normalization of intracellular pH, which in
turn triggers hypercontracture and activation of enzyme systems,
while delayed pH normalization keeps mPTP in a closed state.
When postcon is applied, tissue pH and coronary effluent remain
acidotic for a longer period compared with an abruptly reper-
fused heart.(202, 203) Cohen et al.(204) demonstrated in the
isolated rabbit heart that perfusion with an acidotic buffer re-
duced infarct size to the same extent as conventional postcon and
that the infarct sparing effect of postcon was reversed when the
heart was simultaneously perfused with alkalotic (vs. neutral pH)
perfusate during postcon. Inserte et al. extended these findings
by demonstrating that only postcon protocols that delayed re-
covery of intracellular pH afforded protection against I/R inju-
ry.(196) Recovery of pH is abrupt and therefore interventions that
address the pH issue must be initiated immediately at reperfu-
sion. The advantage of a prolonged recovery of pH seems to be
dependent on an inhibition of gap junction opening, attenuation
of calpain activation, and inhibition of mPTP opening.(23, 205)

Inflammation

Numerous studies have suggested that cardioprotection by
postcon is, in part, related to a reduction in the inflammatory
response. In the original study by Zhao et al.(188) postcon pre-
vented post-ischemic endothelial dysfunction as assessed by the
vasodilatory response to acetylcholine, and by a decrease in the
surface expression of P-selectin. This suggests a reduced activa-
tion of the endothelium that consequently promotes less PMIN
recruitment and adherence. Accordingly, Zhao et al.(188)
demonstrated a reduced adherence of PMNs to the post-ischemic
coronary artery endothelium, which is physiologically linked to an

impaired basal production of NO.(41, 206, 207) Furthermore,
postcon has in both animals and humans attenuated cytokine
release following I/R.(208, 209) Together these data suggest that
postcon attenuates endothelial cell dysfunction by decreasing
oxidant and cytokine generation, and by increasing eNOS activity
and NO bioavailability. The improved endothelial function and
reduction in P-selectin expression may contribute to a reduced
PMN accumulation after both short- and long-term reperfusion.
(10, 210) Furthermore postcon has attenuated the cytokine re-
lease following I/R in both animals and humans (208, 209, 211).
No-reflow

Two studies have explored the effect of postcon on the area
of no-reflow. In one study by Hale et al.,(212) postcon failed to
reduce infarct size and area of no-reflow. Whether the lack of
effect was due to an insufficient postcon protocol or postcon did
not reduce the area of no-reflow remains unknown. However
Zhao et al. (207), displayed a 22% reduction in infarct size and a
33% reduction in area of no-reflow. They used a mini-swine mod-
el and the fluorescent dye thioflavin S to identify no-reflow zones.
The role of postcon on post-ischemic blood flow remains unre-
solved at this point, and requires studies that focus primarily on
the no-reflow phenomenon.

Molecular targets

A number of transduction pathways that convey signals from
the cell membrane to the mitochondria have been discovered and
implicated in the protective mechanisms of postcon. However,
despite recent studies disputing the involvement of certain signal-
ing pathways in larger animal models,(213) compelling evidence
in smaller animals supports their involvement.(214, 215) Collec-
tively three major pathways are recognized: the Reperfusion
Injury Salvage Kinases (RISK) pathway, the Survivor Activating
Factor Enhancement (SAFE) pathway, and the cyclic guanosine
monophosphate/Protein kinase G (cGMP/PKG) pathway. The first
study implicating the RISK pathway demonstrated that postcon
phosphorylated Akt, eNOS, and p70S6K. Inhibition of phospha-
tidyl inositol 3 kinase (P13K) and Akt phosphorylation abrogated
the protective effects of postcon, suggesting a functional role for
the PI3K — Akt pathway.(214) Several other protein kinases such
as protein kinase C and extracellular signal-regulated protein
kinase 1/2 (ERK1/2) have also been implicated in the RISK path-
way.(192, 215) However the mechanisms responsible for recruit-
ment and activation of the RISK pathway remain unclear; evi-
dence supports an interaction between ligands (e.g. adenosine,
sphingosine kinase-1) and G-protein-coupled receptors at the cell
surface.(216, 217)

An alternative to the RISK pathway is the SAFE pathway. High
levels of TNF-a are detrimental and antibodies targeting TNF-a
limit infarct size and endothelial dysfunction in animal stud-
ies.(33, 218) Furthermore, TNF-a levels following I/R are attenu-
ated by postcon.(195) In contrast, Lacerda et al.(219) demon-
strated that TNF-a can mimic postcon and that the TNF-a
receptor type 2 is necessary for infarct size reduction by postcon.
In addition, both postcon and treatment with TNF-a failed to
confer an infarct-sparing effect in signal transducer and activator
of transcription-3 (STAT-3) deficient mice.(220) Upon receptor
activation, the tyrosine kinase family Janus-activated kinase (JAK)
phosphorylates and activates STAT3, which translocate to the
nucleus and potentially to the mitochondria.

A possible third signaling pathway to be activated by postcon
is the cGMP/PKG-pathway. Following ischemia, cGMP synthesis is
attenuated, (221) while preservation of cGMP levels by either NO
donors or postcon ameliorates I/R injury.(222, 223) The effects of
postcon are abrogated by inhibitors of 1) NO,(192, 224) 2) cGMP
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and 3) PKG.(223) The infusion of cGMP, and PKG inhibitors pre-
vents the normal delay in recovery of intracellular pH, suggesting
interplay between ion pumps regulating intracellular pH and the
cGMP/PKG pathway.

How the aforementioned signaling pathways converge at the
mitochondria and stimulate cell survival is debated but may in-
volve altered calcium handling, reduced apoptosis and glycogen
synthase kinase 3 beta (GSK3b)(225-227) Inhibition of either of
the three pathways leads to complete abrogation of the infarct
size reduction by postcon, revealing a potential interplay between
signaling pathways, with the mitochondria as the common effec-
tor.

Effectors

Mitochondria have gained increased attention as the end-
effector of postcon and as the pivotal site for determination of
cell survival. The protective effect of postcon is abrogated by
inhibition of the mitochondrial KATP channel,(228) while the
effect of KATP activation is abrogated by administration of radical
scavengers or hypoxic perfusion.(204, 229) While postcon delays
normalization of pH and keeps the mPTP in a closed state, rein-
troduction of oxygen enables a low ROS production by the mito-
chondria, which in turn activates protective kinase signaling in-
cluding protein kinase C(204). In addition, studies have shown
that postcon reduces the calcium load required to open the mPTP
following I/R and that infusion of atractyloside, an opener of the
mPTP, abolishes the effect of postcon.(230, 231) However the
processes by which receptor activation at the cell surface and
intracellular signaling converge and modify the mPTP are still
unrecognized.

PHARMACOLOGICAL POSTCONDITIONING

As described previously, studies exploring the mechanisms of
postcon demonstrated that a diversity of different triggers, tar-
gets, and physiological effects are involved. However, while
postcon is clinically applicably in the setting of AMI, it may not be
clinically applicable in the setting of cardiac arrest and hemor-
rhagic shock. Instead pharmacological postcon may be advanta-
geous.

One of the triggers of postcon, adenosine, exerts widespread
effects, and in combination with lidocaine, it serves as a broad-
spectrum combination therapy.

