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INTRODUCTION 

Three decades have passed since the first identification in 1981 of 

previously healthy patients suffering from severe immune defi-

ciency and dying from opportunistic infections – the syndrome we 

now know as acquired immunodeficiency syndrome (AIDS), and 

which in 1983 was recognized to be the result of infection with 

Human Immunodeficiency Virus (HIV) [4]. Almost 30 years later 

the HIV epidemic has spread throughout the world with more 

than 50 million people infected of which 25 million have died [5]. 

HIV continues to be an enormous global health challenge with 

immense social and economic consequences.  

HIV is a retrovirus belonging to the Lentivirus family. Two isolates 

of HIV exist, HIV-1 and HIV-2, and there is strong evidence that 

both HIV-1 and HIV-2 were acquired as zoonotic infections origi-

nating from Simian Immunodeficiency Virus (SIV) [6] and trans-

ferred to humans from chimpanzees and sooty mangabeys, re-

spectively [7;8]. Globally, HIV-1 dominates, and throughout this 

thesis HIV refers to HIV-1. HIV causes multiple effects on the 

immune system with the hallmark of HIV-infection being the 

progressive depletion of CD4+ T-lymphocytes [9;10]. Viral entry 

relies on the binding of viral gp120 to the cell surface molecule 

CD4 and either the co-receptor CCR5 or CXCR4 [11-14] (Figure 1). 

HIV hereby infects CD4+ T-lymphocytes (CD4+ cells) and mono-

cyte/macrophage populations in peripheral blood and tissue.  

The natural history of HIV-infection consists of an acute phase 

lasting 4-6 weeks after infection, during which 30-50 % of patients 

present with influenza-like symptoms, rash and lympha-

denopathy [15;16]. This is followed by a chronic and often clini-

cally asymptomatic phase lasting 2-10 years, and ultimately a 

symptomatic end stage with progressive immune collapse, AIDS, 

and finally death [17]. The acute HIV-infection is characterized by 

high viremia and massive CD4+ cell loss, particularly from gut-

associated lymphoid tissue (GALT), and establishment of a reser-

voir of latently infected CD4+ cells [18;19]. A marked CD4 decline 

in peripheral blood is observed during acute infection followed by 

a rebound to subnormal levels. During chronic infection a more 

gradual loss of CD4+ cells is seen, and as the peripheral CD4 count 

declines the opportunistic infections and malignancies character-

istic of AIDS begin to occur [20;21] (Figure 2). The exact mecha-

nisms of HIV-pathogenesis and progressive CD4 depletion in HIV-

infected patients remain a fundamental and controversial issue. 

After the early phase of the AIDS epidemic where the idea of viral 

latency ruled, the scientific scene has now been set for a more 
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dynamic view of HIV-pathogenesis with HIV-associated immune 

hyperactivation playing a central role in the killing of CD4+ cells 

[9;22;23]. In this context, a subpopulation of T cells called regula-

tory T cells (Tregs) with suppressive capacity towards activated T 

cells has gained much attention [24].  

 
 

Figure 1  

After binding to receptors and co-receptors HIV fusions with and enters 

the host cell. HIV is then uncoated, and the virion-associated reverse 

transcriptase is activated and begins synthesizing viral cDNA. This HIV DNA 

is integrated into the host cell genome catalyzed by the integrase enzyme. 

Following transcription new virion proteins (Gag, Env, Gag-Pol) are pro-

duced. Subsequent assembly and maturation of virus particles rely on 

activity of the protease enzyme. These crucial steps of HIV life cycle are 

targeted with fusion inhibitors, nucleoside and non-nucleoside reverse-

transcriptase inhibitors (NRTIs and NNRTIs, respectively), integrase inhibi-

tors, and with HIV-protease inhibitors (HIV-PIs)[2]. 

 

The first antiretroviral drug was developed in 1986. Ten years 

later, in 1996, highly active anti-retroviral treatment (HAART) 

using a combination of anti-retroviral drugs targeting different 

stages in HIV-lifecycle (Figure 1) was introduced resulting in a 

markedly reduced morbidity and mortality in HIV-infected pa-

tients [25-28]. HAART reduces HIV-RNA load and leads to immune 

reconstitution with an increase in the CD4 count [29]. However, 

the degree of immune reconstitution varies among patients and a 

number of patients with adequate control of viral replication do 

not succeed in obtaining optimal immunological response with a 

substantial gain in CD4 count [30-32]. The differences in CD4+ cell 

recovery between patients are in part believed to be due to dif-

ferences in the supply of naïve T cells from lymphopoietic sources 

[33]. The thymus is the site of generation of naïve CD4+ and CD8+ 

T cells early in life, and data strongly suggest that thymic function 

is pre-served in adults and contributes to immune reconstitution 

in HIV-infected patients upon treatment with HAART [1;3].  

The role of the thymus in immunological recovery in HIV-infection 

will be the focus of this thesis. 

 

HYPOTHESES 

The purpose of this thesis was to test the following hypotheses: 

 

H1:  The thymus remains functional in adults and is important to 

immunological reconstitution in HIV-infected patients [articles I, 

II, III, IV, V] 

 

H2:  Alteration/stimulation of thymic function in adults is possible 

i. During treatment with low-dose growth hormone [article IV] 

ii. During pregnancy [article VI] 

 

H3:  Natural regulatory T cells (Tregs) are produced in the thymus 

and may be involved in HIV-pathogenesis (adults, pregnancy, 

children) [articles V, VI, VII] 

 

H4:  HIV-negative infants born to HIV-infected mothers have 

haematological and immunological abnormalities at birth. The 

immune function in these children can re-cover and thymic func-

tion be normalized. [article VII] 

 

In order to test these hypotheses the following investigations 

were performed: 

 