This combination therapy, adenosine plus lidocaine (adeno-
caine) will be investigated in models of cardiac arrest (Study I1)
and hemorrhagic shock (Study Ill). The following sections provide
a background on adenosine and lidocaine as the constituents of
adenocaine, and then background on adenocaine itself.
Adenosine

Adenosine is a naturally occurring endogenous nucleoside
that is generated both intra- and extracellularly by dephosphory-
lation of adenine nucleotides in response to cellular stress but
also by hydrolysis of S-adenosylhomocysteine (Figure 4). (232)

Following its production, adenosine is transported across cell
membranes via bidirectional nucleoside transporters by both
facilitated and co-transport mechanisms. Normally adenosine
levels range from 10 to 200nM, but under situations with cellular
stress, e.g. hemorrhage or ischemia, it can increase many
fold.(233-235)
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Figure 4 Metabolism of adenosine extra- and intracellular.

Adenosine exerts widespread physiological effects as an auto-
crine and paracrine signaling molecule through binding to one of
its four G-protein coupled AR subtypes (A1, A2A, A2B, and A3).

The receptors subtypes are classified by their different affini-
ties for adenosine and their distinct intracellular signaling path-
ways, which are specific for each receptor.(236)

Adenosine has many actions and among these are its cardio-
vascular effects, which include negative chronotropy, dromotro-
py, and antiadrenergic effects mediated through the Al receptor.
Due to this array of effects, adenosine is used as an anti-
arrhythmic agent for the treatment of supraventricular tachycar-
dia in the clinical setting.(237) Furthermore, adenosine acts as a
link between energy demand and supply by its endogenous vaso-
dilator effect.(238, 239) In addition, adenosine has a role as an
important regulator of inflammation, highlighted by the fact that
ARs are abundantly expressed on the endothelium, PMNs and
macrophages, and activation of the A2A and A2B receptors are
reported to be anti-inflammatory.(240)

Several studies have demonstrated cardioprotective effects of
adenosine in the setting of myocardial I/R injury when infused at
reperfusion.(241, 242) The protective effects of adenosine early
during reperfusion are due to activation of the A2 receptor, with
pronounced anti-inflammatory effects: 1) attenuated PMN super-
oxide generation, 2) decreased PMN adherence to endothelium,
and 3) a reduction in the production of cytokines.(243-245)

Besides its cardioprotective and general anti-inflammatory ef-
fects, adenosine is also involved in regulation of cerebral blood
flow and cerebral metabolic activity.(239, 246) Adenosine inhibits
the release

of excitatory neurotransmitters such as glutamate and causes
hyperpolarization, which reduces the rate of neuronal firing.(246)
This inhibitory effect by adenosine released during hypoxia on
excitatory function is to limit cellular activity and help neurons to
survive despite a reduction in supply in oxygen.(247) Further-
more, in a rat model, infusion of adenosine for 90 min following
cardiac arrest and resuscitation significantly improves outcome
and delays hippocampal cell loss.(248)

Finally, relevant to this thesis, adenosine is also involved in
the regulation of renal function.

Adenosine infusion in man lowers GFR by constricting the af-
ferent arterioles and at the same time causing dilatation of the
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deep cortical arterioles in the medulla.(249, 250) In the kidney,
adenosine is involved in regulation of the tubuloglomerular feed-
back through the A1 AR.(251) If production of ultrafiltrate in-
creases, energy requirements in the tubules are increased, lead-
ing to increased formation of adenosine and hence a reduction in
GFR. In this way, adenosine works as an important feedback
circuit whereby excess transport work in the renal tubules is
attenuated by adenosine formation.(252) Ischemia/reperfusion of
the kidney elicits an inflammatory response,(179, 180) and, in
accordance with its cardioprotective effects, infusion of adeno-
sine early during reperfusion protects the kidney from I/R inju-
ry.(253, 254) The potential protective effects are through an
activation of the A2A AR attenuating medullar hypoxia by vasodi-
latation but also by an attenuation of the inflammatory re-
sponse.(255)

The ability of adenosine to improve long-term outcome is al-
ways questioned because of its very short half-life. In in vitro
studies using whole blood, addition of low doses of adenosine
have shown that the half-life of adenosine is below 10 sec.(256)
Moser et al. (257) also using in vitro whole blood confirmed the
very short half-life of adenosine, but showed that the half-life of
adenosine was prolonged when using a higher dose of adenosine.
Adenosine is metabolized by either deamination to inosine or
phosphorylation to adenosine monophosphate; however which
pathway dominates is dependent on adenosine concentrations
and thereby its half-life.(258) In healthy volunteers, infusion of
adenosine, in increasing doses from of 2.5 mg to 10 mg, increased
plasma concentrations of adenosine and its plasma half-life from
0.92 minutes to 1.86 minutes.(259) The studies included in this
thesis used even higher concentrations of adenosine, which could
lead to higher plasma concentrations and longer half-lives. Aden-
osine may be cleared from the circulation within minutes; how-
ever the effects mediated by the binding of adenosine to its re-
ceptors my last for hours due to activation of intracellular
signaling pathways.(248, 260)

Lidocaine

Lidocaine is a local anesthetic agent normally used in the clin-
ic for its nerve-blocking effects through inhibition of voltage
sensitive fast Na+-channels. Lidocaine is approved as an anti-
arrhythmic agent,(261) and, before amiodarone, it was used as
the anti-arrhythmic drug of choice during resuscitation.(262) It
also possesses negative chronotropic and inotropic effects and
serves as a vasodilator.(263) However, data show that lidocaine
exerts (possible) anti-inflammatory effects independent of the
fast Na+ blockade mechanism, including inhibition of leukocyte-
endothelial interactions, the release of inflammatory mediators,
and a decrease in superoxide anion production.(264-266) Lido-
caine has also been shown to protect from myocardial I/R injury
by reducing final infarct size(267, 268) and the degree of apopto-
sis after cerebral I/R.(269)

In contrast, the effects of lidocaine on renal function are con-
troversial, with some studies showing both protective effects
after murine septic peritonitis and exacerbation of renal dysfunc-
tion after renal I/R.(270, 271)

Magnesium

Magnesium is a naturally occurring ion in the human body
and is involved in the regulation of several important functions.
Normally only 1% of total body magnesium is located in the
blood, whereas approximately 35% of the total magnesium con-
tent is in metabolic tissues bound to ATP. In situations of ATP
depletion, e.g. hemorrhagic shock or ischemia, the levels of free
magnesium are increased due to hydrolysis of ATP.(272, 273)

Magnesium is involved in several critical cellular functions such as
1) maintenance of cardiac conduction, 2) vascular tone, 3) mem-
brane ion channel activity, including Na+/K+ pump activity and
intracellular Ca2+ handling, and 4) as a cofactor for ATP utilization
or synthesis.(274, 275) Magnesium has been used as an adjunc-
tive in surgical cardioplegia since the early 1970s 276 due to its
anti-inflammatory properties and its role as a natural calcium
blocker, protecting cells against I/R-induced Ca2+ overload.(277,
278) In addition, treatment with magnesium reduces infarct size
following myocardial I/R, potentially through an adenosine-
mediated effect.(279)

An apparent limitation to the experimental model of I/R using
the snare technique to induce ischemia is the absence of micro-
embolization, which is often seen in patients.(298) The rat model
was chosen for the PMN inhibition contributes to cardioprotec-
tion by postconditioning”.

depletion study since the PMN serum was commercially
available, and a large number of studies have demonstrated the
effects of PMN depletion in the rat.(299, 300) PMN depletion has
only been performed in few large animal studies, and this was by
PMN depletion filters, injections of mechlorethamine and home-
made anti-serums.(301, 302)

However, the small size of the rat heart precludes direct sam-
pling of coronary venous blood from the myocardial area at risk
(AAR). To determine whether «02 production by PMNs originat-
ing from the AAR was attenuated by postcon, we therefore used a
canine model of I/R in which coronary venous blood was sampled
from the anterior ventricular vein draining the left anterior de-
scending artery perfused myocardium.(303)

In both the rat and the canine model, the protective effect of
postcon has been associated with a reduction in PMN accumula-
tion, inflammation and oxidative stress, making it relevant to
compare the models. Therefore, the results may pertain to both
species.

The pig as an experimental model of cardiac arrest and hemor-
rhagic shock

The pig is very comparable with humans with regard to size,
physiology and anatomy. The porcine kidney is as in humans
multirenculate, multipapillate and renal electrolyte regulation is
very similar to what is seen in man.(304) Furthermore, both the
porcine heart and cardiovascular physiology share many similari-
ties with humans.(3059 In addition, the gyrated pig brain is more
similar to the gyrated primate brain than the rodent lissence-
phalic brain, making the pig a highly relevant model of cardiac
arrest-induced neurological injury.(306) The use of large animals
also allows for accurate measurements of urine production, uni-
form consecutive blood sampling, and accurate hemodynamic
monitoring of cardiac function with pressure catheters.

The cardiac arrest model

Several different animal models of cardiac arrest exist. It can
be induced by either asphyxia, infusion of potassium, electrical
stimulation of the heart, or myocardial ischemia.(117, 126, 307)
Cardiac arrest due to asphyxia is the most common etiology in
children, while cardiogenic cardiac arrest (i.e. AMI) is most com-
mon in adults.(308) In our model, cardiac arrest was induced by
the placement of a pacing lead and delivery of a 9-volt electrical
signal to the right atrial septum or ventricular wall, resulting in
immediate VF.

The duration of cardiac arrest is highly predictive of outcome,
and with increasing duration of cardiac arrest, post-resuscitation
organ function decreases.(121, 132, 309, 310) In the first pilot
studies conducted to determine the appropriate duration of VF,
resuscitation started after 5 min of VF. However, due to high

DANISH MEDICAL JOURNAL 10



rates of ROSC the duration of arrest was then increased to 10
minutes. This resulted in unsuccessful resuscitation attempts, so
the duration of cardiac arrest was set at 7 minutes, which result-
ed in acceptable ROSC rates(Figure 6).

I
| R [ ¢ ¢ T |
[ B [ 7 T |

—_ e 5
1 J

7 IEIF.‘IJ ﬁl]NIF[I
T ¥ ’

Sham (n=7) Post-op [ |

Cardiae arrest (CA)(n = 16)

Cardize arrest + Adenocaine
(CA + Adenocaing) (n=12)

| 24hours

T
Bascline VF | CPR

.
Post ROSC Paatop
abservation

Adenocaine infusion
Figure 5 Schematic diagram of the study protocol used in the cardiac
arrest study

The pigs were resuscitated according to the 2005 advanced
life support guidelines, however with the exception of calcium
and bicarbonate administration.(311)

The administration of calcium in the case of PEA was based on
guidelines stating that intravenous calcium chloride is indicated in
the presence of hypocalcemia, which frequently occurs following
resuscitation.(312) Ten ml of 8.4% bicarbonate were injected
after 1 minute of chest compressions despite that routine of
administration of bicarbonate is not recommended. Administra-
tion of bicarbonate was used due to improvements in the rate of
ROSC in a porcine pediatric cardiac arrest study performed simul-
taneously at the cardiothoracic research laboratory, Emory Uni-
versity.

The model of electrically induced VF was chosen to explore
the effects of adenocaine following global I/R injury from cardiac
arrest, since the majority of cardiac arrests are of cardiac origin.
Animal models have demonstrated that organ dysfunction after
cardiac arrest is dependent on the method used to induce cardiac
arrest, with differences between cardiac arrest induced by either
electricity, asphyxia, or ischemia.(117, 118, 313) As previously
stated, adenocaine reduces infarct size following regional I/R
injury in the heart.(284, 288) If a model of ischemia-induced VF
had been used, it would not be possible to differentiate whether
the systemic effects were due to a reduction in infarct size and
hence improved cardiac function or due to systemic effects of
adenocaine. Therefore, a model of electrically induced cardiac
induced was chosen instead of a model of ischemia-induced
cardiac arrest.

The hemorrhagic shock model

Hemorrhagic shock can be divided into models of fixed-
pressure, fixed-volume, or uncontrolled hemorrhage with or
without concomitant tissue injury.

In the hemorrhagic shock study we used a pressure controlled
hemorrhagic shock model without concomitant tissue injury.
Tissue injury was not induced so that the study could solely ex-
plore the effects of adenocaine treatment on global I/R, without
influencing factors from damaged tissue.

The pressure-controlled hemorrhagic shock model was first
described by Wiggers et al.,(314) who bled animals to a prede-
fined MAP for a specific time period. The pressure-controlled
hemorrhagic shock model is very reproducible and standardized
making it an excellent model for the comparison of treatment
effects. Furthermore, the first studies demonstrating a protective
effect of treatment with adenocaine during hemorrhagic shock

was performed in pressure-controlled models.(291, 315) Howev-
er, the model has certain drawbacks. In contrast to the pressure-
controlled model, bleeding in the clinical scenario is often uncon-
trolled and with concomitant tissue injury.(316, 317) With ongo-
ing bleeding, the coagulation system is activated, and, in addition,
in the presence of tissue injury, inflammatory mediators are
released into the circulation.(161) Furthermore, in pigs the vol-
ume of blood needed to reach a specific level of shock is reduced
in the presence of concomitant tissue injury or if bleeding is un-
controlled.(318, 319) A clear limitation of our model was the use
of heparin, which is clinically irrelevant. Heparin was used pri-
marily for 2 reasons: 1) to maintain the patency of the sheaths
during withdrawal of blood, and to avoid the infusion of throm-
bus material 2) due to the extensive catheterization with two
catheters placed in the left ventricle, a swan ganz catheter placed
in the pulmonary circulation and a sizing ballon placed in the vena
cava. During the study microspheres was injected through the
pigtail catheter to measure regional blood flow, blood samples
was withdrawn from the swan ganz to calculate oxygen consump-
tion and hypertonic saline was injected through the sizing ballon
to calculate parallel conductance. If heparin was not to be used
the catheters would clot and we would not have been able to
measure blood flow, calculate oxygen consumption and cardiac
function by pressure-volume analysis. Studies have demonstrated
protective effects of pre-heparinization on microvascular function
following hemorrhagic shock, (320, 321) however at doses 5 to 10
times higher than used in the current study. Furthermore, all
groups were treated with the same dose of heparin, making
adenocaine the only true difference between groups.

In the current hemorrhagic shock study, a model of two-
staged bleeding was used, with a fast bleeding phase (2.15
ml/kg/min) lasting 7 min followed by a slower bleeding phase
(1.15 ml/kg/min) until the target MAP of 35 mmHg was reached
(Figure 7).
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Figure 6 Schematic diagram of the study protocol used in the hemor-
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This two-phase approach results in a more relevant physio-
logical response that resembles the clinical scenario, with fast
bleeding during the early stage of hemorrhage and a slower rate
as arterial pressure decreases.(322) The MAP of 30—35mmHg was
maintained for 90 min, resulting in eight pigs dying due to VF, and
a total blood loss of approximately 74%, demonstrating the sever-
ity of the model. The choice of a 90-min shock period was based
on pilot experiments demonstrating a 40% reduction in GFR at
the end of the experiment.
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ENDPOINTS
Infarct size

Infarct size (study 1) was assessed using triphenyltetrazolium
chloride (TTC). TTC is reduced by cellular dehydrogenase enzymes
and cofactors to a red compound (formazan). In the infarcted
myocardium, cellular dehydrogenase activity is lost, which is
incompatible with cellular survival. Cells that are viable reduce
TTC and are stained red. At the end of the experiment the AAR
was determined by injecting 20% unisperse blue dye via the ex-
ternal jugular vein after the left coronary artery was ligated. This
way normal tissue is stained blue while the AAR is left unstained.
Extra-left ventricular tissue was removed and the left ventricle
was sliced transversely into five to six slices. The non-stained AAR
was separated from the blue-stained non-ischemic zone myocar-
dium, and the AAR was incubated in a 37°C 1% solution of buff-
ered (pH 7.4) TTC for 15 minutes to identify the area of necrosis
(AN) within the AAR (Figure 8).