S-1:  Studies evaluating immune reconstitution by measuring 

thymic output markers (thymic size, total and naïve CD4+ and 

CD8+ cells, T-cell receptor excision circles (TRECs) containing 

CD4+ cells, and immunological repertoire) in adult HIV-infected 

 
 

Figure 2  

HIV time course (http://www.wikimedia.org) 
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patients treated with HAART [articles I, II, III] 

 

S-2: Randomized, placebo-controlled, double-blind trial evaluat-

ing the effect of low-dose, long-term, recombinant human growth 

hormone (rhGH) on immune reconstitution in adult HIV-infected 

patients with focus on thymic index, density and output [article 

IV] 

 

S-3:  Study evaluating thymic-derived naturally regulatory T cells 

(Tregs) in HIV-infected patients during HAART [article V] 

 

S-4:  Prospective study of immunological changes in thymic out-

put markers, Tregs, immune activation, and cytokine profiles in 

HIV-infected women during and after pregnancy [article VI] 

 

S-5: Study of thymic size, thymic output, immune activation, 

Tregs, and cytokine profiles at 15 months of age in uninfected 

HIV-exposed children born to HIV-infected mothers [article VII] 

CD4+ CELL DYNAMICS 

The expression “The first cut is the deepest” has been used to 

describe the early explosive and massive CD4+ cell loss during 

acute HIV-infection where especially a large proportion of muco-

sal memory CD4+ cells (in the range of 60%) is killed [10;34]. This 

initial strike to the immune system seems to determine the over-

all course of the following chronic infection and to determine the 

CD4 set point after acute infection. It is now known that the 

mechanisms of HIV-pathogenesis both during acute and chronic 

infection involves not only direct virus-mediated killing of HIV-

infected CD4+ cells, but more importantly indirect bystander 

killing by apoptosis related to the high level of HIV-induced im-

mune activation [35-37]. HIV activates the immune system be-

cause of continuous virus production, estimated to be as high as 

10
10

 viral particles produced per day [38-40]. Activated T cells 

undergo several rounds of cell division and are hereafter bound 

to die by apoptosis. Thus, turnover rates of T cells in HIV-infected 

patients are high, in the range of 2-3 fold increased compared to 

uninfected individuals [41]. The importance of persistent immune 

activation in HIV-pathogenesis has been supported by the obser-

vation that immune activation is an independent predictor of CD4 

decline, a predictor shown in some studies to be even better than 

the viral load [42-45]. Furthermore, immune activation is associ-

ated with disease progression and is the single best predictor of 

survival in HIV-infected patients [45-47]. Likewise, the role of 

immune activation as a leading factor in HIV-pathogenesis is 

underlined by the fact that non-pathogenic SIV-infection in the 

natural host, as in the African green monkey, results in high viral 

replication but absence of both immune activation and CD4 de-

cline – while SIV leading to immune deficiency in the chimpanzee, 

is characterized by both immune activation and CD4 depletion 

[48;49]. In HIV-infection, the massive CD4 depletion from GALT 

during acute infection may leave the intestinal mucosa damaged 

and leaky allowing for microbial products to translocate across it 

and invade the organism. This so-called microbial translocation 

can be measured by circulating lipopolysaccharide levels and is 

considered to play a central role in the induction of immune 

activation in chronic HIV-infection and to predict the rate of dis-

ease progression [18;50-54] Thus, microbial translocation may 

provide a part of the link between CD4 depletion in GALT and 

chronic immune activation, two features of chronic HIV-infection. 

T lymphocytes fall into two categories: Antigen-inexperienced 

(naïve) and antigen-experienced (memory/effector) T cells. Upon 

priming by foreign antigens naïve T cells differentiate into effec-

tor T cells that display a different phenotype and cytokine profile. 

Memory T cells confer long-term immunity and are divided ac-

cording to function and phenotype into effector memory cells 

(TEM) that migrate to inflamed sites and display an immediate 

effector function, and central memory cells (TCM) that home to 

secondary lymphoid tissues and have the capability to easily dif-

ferentiate to effector cells in response to antigen stimulation [55]. 

How immune activation in HIV-infection leads to CD4 depletion 

remains unclear. The depletion of the memory CD4+ cell pool, 

especially TEM cells, by repeated activation, increases the outflow 

of naïve T cells into the memory T cell compartment, and homeo-

stasis becomes increasingly dependent upon renewal of naïve 

cells.  

THYMOPOIESIS 

The development of naïve CD4+ and CD8+ T cells take place in the 

thymus. CD34+ progenitor cells derived from fetal liver and bone 

marrow migrate to the thymus and undergo intrathymic se-

quential stages of phenotypic maturation. The process of thy-

mopoiesis begins at the subcapsular zone of the thymus where 

immature CD1a+ thymocytes differentiate into CD4-CD8- (double 

negative) cells by interaction with the thymic stroma. As the 

thymocytes migrate into the thymic cortex, they acquire co-

expression of CD4+ and CD8+ (double positive), and the T cell 

receptor (TCR) is assembled through recombinant rearrangement 

of αβ genes resulting in a broad diverse TCR repertoire [1;56] 

(Figure 3). Subsequently, positive and negative selection events 

take place. Positive selection refers to the process during which 

only thymocytes expressing TCRs that recognize self-MHC com-

plexes are selected. The majority of thymocytes does not fulfill 

this criterion and are killed by apoptosis. During negative selec-

tion potentially autoreactive thymocytes, with TCRs recognizing 

self-MHC complexes with strong avidity, are removed. The selec-

tion processes discard about 99% of all thymocytes and lead to 

the generation of MHC class I-restricted cytotoxic CD8+ T cells 

and MHC class II-restricted helper CD4+ T cells that exit the thy-

mus as naïve T cells. These newly produced naïve T cells are also 

referred to as Recent Thymic Emigrants (RTE) [1].  