Figure 7 One representative slice from a canine heart subjected to re-
gional I/R. The blue area represents the normal tissue, while the non-
blue area represents area at risk. Within the area at risk, viable tissue
stains red and necrotic tissue is pale

The heart was then stored in 4% formaldehyde buffer to enhance
color contrast. The TTC-negative area and TTC-positive areas were
meticulously separated and weighed. The gravimetric technique
of infarct size quantitation has been used for years,(198, 323) and
several studies(324, 325) have demonstrated a very high correla-
tion between planimetric and gravimetric analysis.(328, 329)
From the study by Toombs et al.,(325) it was shown that the
correlation between planimetry and gravimetric methods is 0.826
for the AAR/LV and 0.874 for An/AAR.
Coronary Perfusion Pressure

Normally the myocardium is supplied by blood primarily dur-
ing diastole due to the development of high left ventricular tissue
pressures and vascular resistance that impede flow through the
intramural vessels during systole. During CPR (study II), there is no
contraction of the myocardium, and the resistance vessels are
fully dilated, making the pressure gradient the main determinant
of myocardial blood flow, which is often below 30% of normal
levels.(326, 327) Niemann et al.(328) and Ditchey et al.(329)
proposed that the coronary perfusion pressure (CPP) is the differ-
ence in pressure between the aorta and the right atrium and that
myocardial blood flow was dependent on the pressure difference.
During the compression phase the coronary flow is retrograde,
whereas it is antegrade during the decompression phase.(330,
331)

The importance of the CPP is illustrated by the close relation-
ship between CPP and myocardial blood flow and successful

resuscitation.(332, 333) Studies demonstrated that higher CPP
results in higher rates of ROSC and both short-term and long-term
survival.(332, 334-336)

The correlation between CPP and survival following cardiac
arrest highlights CPP as an important research tool to monitor
resuscitation efforts.

The Utstein-style guidelines for uniform reporting of laborato-
ry CPR research specify that the point just before compression
(end-diastole) should be used for calculating the CPP by subtract-
ing the aortic and right atrium pressures (Figure 9).(337)
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Figure 8 Example of calculation of the CPP at the point just before com-
pression

However, controversies exist regarding the optimal method
for calculating the CPP with regard to the time point of subtrac-
tion or whether to use an integrated approach.(338) Kern et
al.(331) demonstrated that during the compression phase of CPR,
coronary flow was retrograde (blood moving from the coronary
arteries into the aorta) independent of the CPP.

Otlewski et al.(338) demonstrated nicely that the CPP is very
dependent on the choice of methods, yielding differences in the
CPP up to 27 mmHg. The integrated approach is favored by some,
since it also incorporates pauses in CPR and subtracts retrograde
flow during the compressions phase; however during advanced
life support where the pig is intubated, chest compressions are
uninterrupted. Furthermore, when using the integrated ap-
proach, the negative CPP during the compression phase is sub-
tracted from the positive CPP during the relaxation phase, which
could potentially cause an underestimation of the CPP. We chose
to measure the CPP according to the Utstein guidelines as the
difference between aortic pressure and right atrial pressure at the
point just before compression calculated as the average of the
last 10 beats of the 1st cycle of compressions.

Cardiac function

Evaluation of cardiac function (study Il and IIl) is complex, and
many indices are used as measures of cardiac function. A correct
assessment of ventricular systolic and diastolic functions is fun-
damental for understanding cardiovascular pathophysiology and
to evaluate the efficacy of interventions. However, indices of
cardiac function are influenced by many factors such as preload,
afterload, and heart rate. In the present thesis, clinical indices,
pressure-derived indices, and pressure-volume relationships were
used to evaluate cardiac function. The clinical indices used were
cardiac index (Cl) and ejection fraction EF. Cardiac index is de-
fined by cardiac output divided by body surface area or, as here,
divided by body mass, while cardiac output is the volume of blood
being pumped by the heart in a minute. The other clinical index
used, EF, is the percent of the end-diastolic volume that is ejected
during systole per heart beat and is calculated accordingly: (end-
diastolic volume — end-systolic volume) / end-diastolic volume.
The pressure derived factors used to assess cardiac function were
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the maximum positive development of ventricular pressure over
time (dP/dtmax) and the maximum negative development of
pressure over time (dP/dtmin) (Figure 10).
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Figure 9 A representative example of a cardiac cycle. Pressure (upper
graph) and volume (lower graph) curves illustrate the various phases of
one single cardiac cycle. Peak systolic pressure (PSP), end-diastolic and
end-systolic pressure (EDP, ESP), end-diastolic and end-systolic volume
(EDV, ESV), relaxation time (t), stroke volume (SV), maximum and mini-
mum rates of pressure rise and decline during ejection (dP/dtmax) and
relaxation phase (dp/dtmin).; VIC, ventricular isovolumetric contraction;
EP, ejection phase; diastole: RP, relaxation phase; FP, filling phase; AC,
atrial contraction. Reprinted with permission: Yerebakan C. et al.;
Interact CardioVasc Thorac Surg 2009;9:163-168 Copyright ©2009 The
European Association for Cardio-thoracic Surgery

The clinical indices and pressure-derived factors are all easily
measured, but they are all sensitive to changes in preload, after-
load and heart rate. However, some discrepancy exists with re-
gard to the degree of sensitivity to changes in afterload for
dP/dtmax, In some papers (339, 340) an increase in afterload is
associated with an increase in dP/dtmax while in other papers no
effect of afterload on dP/dtmax is found.(341, 342) It is argued
that if the afterload increases, the rate of pressure development
must be increased due to a fixed duration of the systolic phase.
However, some studies show that at low pressures, dP/dtmax is
obtained right at aortic valve opening due to premature shorten-
ing, while at higher pressure, dP/dtmax is obtained before aortic
valve opening. These results indicate that aortic valve opening
pressure does not usually affect dP/dtmax unless arterial pressure
is low enough to limit its full development.(342, 343) However it
is generally believed that pressure-derived measurements should
be interpreted with caution in cases where there are changes in
loading conditions, which will be encountered in the cardiac
arrest and hemorrhagic shock studies.

To circumvent the influence of loading conditions, we also as-
sessed cardiac function using pressure-volume indices, which
allows determination of ventricular performance independent of

loading conditions. The following parameters were calculated
using instantaneous pressure-volume data: the end-systolic pres-
sure—volume relationship (ESPVR), preload recruitable stroke
work (PRSW), and the end-diastolic pressure—volume relationship
(EDPVR).

ESPVR and PRSW characterize the systolic function of the ven-
tricle, while EDPVR describes the passive properties of the ventri-
cle (compliance), with the muscles in a relaxed state, hence
changes in slope of the EDPVR are due to changes in myocardial
material properties.(344) During the cardiac cycle, the pressure-
volume “loop” progresses in a counter clockwise fashion, with the
lower right pressure-volume point coinciding with the end of
diastole, while the upper left corner coincides with the end of
systole (Figure 11a). During changes in loading conditions by
either preload reduction or afterload elevation, a series of evenly
declining or increasing pressure-volume loops are produced (Fig-
ure 11b).
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Figure 10 A) Schematic diagram the cardiac cycle B) Schematic diagram
of the cardiac cycle during a preload occlusion resulting in a reduction in
ventricular filling. The lines represent connected end-systolic and end
diastolic pressure. Reprinted with permission. Burkhoff D et al. Am J
Physiol Heart Circ Physiol 2005;289:H501-H512 ©2003 by American
Physiological Society

The ESPVR relationship is constructed by connecting end-
systolic pressure-volume points (upper left hand corner of each
loop), while the EDPVR relationship is constructed by connecting
end-diastolic pressure-volume points (lower right hand corner of
each loop). The third parameter derived from the pressure-
volume loops is PRSW, that is, the relationship between internal
stroke work and end-diastolic volume.(345) The stroke work is
derived from the area inscribed by each pressure-volume loop.
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The ESPVR and PRSW are both characterized by a slope and
volume axis intercept (V0) portraying a linear relationship. The
slope of PRSW has the unit (mmHg - ml - ml-1) and is regarded
independent of heart size, making comparisons of contractility
between species possible.(344, 345) In contrast, the slope of the
EDPVR is nonlinear, and a variety of curve fits have been applied
to describe the EDPVR.

ESPVR, EDPVR, and PRSW are generally accepted to be load-
independent measures of ventricular function with sensitivity to
contractile state and inotropic agents.(344, 346, 347)

The technique requires simultaneous recordings of instanta-
neous left ventricular volumes and intraventricular pressures in
vivo. The ventricular volume is measured using the conductance
technique.(348) The pressure-volume catheter is equipped with
equally spaced electrodes with a current applied between the
first and last electrode, while the inner electrodes measure the
voltage changes that correspond to the conductivity of the blood.
These electrode pairs divide the LV cavity into segments that are
stacked and summated to give the total conductance, which is the
sum of blood conductance and conductance of contiguous tissues
including myocardium, pericardium and lungs: Gmeasured =
Gblood + Gtissue. Gtissue is referred to as parallel conductance.
During injections of hypertonic saline, the conductivity of blood
changes while tissue conductivity is unchanged, which allows the
separation of blood conductance from tissue conductance (paral-
lel conductance) so that the tissue conductance component can
be subtracted. Blood conductivity (using hypertonic saline) was
measured at baseline and after infusion of shed blood while the
electric resistance of blood (rho) was measured repeatedly
throughout the hemorrhagic shock study because of the large
fluid fluctuations.

The pressure-volume-derived measurements have the clear
advantage of being insensitive to changes in preload and after-
load. However, they are still sensitive to large changes in heart
rate, and since they require simultaneous recordings of instanta-
neous left ventricular volumes and intraventricular pressures, it is
technically more difficult than the indices derived from pressures
only.

The use of pressure-volume loops is also associated with limi-
tations that have to be accounted for:

In general the ESPVR are not always linear (349); however if
the slope of the relationship is calculated from data points within
a narrow pressure and volume range, the assumption of a linear
relationship is acceptable.

During preload occlusions achieved by transiently occluding
the inferior vena cava to generate declining loops, arterial pres-
sure decreases, with potential sympathetic reflex-mediated in-
creases in heart rate and contractility, which can affect measure-
ments. To avoid this, preload occlusions were performed in
triplicate over a relative short period of time (10 seconds), with
sufficient pauses in between to avoid sympathetic reflex-
mediated increases in heart rate and contractility and with a
sufficient number of beats (minimum of 10)

Changes in calcium levels during arrhythmias can potentially
affect the myocardial contractility; this was circumvented by
excluding pressure-volume loops in pressure-volume data sets
containing arrhythmias.

Blood flow

The injection radioactive microspheres and the collection of a
reference blood sample have been used for decades to estimate
organ perfusion in different experimental settings.(350, 351)

Measurements using microspheres serve as the gold standard for
evaluation of tissue perfusion and were used in study Il and IIl.
The use of polystyrene neutron-activated microspheres circum-
vents the disadvantages of radioactive microspheres and the
handling of radioactive waste.(351, 352) However, important
considerations must be taken into account to ensure precision of
the measurements. A uniform distribution of microspheres to all
organs is required, and is ensured by injection into the left atri-
um/ventricle for adequate mixing of microsperes. Signal strength
for optimal counting characteristics is ensured injecting a suffi-
cient number of microspheres.(353) It is recommended that a
minimum of 400—600 microspheres is needed per tissue sam-
ple.(354) The following equation provided by the manufacturer
was used to calculate the number of microspheres to be injected:
Y =1.2-106 + 1.9-105-weight. One gram tissue samples are gener-
ally sufficient to ensure entrapment of enough microspheres for
optimal counting. Furthermore, it is important that the micro-
spheres are completely entrapped in the vascular beds down-
stream from the site of injection during the first circulation and
that the microspheres must remain entrapped until counted. The
15-um microspheres are in general accepted due to a distribution
similar to red cells, and at the same time the degree of non-
entrapment is minimal.(354)

A last consideration is that injection and entrapment of the
microspheres must have no effect on either the general circula-
tion or on local organ hemodynamics despite the entrapment in
the microcirculation. Studies have demonstrated that injection of
even large numbers of microspheres does not cause any signifi-
cant physiological effects.(355, 356) Less than 1% of the capillar-
ies are plugged by entrapped microspheres per injection, which is
not sufficient to induce tissue ischemia. In the cardiac arrest and
hemorrhagic shock studies, the following technique was used:

Neutron-activated microspheres (15 um diameter, BioPhysics
Assay Laboratory, Inc, Worcester, MA, USA) were delivered
through a pig-tail catheter placed in the left ventricle to measure
local organ blood flow. Just before microsphere injection, a refer-
ence sampling of blood from the femoral artery was started, and
a reference sample was withdrawn for 90 seconds at a rate of 7
ml/min in study Il and 6.6 ml/min in study IIl. The reference blood
sample was centrifuged and the supernatant was removed. At the
end of the experiment, 1 to 1.5 gram of tissue samples was har-
vested from the organs of interest. The reference blood sample
and harvested tissue were dried overnight and shipped to the
manufacturer. The microspheres are activated by neutron bom-
bardment, enabling measurement of radioactive decay.

The regional blood flow (expressed as ml/min/g tissue) is then
calculated as ((flow in the reference sample - counts per min in
tissue samples)/ counts per min in the reference sample)/tissue
weight (g).

Renal Function

Renal function during hemorrhagic shock (study Ill) was esti-
mated using GFR, plasma and urinary markers of renal function.
GFR is the gold standard in evaluating renal function, and, in the
pig, chromium-51-ethylenediaminetetraacetic acid (Cr-51-EDTA)
clearance has been shown to accurately estimate GFR (357). In
the hemorrhagic shock study, we determined Cr-51-EDTA clear-
ance using a continuous infusion clearance technique with a bolus
injection at baseline followed by at steady infusion during the
remainder of the experiment. The disadvantage of this method is
some imprecision when urine volumes are small; however, it
allows for measurement of renal function sequentially over time,
and to quantify changes from hour to hour. In pilot experiments
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baseline was extended by 1 hour to ensure that chromium levels
were stable before bleeding was started (Figure 12). The low
urine production during bleeding caused Cr-51-EDTA concentra-
tions to increase dramatically in the pilot experiments. Due to
this, Cr-51-EDTA infusion was turned off during the bleeding
phase and was turned on again at fluid resuscitation in order to
ensure a steady-state concentration.. Blood and urine samples
were counted twice using a gamma counter (Cobra Il, Packard,

Meriden, CT, USA). GFR was calculated using the equation: GFR =

(Vurine - CPMurine, 1ml) / CPMplasma, 1ml: Vurine: Volumen of

urine; CPM: Counts per minute. Counts were corrected for back-
ground activity and physical decay using the equation: CPMdecay
(CPM-background) / (e(-In2*(elapse time/t%))), t¥% (51CrEDTA)

=27.8 days.
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Figure 11 Representaive example of Cr-51-EDTA levels during experi-
ments where infusion was continued during bleeding, and experiments
where infusion was paused during bleeding.