In addition to a dependence upon functional CD34+ progenitor 

cells, cytokines, growth factors and hormones influence T cell 

development [57]. The regulation of T cell development is in 

particular maintained by Interleukin (IL)-7, which is secreted by 

many different cells, among other stromal cells from the bone 

marrow and thymus. IL-7 responsiveness is controlled largely by 

the presence or absence of IL-7 receptor (IL-7R) being present on 

double-negative thymocytes, absent on double-positive thymo-

cytes, then re-expressed by single-positive thymocytes and re-

maining present on most mature T cells [58-60]. IL-7 provides 

proliferative signals to thymocytes and supports TCR rearrange-

ment. In this way, IL-7 is absolutely required for thymopoiesis as 

illustrated by the fact that absence of IL-7 or IL-7R in humans 

results in severe combined immunodeficiency (SCID) with com-

plete lack of T cells [61].  

The human thymus is colonized with stem cells as early as gesta-

tion weeks 7 or 8, and thymic activity is at its highest during fetal 

life and early childhood. At birth the peripheral repertoire of T 

cells is already established in such a degree that thymectomy 

does not cause immediate immune deficiency. The thymus begins 

to atrophy at the age of one by estimated 1-3% shrinkage in 

volume per year [33]. Consequently, thymic function in adults has 

been assumed to be limited and negligible, and the adult thymus 



 DANISH MEDICAL JOURNAL   4 

to be dispensable, unless a massive exhaustion of the T cell pool 

demands for accelerated T cell regeneration, as in the case of 

chronic HIV-infection and following haematopoietic stem cell 

transplantation (HSCT). It has been shown, however, that thymec-

tomy during early childhood (removal of the thymus in connec-

tion with paediatric heart surgery) causes premature onset of 

age-associated alterations in the T cell compartment (lower T cell 

numbers, lower naïve/memory T cell ratio, lower T cell diversity), 

thus demonstrating that the thymus is important to T cell immu-

nity throughout life even in healthy individuals [62-65]. During 

HIV-infection thymopoiesis is compromised and HIV induces 

changes in the thymus resembling accelerated age-associated 

thymic atrophy. HIV infects and kills the developing CD4+ thymo-

cytes, and inhibits thymocyte maturation by affecting thymic 

stromal cells [33;56;66-68]. Furthermore, HIV impairs CD34+ 

progenitor cell function and bone marrow stroma, thus influenc-

ing the inflow of stem cells available for thymopoiesis [69-71]. 

 

THYMIC OUTPUT MARKERS 

As described, T cells exit the thymus as naïve RTE T cells and enter 

the pool of naïve cells until activated. Thus, thymic productivity 

can be estimated by quantifying T cells with naïve phenotype. 

Several surface markers identify naïve T cells including CD45RA+, 

CD62L+, CD27+ and CCR7+, some of which account for the capa-

bility of naïve cells to home to lymph nodes and hereby encoun-

ter antigens presented by antigen-presenting cells [72]. When 

estimating thymic output, it has been a concern that phenotypi-

cally naïve cells could expand in the periphery without losing the 

naïve phenotype and thus not be RTEs. Naïve CD4+ cells can also 

have a long quiescent lifespan [73-75]. Furthermore, previous 

studies suggested that CD45RA+ naïve cells could be reverted 

memory CD45RO+ cells [76;77]. However, when the co-

expression of several naïve markers is measured, this contributes 

to the identification of cells with a true naïve phenotype [72]. 

Identification of surface markers relies on flow cytometry, a 

method analyzing single-cell molecules on cell surfaces or intra-

cellular. Multicolour flow cytometry has been a central method 

applied in all studies included in this thesis. 

Advances in molecular methods have allowed for more precise 

quantification of thymic output with the development of an assay 

determining the number of T cell receptor excision circles (TRECs) 

[3]. TRECs are episomal DNA circles that are generated as a by-

product during the rearrangement of the variable (V), diversity 

(D) and joiner (J) genes of the TCR α    and β chains. Be-cause TRECs 

are stable and not duplicated during mitosis, they are diluted out 

upon cell division and are thus a marker of the cell’s proximity to 

 
 

Figure 3  

Thymopoiesis: CD34+CD1A- progenitor cells are believed to have the potential to differentiate into other cell lineages than T cells, such as dendritic cells 

(DC), monocytes, and natural killer (NK) cells. Those migrating to the thymus undergo distinct stages of development initially by signals of the NOTCH1 

pathway. Definitive commitment to the T cell lineage is marked by CD1A expression. Hereafter, CD34+CD1A+ cells begin assembling their T cell receptor 

(TCR) by recombinant rearrangement of  genes. During this process thymocytes differentiate through stages that include CD4-CD8- double negative, 

immature single positive (ISP) cells, early CD4+CD8+ double positive (DP), CD4+CD8+ DP, and finally CD4+ or CD8+ single positive (SP) cells. For further, 

see text. [1] 
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the thymus. The signal joint (sj) TREC is generated during rear-

rangement of the TCR α chain, which is a late event in thymopoi-

esis occurring after the phase of repeated proliferation, and thus 

only followed by minor dilution compared to the TRECs generated 

from most other (earlier) TCR gene rearrangements [3;78] (Figure 

4). The sj TREC can be detected in peripheral blood mononuclear 

cells (PBMCs) or in separated CD4+ or CD8+ cells using poly-

merase chain reaction (PCR). Quantitative PCR is the preferred 

method since it is sensitive and detects the amplified target in 

real time alongside with a household gene, such as mannan-

binding lectin (MBL) [79]. Comparing the sj TREC with TRECs 

generated at earlier rearrangement events, such as the delta 

TREC, contributes with estimates on intrathymic precursor T cell 

proliferation [80].  

 

 
 

Figure 4  

T cell receptor excision circles (TRECs) are episomal DNA circles that are 

generated in the thymus as a by-product during the rear-rangement of 

the variable (V), diversity (D) and joiner (J) genes of the TCR  and  chains 

[3]. 

 

Compatible with TREC measurements being a measure of thymic 

output, TREC frequencies are highest (as well as are naïve cells) in 

healthy children and are reduced with increasing age, though still 

detectable in individuals over 60 years of age [3;81-83]. All thy-

mocyte maturation states are found in elderly individuals [84], 

and so are active TCR rearrangements with constant thymocyte 

TREC contents [81] suggestive of maintained thymopoiesis. In 

HIV-infected untreated patients TREC frequencies are reduced 

compared to age-matched healthy controls [3;85;86]. Lower TREC 

contents have been associated with faster disease progression 

[87;88] and both children and adults who are long-term non-

progressors have higher TREC levels than fast-progressors [89-

91]. Initiation of antiretroviral therapy leads to increased TREC 

levels in both children and adults [3;92;93]. However, this recov-

ery may arise from peripheral T cell events as well as reduced 

thymic function [94]. It should be emphasized and kept in mind 

when interpreting TREC data, that apart from thymic output, 

several other factors determine the TREC frequency, such as 

peripheral cell division and cell death [78;94-97]. Furthermore, 

entrapment of RTEs in lymphoid tissue could also in part explain 

low TREC frequencies in HIV-infection [98]. A mathematical model 

taking into account these contributing factors has been devel-

oped [94]. Results of mathematical modelling, though, have been 

conflicting [94;99]. The demonstration of impaired intrathymic 

proliferation, as measured by the ratio between the deltaTREC 

and the sjTREC, supported the view that reductions in TREC fre-

quencies in HIV-infection are a result of reduced thymopoiesis 

more than significant peripheral dilution [80]. Thus, even with 

these above-mentioned limitations TREC measurements are still 

regarded as gold standard for the evaluation of thymic output 

[100]. Instead of TREC frequencies (TREC%), total TREC numbers 

in a population of cells (e.g. per milliliter of blood) should be 

reported, as these are not to the same extent influenced by T cell 

proliferation and provide a more reliable measure of thymic 

output [101;102]. 

Recently, CD31, also known as PECAM-1, has been suggested as a 

marker to identify a subset of RTEs within the naive CD4+ cell 

pool. Naïve CD4+ cells co-expressing CD31+ have significantly 

higher TREC contents (on average 8 times higher) compared to 

naïve CD4+ cells lacking CD31 expression. It is believed that CD31 

expression is lost when T cells are repetitively stimulated upon 

recognition of adequate antigen and therefore essentially limited 

to T cells recently leaving the thymus [103-107] even though 

some in vivo proliferation without immediate loss of CD31 has 

been demonstrated in CD31+ naïve cells [108]. 

Evaluation of TCR repertoire diversity gives a more qualitative 

measure of thymic output. The complementary determining 

region 3 (CDR3) β chain of the TCR plays a critical role in antigen 

recognition and displays enormous diversity with a Gaussian 

distribution of CDR3 lengths. Analysis of length variation in the 

CDR3 can be performed by multiplex PCR for the detection of the 

23 functional TCR Vβ families [109]. A diverse immunological 

repertoire represents a broad spectrum of T cells with the ability 

of mounting responses to all possible antigens. Depletions within 

the T cell pool can result in severe disruptions of TCR repertoire 

and hereby vulnerability to certain pathogens. The diversity of the 

T cell pool is drastically contracted as a result of high age [83]. 

Interestingly, even in healthy individuals, such age-related clonal 

expansions may be driven by the common chronic infection with 

the herpes virus cytomegalovirus (CMV). Even if asymptomatic, 

CMV seems to act as a constant stressor to the immune system 

and accumulation of CMV specific T cells with increasing age leads 

to shrinkage of the immunological repertoire, and is most likely 

playing a major role in aging of the immune system also known as 

immunosenescence [110-112]. A collapse in CD4 T cell diversity is 

also seen in HIV-infected patients where perturbations in the TCR 

repertoire give a “holed” oligoclonal appearance representing 

deletions of T cells of a particular clonal type. The disruptions 

seen in HIV-infected patients are not or only partly restored dur-

ing antiretroviral treatment [113-116]. In theory, only the produc-

tion of new human T cells in the thymus has a chance to increase 

diversity. 

Finally, thymic size has been used as a marker of thymic output. 

Both size and density of the lymphoid thymic tissue can be esti-

mated on chest computerized tomography (CT) scans [117-119]. 

In children the thymus occupies the entire pre-sternal space 

anterior of the heart, whereas in adults it appears as a small 

triangular mass due to age-related involution. A scoring scale of 

thymic index from 0 to 5 on CT scans has been described: 0, no 

visible thymic tissue; 1, minimal thymic tissue, barely recogniz-
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able; 2, minimal, but more obvious, thymic tissue; 3, moderate 

amount of thymic tissue; 4, moderate but greater amount of 

thymic tissue; 5, thymic mass large enough to raise concern about 

thymoma [117] (Figure 5). 

 

THYMOPOIESIS VERSUS PERIPHERAL EXPANSION 

Treatment of HIV-infected patients with HAART leads to immu-

nological recovery of CD4+ cells in the blood. The origin of the 

CD4+ cells that appear in the blood after initiation of treatment 

has been debated. The initial increase in the CD4 count during the 

early months after initiation of HAART primarily constitutes of 

redistributed memory cells sequestered in lymphoid tissues and 

now released to the blood stream. After this rapid increase, fur-

ther increase in the CD4 count is slower and believed to be attrib-

uted to both peripheral expansion of memory CD4+ cells as well 

as thymic production of naïve cells [29;120-122]. The contribution 

from each of these two pathways varies depending on age and 

 
 

Figure 5  

Representative chest CT scan images of patients with thymic indices of 1 (A), 2 (B), 3 (C) and 4 (D) [I]. 
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remaining thymic function [120]. Reconstitution by active thy-

mopoiesis results in a more diverse TCR with capacity towards a 

wide range of neoantigens. In contrast, reconstitution by periph-

eral expansion of existing T cell clones may lead to a skewed, 

oligoclonal immunological repertoire. 