RESULTS

The majority of results obtained for this dissertation are re-
ported in the individual papers, while only a summary of the
results from each paper will be presented below.

STUDY I:

To aim of study | was to investigate whether the infarct spar-
ing effect of postcon involves inhibition of PMN functions. The
main finding in study | was that postcon initiated immediately at
reperfusion reduced infarct size and PMN accumulation in a rat
model of myocardial I/R (Figure 13).
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Figure 12 Left figure (A): Infarct size expressed as a percentage of the
area at risk in each rats for all four groups. Values represent mean +

SEM. *P < 0.05 vs. control. (AN/AAR, area of necrosis/area at risk). Right
Figure (B): Treatment with postcon, PMN antiserum, and postcon + PMN
antiserum significantly decreased PMN accumulation. Values are mean +

SEM; *P < 0.05 vs. values in control group; TP < 0.05 vs. values in post-
con group; #P < 0.05 vs. values in PMN antiserum group

However when postcon was applied in already PMN-depleted
rats, no further reduction in infarct size was found. Furthermore,
in the canine model, postcon reduced infarct size and attenuated
superoxide anion production by PMNs in coronary venous blood
draining the AAR (Figure 14).
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Figure 13 Superoxide anion generation in local coronary venous blood at
baseline, 2 h and 24 h of reperfusion in control and postcon animals.
Values represent mean SEM. *P < 0.05 vs. baseline, TP < 0.05 vs. control.

STUDY II:

Study Il tested the hypothesis that adenocaine attenuates 1)
myocardial dysfunction, 2) systemic inflammation and 3) brain
injury in a porcine model of cardiac arrest. Median time to ROSC
was 360 seconds in both groups, with 11 out of 16 (69%) pigs
achieving ROSC in the cardiac arrest group and 7 out of 12 (58%)
pigs in the cardiac arrest + Adenocaine group (p=0.57), summa-
rized in table 1.

Table 1
Group
(Median; Interquartile range (IQR))
Cardiac arrest Cardiac arrest +
Adenocaine
ROSC 5/16 5/12
Time to ROSC 360(240-420) 360(240-260)
(seconds)
Total dose of EPI 1.44(0.74-1.7) 0.91(0.69-1.84)
Number of shocks 2(1-3) 2(1-2)
per surviving pig
CPP 17.8(13.7-22.1) 32.1(22.4-37.5)
Myocardial blood 0.07-(0.04-0.21) 0.11(0.03-0.28)
flow during CPR
(ml/min/g tissue)

Treatment with adenocaine during resuscitation significantly
improved early myocardial function, evidenced by significant
improvements in dp/dtmax and dp/dtmin and by a lack of a
rightward shift in the VO-intercept of the ESPVR. (Figure 15)
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Figure 17 Left figure (A): MAP, clearly showing the different phases of
the study (Median: within-animal SD, 0.08; total SD, 0.12). *Significant
time/group interaction compared with both sham groups (ANOVA).
Right figure (B): Volume of fluid required to maintain a MAP af minimum
50mmHg for 30min; # p=0.02
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Figure 14 Left figure (A): Maximum positive development of ventricular
pressure over time (dP/dtmax) (Mean: within-animal SD, 265.6; total SD,
337.4). Right figure (B): Maximum negative development of pressure
over time (dP/dtmin) (Mean: within-animal SD, 173.9; total SD, 283.5): *
Significant time/group interaction between cardiac arrest (CA) and CA
+Adenocaine; #Significant time/group interaction between sham and
cardiac arrest (ANOVA)

Neurological function was assessed by neurologic deficit
scores (0= normal; 500= brain death) and histological evaluation
(score of 0-4). The median neurologic deficit score was 17.5 (IQR
0:75) in the cardiac arrest group and 35 (IQR 15:150) in the cardi-
ac arrest + Adenocaine group, both being significantly higher than
shams O(IQR 0:0). The histological score in hippocampus and
cortex tended to be lower in the cardiac arrest + Adenocaine
group vs. the cardiac arrest group; however, the histological score
was not different in either of the CA groups when compared to
shams (Figure 16).
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Figure 15 Left figure (A): Histology scoring in the hippocampus showed
no difference between groups; Sham 1(IQR 0.4:1.2) cardiac arrest 1(IQR
0.8:1) cardiac arrest + Adenocaine 0.6(IQR 0.6:0.8) (p=0.19) Right figure
(B): Similar to hippocampus no difference in histology scoring was found
in cortex; Sham 0.6(IQR 0.4:0.8) cardiac arrest 0.7(IQR 0.4:1) cardiac
arrest + Adenocaine 0.4(I1QR 0.4:0.4) (p=0. 32)

Systemic inflammation was evaluated using superoxide anion
production after stimulation by opsonized zymosan (OPZ) and by
plasma cytokine levels. In the cardiac arrest group (n=5) OPZ-
induced superoxide anion production increased significantly

during the course of the experiment, whereas this was significant-
ly attenuated 120 min after ROSC in the cardiac arrest + Adeno-
caine group (Figure 17). Overall, cardiac arrest and resuscitation
were not associated with an increased production of the meas-
ured cytokines (IL-1B, IL-6, IL-8, IL-10, and TNF-a).
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Figure 16 Total superoxide anion generation induced by OPZ (0.2mg/ml)
at different time points and normalized to the basal production. Super-
oxide anion production was significantly attenuated by AL 120min after
ROSC (Control: 4021155.6 vs. Adenocaine: 151.1+20.1; p<0.05). Means
SEM *Significant vs. baseline and 30-min CA; # Significant vs. 120min
CA +AL

STUDY IlI

In the third study, the aims were to investigate the effect of
ALM/AL on the initial fluid requirement during the fluid hypoten-
sive resuscitation phase, and the effects of adenocaine on cardiac
and renal function in a porcine model of hemorrhagic shock. In
accordance with the protocol, MAP during hypotensive resuscita-
tion was similar in the hemorrhage groups, but the fluid volume
needed to maintain a target MAP of 50 mmHg was 41.4 (Cl: 27.7
—61.8) ml/kg in the hemorrhage control group and 24.7 (Cl: 19.4—
31.5) ml/kg in the hemorrhage + ALM/AL group (p=0.02).

Infusion of ALM during fluid resuscitation was associated with
a significant increase in systemic vascular resistance index and
cardiac contractility (dP/dtmax) (Figure 19).
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Figure 18 Left figure (A): Systemic vascular resistance index (Median:
within-animal SD, 0.18; total SD, 0.23). Right figure (B): Maximum rate of
pressure development over time (dP/dtmax). *Significant time/group
interaction compared with both sham groups (ANOVA); 9 Average mean
level significantly different during reperfusion when compared to sham
groups; ¥ Significant difference between hemorrhage groups during
hypotensive resuscitation.