A study was designed to examine the impact of thymic size on 

immune recovery in HIV-infected patients [I]. The thymus was 

visualized by CT scans in 25 adult HIV-infected male patients who 

had received HAART for a period of 6-18 months, were naïve to 

antiretroviral therapy prior to HAART, and had levels of viremia 

<500 copies/mL. For comparison, 10 age-matched control sub-

jects were included in the study. Total and naive CD4+ cell counts, 

as measured by surface markers CD45RA+ and CD62L+, were 

determined by 3-colour flow cytometry. To determine thymic out-

put, the CD4-TREC% was measured. Qualitative immune recovery 

was evaluated by determination of CD4+ TCR repertoire in 19 of 

the 25 HIV-infected patients. The study showed that larger thymic 

size was associated with higher CD4+ cell counts and higher CD4-

TREC%. Furthermore, patients with abundant thymic tissue (as 

defined by thymic index > 2) seemed to have broader immu-

nologic repertoires, compared with patients with minimal thymic 

tissue (as defined by thymic index  2). The study concluded that 

thymopoiesis supposedly is ongoing in the adult thymus and 

contributes to immune reconstitution in HIV-infected patients 

receiving HAART leading to a broader immunological repertoire 

[I]. The results were in line with a study by Smith et al. demon-

strating that thymic size in HIV-infected patients correlates to 

naïve CD4 counts and to the increase in naive CD4+ cells seen 

during the early phase of treatment with HAART [118]. Subse-

quent studies have followed demonstrating evidence of thy-

mopoiesis contributing to immune recovery in adult HIV-infected 

patients receiving HAART resulting in improvements in naive CD4 

counts, TREC frequencies and/or TCR repertoire [93;97;123-131], 

some of which also demonstrate correlations to a greater abun-

dance of thymic tissue. Interestingly, antiretroviral therapy itself 

may, too, augment thymic output by promoting survival of devel-

oping thymocytes [132].  

As mentioned, CT scanning is the preferred modality to evaluate 

thymic size in adults. However, in children below the age of ap-

proximately 2 years the thymus is easily visualized by trans-

sternal ultrasound scans through the not yet calcified sternal 

bone [133-136]. This method is safer and cheaper than CT, but is 

highly dependent upon performance expertise. A longitudinal 

prediction model for the evaluation of thymic size by ultrasound 

in healthy children from birth until 24 months of age has previ-

ously been demonstrated [137]. With the advantages of safety 

and inexpensiveness we tested the applicability of ultrasound in 

estimating thymic size in adults and predicting the degree of 

immune reconstitution in HIV-infected patients receiving HAART 

[II]. We compared thymic size by CT and ultrasound in 25 HIV-

infected patients with known thymic output markers. A radiolo-

gist and a paediatrician with expertise in thymus ultrasound 

evaluated thymic size. No association was found between the two 

scanning methods. Due to the calcified sternal bone in adults, the 

ultrasound scanning applied a suprasternal, or in a few cases an 

intercostal, approach. On the ultrasound image the adult thymus 

has a recognizable homogenous appearance and an echostruc-

ture similar to that of the salivary glands, being more hyperecho-

genic than the paediatric thymus. However, due to the oblique 

scanning plane it was difficult in some cases to define the limits of 

the thymus from the surrounding fatty tissue in the anterior 

mediastinum. This is most likely the explanation why the two 

measures of thymic size were not correlated. Accordingly, the 

study found no association between thymic size measured by 

ultrasound and thymic output markers such as naïve CD4+ cells, 

CD4-TREC% and CD4 TCR. Thus, in predicting immune recovery in 

HIV-infected patients during HAART, CT remains the preferable 

method for the evaluation of thymic size [II]. 

Whether or not CD4 counts in HIV-infected patients during 

HAART return to levels seen in healthy controls is debated. The 

greatest increase in CD4 count is observed during the first year of 

HAART where most studies demonstrate CD4+ increases of 100-

200 cells/µL per year. This is followed by gains of 30-90 cells/µL 

per year afterwards [31;138;139]. Both a tendency to a plateau of 

the absolute CD4 count and continuously increasing CD4 counts 

has been reported in patients after until 6 years of HAART 

[32;138-140]. Data from the Eurosida Study in patients on HAART 

for more than 5 years demonstrate that plateauing of CD4 counts 

only occur in patients with a current CD4 count of more than 500 

cells/µL [138]. Furthermore, the risk of opportunistic infections in 

HIV-infected patients in HAART seem to continue to decrease the 

further the CD4+ cell count is increased above 350 cells/µL sug-

gesting that complete recovery in both numbers and function of 

CD4 + cells is essential [141]. 

During the initial phase of HAART, larger thymic size is associated 

with a higher recovery of total and naive CD4 + cells, higher 

TREC% and a more diverse immunological repertoire [I]. Further-

more, the CD4 increase obtained during the first approximately 2 

years of HAART is associated with thymic size [124;128;142]. 

Thymic size also predicts CD4 decline in patients during prolonged 

treatment interruptions, independent of age and nadir CD4 count 

[143]. To investigate whether the thymus has a prolonged effect 

on CD4 recovery, total and naive CD4 counts as well as CD4-

TREC% were measured prospectively in 25 HIV-infected patients 

during 5 years of HAART [III]. Patients with larger thymic size had 

at all time points of follow-up significantly higher CD4 counts than 

patients with minimal thymic size. The CD4 increase from time of 

initiation of HAART until 6 months of follow-up differed signifi-

cantly between the two thymic groups, but did not at later time 

points. Thymic output remained significantly higher in patients 

with larger thymic size at follow-up. However, no difference in 

the increase in thymic output was seen between thymic groups. 

The conclusion of the study was therefore that the importance of 

the thymus to the rate of cellular restoration primarily seems to 

involve the first two years of HAART. The reason for this may be 

that thymopoiesis is only maximally induced during maximal 

lymphopenia whereas while CD4 counts reach normal or subnor-

mal levels thymopoiesis is gradually increased and the CD4 counts 

may at this point be held in check by other T-cell homeostasic 

mechanisms [III]. 

IMMUNE-BASED THERAPIES TO ENHANCE IMMUNE RECONSTI-

TUTION 

As mentioned, reconstitution of CD4+ cells is slow and variable 

between patients. Approximately one third of HIV-infected pa-

tients on HAART experience virological rebound during the first 

two years following initial virological suppression [28;144], pri-

marily due to non-compliance [145] or to the development of 

virus resistance [146]. However, even with effective viral suppres-

sion a number of patients have abnormally low CD4+ cell gains. 

These so called immunological non-responders (INR) have been 

variably defined in the literature, but refer to patients whose CD4 

counts remain below a defined threshold (e.g. 200 cells/µL) after 

a defined period of suppressive treatment (e.g. 1-4 years) 

[31;124;147]. It might be reasonable also to include pre-



 DANISH MEDICAL JOURNAL   8 

therapeutic CD4 counts in the definition, and define INR accord-

ing to their CD4+ cell gains [148]. Because of the lack of consen-

sus on this definition, frequency estimates on INR vary considera-

bly between studies [31;147;149-151]. In a Danish nationwide 

cohort study of HIV-infected patients with initial low CD4 counts 

almost 1 out of 5 patients was described as INR defined as CD4 

counts below 200 after 3 years of suppressive treatment [147]. 

The underlying mechanisms of failed immune reconstitution 

despite viral suppression are not fully understood, but most likely 

involve thymic impairment and sustained immune activation 

[148;152-154]. Ongoing low-grade viral replication has also been 

suggested [148]. Increasing age is associated with INR as is a 

prolonged period of immune suppression prior to initiation of 

HAART and low baseline and nadir CD4 counts [147;155]. Immu-

nological non-responders have an increased risk of opportunistic 

infections and long-term mortality compared to immunological 

responders [147;149-151;156]. Thus, patients diagnosed with HIV 

in an advanced state of the disease (HIV late-presenters) are per 

se in higher risk of being INR [157;158]. 

To obtain full recovery of the immune system it may, at least in 

some patients, require more than antiretroviral therapy. Several 

supplementary immune-based therapies to enhance immune 

reconstitution are under investigation using cytokines, hormones, 

and growth factors [148;155]. These strategies also apply to 

patients suffering from T cell deficiencies of other causes than 

HIV-infection such as following chemo- or radiotherapy, for in-

stance preceding HSCT. 

IL-2 

IL-2 is secreted by activated T cells and regulates proliferation and 

differentiating of T cells [159]. Intermittent subcutaneous recom-

binant human IL-2 treatment to induce proliferation and raise 

CD4 counts when used in combination with antiretroviral therapy 

has been studied in a large set of clinical trials, latest in two large 

global randomized controlled clinical trials, the ESPRIT (4111 

patients) and the SILCAAT trials (1695 patients). Supplementary 

IL-2 treatment resulted in a substantial and long-lasting increase 

in CD4 counts compared to HAART alone [160]. Both naïve and 

memory CD4+ cells were increased by IL-2 treatment, most likely 

due to peripheral expansion and altered death rate of existing 

cells [161-163], even though increased thymopoiesis contributing 

to the expansion of CD4+ cells could not be ruled out [164]. How-

ever, contrary to what would have been expected, the clinical 

implication of this increase in CD4 counts was not beneficial with 

regard to a reduction in the risk of opportunistic infections or 

death. In fact, IL-2 treatment was suggested to have overall dele-

terious effects, supported by the finding that patients receiving 

supplementary IL-2 treatment had more grade 4 (potentially life-

threatening) events than patients receiving HAART alone. Patients 

with the greatest IL-2 induced CD4 increases had the highest risk 

of severe clinical events [160]. Thus, recovery of CD4+ cells is 

complex and quantity is definitely not all. The CD4+ cells induced 

by IL-2 treatment may or may not have a role in host defence 

[165;166]. For instance, no enhanced response to immunization 

was seen despite dramatic increases in CD4 counts [165]. Most 

recently, it has been demonstrated that a large part of the CD4+ 

cells expanded by IL-2 treatment share phenotypic, functional 

and molecular characteristics with Tregs (will be discussed later), 

and due to the known function of these cells, this was suspected 

to be the cause of the unexpected clinical observations following 

IL-2 treatment [167]. In conclusion, despite the initial high expec-

tations, it has now been concluded that IL-2 has no place as a 

supplementary therapeutic agent in the treatment of HIV-

infection. 

Growth hormone therapy for the stimulation of thymopoiesis 

Age-associated reduced thymopoiesis may be caused by impaired 

thymic microenvironment such as changes in the levels of several 

hormones and cytokines including sex hormones, growth hor-

mone (GH) and IL-7 [33;168]. Therefore, focus has been on to 

whether alteration of some of these molecules could stimulate 

immune reconstitution by enhancing thymopoiesis and thereby 

broadening the TCR repertoire improving immunity against 

pathogens. 

GH is a neuroendocrine hormone produced in the anterior pitui-

tary mediating many of its endocrine and metabolic effects 

through insulin-like growth factor-1 (IGF-1). A number of in-vitro 

and animal studies have appreciated the important role of GH 

and IGF-1 to the immune system, and especially to mammalian 

thymopoiesis [169]. GH enhances proliferation of thymic cells and 

acts through GH receptors found in the thymus and by influencing 

cytokine production in the thymic microenvironment [170]. Fol-

lowing hypophysectomy the thymus involutes, but this can be 

partly reversed by GH treatment [171]. Similarly, GH treatment is 

associated with increases in thymic size and function in animals. 