Infusion of high dose AL in 0.9% NaCl with return of shed
blood transiently reduced whole body oxygen consumption
(VO2). The decrease in VO2 was due to an increase in mixed
venous oxygen content in the ALM/AL group, without difference
in cardiac index between hemorrhage groups. (Figure 20).
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Figure 19 Left panel (A) Cardiac index (Median: within-animal SD, 0.18; total SD,
0.23). Right panel (B) Whole body oxygen consumption decreased by 27% after
infusion of high dose AL consumption (Median: within-animal SD, 0.19; total SD,
0.22). *Significant time/group interaction compared with both sham groups
(ANOVA); ¥ t-test on difference from start of blood infusion to 30 min after blood
infusion between hemorrhage groups. Cardiac function evaluated by ESPVR and
PRSW, and renal function evaluated by GFR and plasma creatinine, were signifi-
cantly improved with ALM/AL (Figure 21).
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Figure 20 Upper left figure (A): Preload recruitable stroke work (Mean:
within-animal SD, 0.36; total SD, 0.52). Upper right figure (B): End-
systolic pressure-volume relationship (Mean: within-animal SD, 0.36;
total SD, 0.62). Lower left figure (C): Glomerular filtration rate (Mean:
within-animal SD, 11.3; total SD, 16.6) Lower right figure (D): Plasma
creatinine levels (Mean: within-animal SD, 6.9; total SD, 16.75).
*Significant time/group interaction compared with both sham groups
(ANOVA) # Significant time/group interaction between hemorrhage
groups during reperfusion (ANOVA). ¥ t-test on difference from baseline
to end of experiment between hemorrhage groups

DISCUSSION

The role of PMNs in the cardioprotective effects of postcondi-
tioning

In the first study, using a rat model of regional ischemia and
reperfusion, it was demonstrated that postcon reduced infarct
size. However, when postcon was applied in PMN-depleted rats,
no further reduction in infarct size was observed. Furthermore, in
a canine model of regional I/R, postcon attenuated PMN superox-
ide production, implying that cardioprotection by postcon in-
volves direct inhibition of PMNs.

The first study by Zhao et al. (10) that introduced postcon,
demonstrated that postcon was associated with a reduction in
expression of P-selectin, PMN accumulation, and PMN adherence
to the endothelium, suggestive of a potential effect of postcon on
PMN function. However postcon is also cardioprotective in PMN-
free environments, disputing a significant role of PMNs as a part
of postcon.(47) When PMNs are added to in vitro preparations, a
further decrease in post-ischemic endothelial function (40) and
contractile function (39, 54) relative to the PMN-free cohort have
been reported. This suggests that PMNs do participate in I/R
injury and that the dependence of postcon on circulating factors
should be investigated in the presence of these factors using in
vivo models.

If the application of postcon is delayed or too many repetitive
occlusions are used, the protective effect is abolished.(358) This
demonstrates that the early minutes of reperfusion are essential,
and, that despite the short time window of postcon, it may affect
long-term effects of I/R. Several studies have shown that the
duration of postcon is sufficient to activate G-protein coupled
receptors (i.e. adenosine receptors),(197) phosphorylate
NO,(214) reduce surface expression of P-selectin, and reduce
cytokine production. Ultimately, this leads to a reduction in PMN
adherence to the coronary vascular endothelium. Extravascular
accumulation of PMNs occurs several hours after reperfusion,
whereas intravascular activation, adhesion to endothelium, and
accumulation occurs within minutes of reperfusion, manifested as
PMNs rolling along the endothelium. Entman et al.(359) demon-
strated that immediately upon adhesion, the neuptrophils release
superoxide anions, suggesting a rapid adhesion-dependent activa-
tion of the NADPH oxidase. This demonstrates that PMN-
mediated injury occurs in the early phase of I/R and coincides
with the existence of endothelial dysfunction within 2.5 min after
reperfusion.(59) Thus, postcon despite its short duration seems to
prevent endothelial dysfunction during the early minutes of
reperfusion via inhibition of PMN adherence, superoxide release,
subsequent accumulation and damage.(10) However it is difficult
to completely separate cause and effect in this experiment. The
changes in PMN function and oxygen radical generation following
postcon could all be due to the smaller infarct size produced by
postcon.

Effect of adenocaine on global ischemia-reperfusion injury

In the case of cardiac arrest and hemorrhagic shock, ischemic
postcon may not be applicable, whereas pharmacological postcon
could be a suitable alternative. Studies exploring the effects
postcon demonstrate that pharmacological strategies targeting
reperfusion injury must be initiated at the onset of reperfusion
and they must target several aspects of reperfusion injury, e.g.
PMNs. Adenocaine is a promising agent to trigger pharmacologi-
cal postconditioning because it can be administered at reperfu-
sion, and, due to the combination of the two drugs adenosine and
lidocaine, it exerts broad-spectrum effects.

Despite that select pharmacotherapy during resuscitation in-
creases the rate of ROSC, hospital survival to discharge has not
been correspondingly increased.(82) In study Il in this thesis, early
infusion of adenocaine during resuscitation was used to target
the post-cardiac arrest syndrome. Infusion of adenocaine im-
proved early myocardial function, augmented myocardial and
pulmonary blood flow and reduced systemic inflammation, but
without effects on neurological dysfunction or cerebral blood
flow.

Both adenosine and lidocaine are known to induce vasodila-
tion and a drop in blood pressure.(238, 263) The infusion of
vasodilators during cardiopulmonary resuscitation may seem
counterintuitive when the primary treatment is epinephrine,
which has a vasoconstrictive effect due to its alpha-adrenergic
stimulation. This vasoconstriction causes an increase in systemic
pressure, which in turn increases the CPP. Even though admin-
istration of epinephrine increases the rate of ROSC, it is also
associated with post-resuscitation myocardial dysfunction and a
decrease in cerebral microcirculatory function.(89, 360) Therefore
therapies such as adenocaine that target the post-resuscitation
syndrome without abolishing the effects of epinephrine on the
rate of ROSC are warranted. Actually, in the current study, there
was a strong trend toward a higher CPP during chest compres-
sions in the adenocaine group compared to the untreated cardiac
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arrest group. This difference in CPP was due to a significantly
higher aortic pressure in the adenocaine group, while right atrial
pressures were comparable between groups.

The dose of adenocaine was based on in vitro experiments
demonstrating inhibitory effects on PMN function,(287) and the
inhibitory effect on PMN function was confirmed in study Il. In a
previous study in rats, prolonged infusion of adenosine for 60 or
90 minutes improved survival and delayed cell loss in the hippo-
campus.(248) In our study, adenocaine was infused over a period
of only 6 min during resuscitation. This infusion period was cho-
sen since a short infusion duration is more clinically applicable in
contrast to a prolonged continuous infusion. We can only specu-
late whether a prolonged infusion or repeated boluses of adeno-
caine could have further improved myocardial function and neu-
rological outcome.

In study Ill, treatment with ALM/AL during the early phase of
resuscitation was tested in a porcine model of hemorrhagic
shock. Resuscitation with 7.5% NaCl and ALM reduced fluid re-
quirements during fluid resuscitation in the pig following severe
hemorrhagic shock, which was also associated with improved
hemodynamic stability and cardiac function. Furthermore, treat-
ment with 0.9% NaCl and AL administered with the return of shed
blood transiently reduced whole body 02 consumption and im-
proved cardiac and renal function over a 6-hour period. Resusci-
tation with fluid or blood is essential to the effective treatment of
hemorrhagic shock; however, resuscitation with fluid or blood
also initiates reperfusion injury within seconds.(193, 361) The
strategy to introduce treatment at both fluid resuscitation and re-
infusion of shed blood was applied to target reperfusion injury
occurring at both fluid resuscitation and re-infusion of blood, the
latter related to the reintroduction of inflammatory cells and
soluble pro-inflammatory factors. The rationale for combining
adenocaine and Mg2+(ALM) diluted in 7.5% saline was derived
from the study by Letson et al.,(291) demonstrating a protective
effect using a rodent hemorrhagic shock model with ultra-small
volume resuscitation. The high dose of adenocaine infused at re-
infusion of shed blood was based on study Il in this thesis where it
demonstrated a protective effect on myocardial function after
cardiac arrest.(292)

As in the model of cardiac arrest, it seems counterintuitive to
infuse vasodilating drugs with negative chronotropic effects dur-
ing hemorrhagic shock, where vasoconstriction and tachycardia
are major compensatory mechanisms. In a study by Tisherman
and colleagues (362) adenosine was administered intraperitone-
ally to circumvent these effects of intravenous adenosine admin-
istration. However, as demonstrated here, if administered over a
few minutes, the vasodilatory and hypotensive effects of adenod-
caine effects are only temporary and treatment with 7.5% NaCl
ALM actually decreased fluid requirements during hypotensive
resuscitation and increased systemic vascular resistance, demon-
strating prolonged protective effects.