In humans, changes in thymic size, structure and function with 

age are paralleled by the activity of the GH system [33]. Serum GH 

and IGF-1 levels peak at puberty and thereafter gradually decline 

with age suggesting a causal relation. Accordingly, HAART treated 

HIV-infected children who are GH deficient have reduced thymic 

size and fewer total and naïve CD4+ and CD8+ cells compared to 

GH non-deficient children [172]. Likewise, withdrawal of GH 

treatment to adult GH-deficient patients decreases thymic output 

and intrathymic proliferation [173]. 

Early studies of GH treatment in HIV-infected patients were con-

ducted to explore the anabolic effect of the hormone in patients 

with HIV-associated wasting [174;175]. In relation to this, GH 

treatment has been examined for its anti-lipodystrophic effect in 

HIV-infected patients suffering from HIV-associated lipodystrophy 

[176]. Subsequently, the potential thymic-stimulatory effect of 

GH treatment in HIV-infected patients has been explored [177-

182]. Napolitano et al. reported increased thymic density, TREC 

frequency in PBMCs, and number of total and naive CD4+ and 

CD8+ cells in an open-label, cross-over study following a supra-

physiological dose of 3 mg recombinant human GH (rhGH)/day 

for 6 months and 1.5 mg rhGH/day for 6 months in 21 HIV-

infected patients. However, adverse events were frequent in this 

high-dose regimen and 9 out of 21 patients (43%) dropped out of 

the study [178]. In a pilot study of 6 HIV-infected patients receiv-

ing low-dose rhGH regimens for 140 weeks as a supplementary 

treatment to a stable HAART regime, sustained improvements in 

CD4 counts were demonstrated and patients had few side effects 

to the treatment [181]. To investigate this further, a randomized, 

double-blind placebo controlled trial was conducted to study the 

effect of long-term, low-dose treatment with rhGH on immune 

reconstitution in HIV-infected patients [IV]. A total of 46 HIV-

infected patients were included. Patients were male, aged 21 to 

60 years, on a stable HAART regimen for at least 12 months and 

with no significant co-morbidity. Patients were randomized 3:2 to 

either rhGH treatment 0.7 mg/day (28 patients) or placebo (18 

patients), administrated as daily subcutaneous injections be-

tween 1 pm and 3 pm for 40 weeks. Primary endpoints were 

changes in thymic size and density as well as thymic output 

measured by TREC contents and total and naïve CD4 counts. We 
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found that low dose rhGH treatment was associated with signifi-

cant increases in thymic index, density and area. Furthermore, 

this increase in visible thymic tissue was compatible with in-

creased thymopoiesis as measured by TREC frequency and con-

tent within CD4+ cells. Due to the low physiologic dose regimen in 

the study, the medicine was well tolerated with few adverse 

events, and compliance was high. The data from this study 

strongly support that GH possesses the potential to enhance 

thymopoiesis and that reversal of age- or HIV-related decreases in 

thymic function is pharmacologically possible [IV]. In line with 

this, rhGH treatment restored both CD4-specific cellular and 

humoral immune responses to commonly employed vaccines 

when administered to a selected group of HIV-infected patients 

with defective vaccination responses [183]. In our study, total 

CD4+ cells increased more in the GH than in the placebo group, 

though not significantly. However, it is possible that we underes-

timate the potential benefits of rhGH treatment since the pa-

tients studied were already immunologically well recovered and 

had median baseline CD4 counts above 500 cells/µL. Supportive 

of this, Smith et al demonstrated significant rhGH-induced CD4 

improvements in patients whose baseline CD4 counts were below 

350 cells/µL [179]. Thus, patients with lower CD4 counts may 

benefit more from rhGH treatment possibly because the thymus 

primarily is involved in immune recovery at maximal lymphopenia 

[III]. 

In conclusion, even if promising, clinical studies on the role of 

rhGH in immune recovery in HIV-infected patients are until now 

few and more are definitely warranted to study more detailedly 

the clinical effect of rhGH on immune recovery. In future studies 

the GH releasing hormone analogue Tesamorelin may be more 

attractive than rhGH since it appears to be better tolerated and to 

stimulate the GH axis in a more physiologic way [184]. 

IL-7 

IL-7 is essential for thymopoiesis. Furthermore, IL-7 is a critical 

modulator of peripheral T cell homeostasis involved in maintain-

ing the naïve T cell pool by promoting their survival and inducing 

proliferation without switching naïve phenotype [58;185]. T cell 

depletion such as CD4 depletion in HIV-infection results in ele-

vated levels of IL-7 [186]. Upon T cell recovery, IL-7 levels fall 

[127;187]. This inverse correlation between IL-7 and CD4 counts is 

due to a feedback mechanism, and consequently the potential 

use of IL-7 in enhancing thymopoiesis and sustaining naïve T cells 

have been explored. Administration of recombinant human (rh)IL-

7 to humans has been promising in preclinical trials with increases 

in CD4 counts after only short treatment duration. Evidence that 

IL-7 might accelerate HIV replication initially raised concerns 

regarding its use. However, used as a supplement to HAART it 

has, until now, proven safe [60]. Upon IL-7 treatment T cells of 

both naïve and memory phenotype expand as do TREC containing 

cells and CD31+ RTE naïve cells with accompanying TCR broaden-

ing suggestive of increased thymopoiesis [188-191]. Furthermore, 

in contrast to rhIL-2, rhIL-7 expands CD4+ cells without selectively 

expanding Tregs since these are IL-7R (CD127) low (will be dis-

cussed later) [190;192].  