It is unknown how the combination of two vasodilators can
cause an increase in arterial pressures during cardiopulmonary
resuscitation and decrease fluid requirements and increase sys-
temic vascular resistance during hemorrhagic shock. Cardiac
arrest and hemorrhagic shock are known to induce substantial
endothelial and microcirculatory dysfunction due to changes in
membrane potential, electrolyte imbalance, the release of in-
flammatory mediators and adherence of PMNs to the endotheli-
um.(102, 164) Both adenosine and lidocaine have been shown to
attenuate PMN adherence to the endothelium, and are associat-
ed with micro-vascular protection. However the exact mecha-

nisms responsible for the increase in arterial pressure remain
speculative and further studies are warranted to explore the
effects of adenocaine in the setting of cardiac arrest and hemor-
rhagic shock.

An interesting finding in the hemorrhagic shock study was
that infusion of high-dose adenocaine at re-infusion of shed blood
resulted in a 27% decrease in whole body oxygen consumption.
Much adenosine research has revolved around the role of adeno-
sine as a metabolic regulator of organ function, matching blood
flow to energy consumption (demand).(363) As described, adeno-
sine increases in response to hypoxia, causing vasodilatation and
thereby an increase in blood flow and supply which relieves the
cause of hypoxia.(238) However adenosine not only increases
supply but also decreases demand in the heart, brain and kidney.
Stimulation of the A1 AR lowers body temperature and mediates
metabolic suppression during torpor. (247, 364, 365) In the brain,
metabolic rate decreases in response to hypoxia, an effect medi-
ated through the Al AR. In addition infusion of adenosine de-
creases renal oxygen consumption.(250, 364) Adenosine infusion
has also been reported to decrease whole body VO2, (366, 367)
while lidocaine at high doses has been reported to decrease
cerebral oxygen consumption. (368) Therefore, there is scientific
precedent for an oxygen consumption lowering effect of adeno-
caine. It is, however, noteworthy that, despite the decrease in
V02 30 minutes into reperfusion, neither cardiac nor renal func-
tion was decreased. In our study it is possible that adenocaine
reduced whole body VO2 in part by blunting the metabolic effects
of catecholamines via anti-adrenergic receptor modulation.(369)
Plasma catecholamines are well known to increase in response to
shock, and may increase oxygen consumption through a beta-
adrenergic mechanism or so called “oxygen wasting”.(370) Aden-
osine alone is also known to decrease heart rate and cardiac
contractility as determinants of cardiac VO2 in the presence of a
beta-adrenergic stimulus. A reduction in adrenergically increased
V02 is supported by the observation that the same dose of ade-
nocaine did not cause a decrease in VO2 in the sham group. This
illustrates that a potential mechanism for organ protection in-
duced by treatment with adenocaine is a decrease in oxygen
demand, and a reduction in potential oxygen supply/demand
mismatch.

LIMITATIONS

Some of the limitations of this thesis have been addressed in
the material and methods section.

Limitations in the present studies are primarily related to the
experimental animal models that were used. In general animal
models should approximate the clinical scenario as close as possi-
ble. In all three studies, the animals were anesthetized due to
practical and ethical reasons, which is not the case in a clinical
setting. The administration of anesthetics affects the cardiovascu-
lar system, the inflammatory response, and metabolism, and the
effects are dependent of the type of anesthesia. In the cardiac
arrest study isoflurane was used as the anesthetic agent which
may have preconditioned the heart and brain and activated pro-
tective mechanisms at reperfusion.(371) This may have influ-
enced the results; however, the anesthetic protocols were identi-
cal in all groups, making the treatment the only difference
between groups.

In study I, two different animals models of I/R injury were
used, which is an apparent limitation. In study Ill, a pressure-
controlled hemorrhagic shock model was used that does not
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completely reflect the clinical scenario of combined uncontrolled
hemorrhage and soft tissue injury.

In study Il and Ill the pigs were observed for relatively short
observation periods being only 6 hours in the hemorrhagic shock
study. In study I, the cardiac arrest study, pigs were observed for
24 hours; however neurological injury is an ongoing process and
continues to develop over time, why 24 hours may have been to
short an observation period. Furthermore neurological scoring
may have been affected by opioid anesthesia (fentanyl patch 25
ug/h) used to control post-procedural pain as required by the
Institutional Animal Care and Use Committee of Emory University

CONCLUSION

This thesis demonstrated that early intervention with either
postconditioning or adenocaine attenuates I/R injury and organ
dysfunction in animal models of acute myocardial infarction,
cardiac arrest or hemorrhagic shock. Study | showed that post-
conditioning inhibits PMN function, and implies that future thera-
pies for the treatment of I/R injury should encompass strategies
targeting PMNs and inflammation. In line with this, it was demon-
strated in study Il that early infusion (pharmacological postcondi-
tioning) of adenocaine attenuated PMN production of superoxide
anions following cardiac arrest.

The protective effects of adenocaine in models of cardiac ar-
rest and hemorrhagic shock are encouraging, but further studies
in more clinically relevant models exploring the underlying effects
are warranted. Postconditioning and adenocaine may be promis-
ing new therapies for protection against I/R after acute myocardi-
al infarction, cardiac arrest and hemorrhagic shock.

SUMMARY

Cardiac arrest and acute myocardial infarction are leading
causes of death in the middle-aged and elderly, whereas trauma
primarily affects the younger segment of the population. The
three conditions are all characterized by a period of reduced
blood flow either regionally in the heart or globally, and treat-
ment strategies target the restoration of normal blood flow.
Paradoxically, reperfusion of ischemic tissue contributes to cellu-
lar injury in all three settings. Ischemic postconditioning initiated
immediately at reperfusion was in 2003 introduced as a new
potential treatment to limit injury following acute myocardial
infarction.

The aim of this dissertation was explore the mechanism of is-
chemic postconditioning during regional ischemia and test the
effects of early pharmacological postconditioning using adeno-
caine in models of global I/R injury.

In the first study, the mechanisms of postconditioning were
explored. In a rat model of regional ischemia, it was demonstrat-
ed that postconditioning reduced infarct size. However when
postconditioning was applied in already PMN-depleted rats, no
further reduction in infarct size was observed. Furthermore, in a
canine model of regional ischemia, postconditioning attenuated
PMN superoxide production, implying that cardioprotection by
postconditioning involves inhibition of PMNs.

In the second study, treatment with adenocaine as pharmaco-
logical postconditioning during the immediate phase of cardio-
pulmonary resuscitation, attenuated early post-resuscitation
myocardial dysfunction, augmented pulmonary and cardiac blood
flow and reduced PMN superoxide production in a porcine model
of cardiac arrest.

In the third study, treatment with ALM/AL during the early
phase of resuscitation was tested in a porcine model of hemor-

rhagic shock. Resuscitation with ALM/AL reduced fluid require-
ments during fluid resuscitation, transiently reduced whole body
02 consumption and improved cardiac and renal function.

In conclusion, early intervention with either postconditioning
or adenocaine attenuates I/R injury and organ dysfunction in
animal models of acute myocardial infarction, cardiac arrest or
hemorrhagic shock. Postconditioning and adenocaine may be
promising new therapies for protection against I/R after acute
myocardial infarction, cardiac arrest and hemorrhagic shock.
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