Several studies examining the potential of rhIL-7 to enhance 

immune reconstitution are on-going (www.clinicaltrials.gov). In 

light of the unexpected and unfortunate experiences with IL-2 

treatment, it is extremely important that large long-term random-

ized studies are conducted to investigate whether or not IL-7 

induces CD4 increases that translate into increased survival 

and/or decreased morbidity and without serious side effects. 

IMMUNOLOGICAL TOLERANCE AND TREGS 

One of the finest tasks of our immune system is immunological 

tolerance i.e. the ability to distinguish self from non-self, offering 

protection to own cells and sufficiently fighting foreign incoming 

antigens. Immunological tolerance has two components, a central 

and a peripheral one. Central tolerance constitutes of the proc-

esses of positive and negative selection that take place in the 

thymus where only MHC-restricted and adequately responding T 

cells manage to get through the eye of the needle. However, the 

system has failures and potentially auto-reactive T cells eventually 

escape the thymic environment and enter the peripheral blood 

with the risk of autoimmunity. In the periphery self-tolerance is 

maintained by regulatory cells of which the best-defined popula-

tion is the forkhead box P3 (FoxP3+) Tregs, also called natural 

Tregs [193]. Natural Tregs develop in the thymus along-side and 

in sync with other T cells by the interaction of the TCR with self-

peptides and through the selection processes [194]. However, 

natural Tregs can also be peripherally induced by a number of 

triggers. In contrast, adaptive Tregs (Th3 and Tr1 cells) exclusively 

develop in the periphery as a consequence of activation of ma-

ture T cells [195]. Throughout this thesis Tregs refers to natural 

Tregs. 

There has been intense focus on Tregs since first described in 

1995 [196]. Tregs regulate immune responses by suppressing 

antigen-specific CD4+ and CD8+ T cell responses and controlling 

inappropriate or exaggerated immune activation induced by 

pathogens. Furthermore, Tregs down-regulate alloreactive T cells 

that recognize antigens from tumours and allografts hereby re-

ducing anti-tumour immunity, graft rejection and graft-versus-

host disease [197]. Finally, Tregs are assumed to play a role in the 

regulation of chronic viral infections including HIV [197-201]. As 

mentioned, chronic immune activation plays a central role in HIV-

pathogenesis; thus, if Tregs down-regulate immune activation 

they may be beneficial, and their level may be central to the 

delicate interaction between the host immune system and HIV, 

and to viral control. In contrast, it has been argued that Tregs may 

play a harmful role by suppressing HIV-specific effectors and 

thereby limiting the body’s immune response to HIV.  

In close relation to Tregs are IL-17 secreting Th17 cells that also 

modulate/regulate the immune system. Th17 cells and Tregs 

share a reciprocal maturation pathway and seem to function 

together in opposing ways to determine the inflammatory re-

sponse to infection. While Tregs inhibit autoimmunity, Th17 cells 

in contrast play a role in the induction of autoimmune tissue 

injury [202;203]. During acute SIV-infection in pigtailed macaques 

the rapid depletion of Th17 cells and disturbed balance between 

Th17 cells and Tregs is associated with subsequent high chronic 

immune activation [204]. Likewise, in HIV-infection the loss of 

balance between Th17 cells/Tregs with depletion of Th17 cells 

and increases in Tregs may play a part in inducing microbial trans-

location and chronic immune activation [205;206]. In contrast, if 

this ratio between Tregs and Th17 cells is maintained, it may 

favor spontaneous HIV control as in the so called HIV elite con-

trollers, a rare subgroup of HIV-infected individuals (representing 

approximately 1% of all HIV-infected patients) who demonstrate 

undetectable viral loads in the absence of therapy [203;207]. 

The identification of Tregs 

The identification of Tregs has been hampered for years by the 

lack of specific markers. Tregs are CD4+ and share many surface 

marker characteristics with activated/memory CD4+ cells. Impor-

tantly, both cell types express the IL-2 receptor CD25 [196]. Tregs 
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express CD25 at slightly higher intensity than activated/memory 

cells, why, to avoid contamination of Tregs with other cells, stud-

ies initially defined Tregs as the proportion of CD4+ T cells ex-

pressing the highest levels of CD25 (CD25high) [154;208]. How-

ever, this most likely underestimates the proportion of Tregs 

[209]. Furthermore, identifying CD25high is difficult and subjec-

tive. When the expression of the transcription factor FoxP3 was 

appreciated as a central molecular determinant of differentiation 

and function of Tregs, responsible for the suppressive capability 

of Tregs, the investigation of Tregs was very much set forward 

[198;210]. The FoxP3 gene belongs to the forkhead/winged helix 

family and is located on the X-chromosome. FoxP3 knock-out 

mice develop fatal autoimmune disease [211]. Likewise, humans 

with defective FoxP3 function present with IPEX (Immunodys-

regulation, Polyendocrinopathy and Enteropathy, X-linked), a 

fatal syndrome characterized by autoimmune diseases in multiple 

organs, such as type 1 diabetes, thyroiditis, and inflammatory 

bowel disease [212]. This clearly indicates the important role of 

FoxP3 to self-tolerance and measuring FoxP3 is now considered 

gold standard for the quantification of Tregs. It is noteworthy, 

however, that recent studies have stated that FoxP3 expression 

not always indicates a regulatory status, and newly activated T-

cells can transiently express FoxP3 [213;214]. FoxP3 in human 

cells can be measured by quantification of FoxP3 mRNA by RT-

PCR or determination of intracellular FoxP3 protein expression by 

flow cytometry after fixation and permeabilization of cells. Re-

cently, cells co-expressing CD25 and lower levels of the α-chain of 

the IL-7R, CD127low, have been shown to be highly correlated 

with intracellular FoxP3 expression (identifying over 95% of the 

FoxP3+ cells in peripheral blood). Why the IL-7R is down regu-

lated in Tregs and maintained in effector/memory T cells has not 

been clarified but the method provides a simpler identification of 

Tregs and a means of purifying viable Tregs for functional studies 

[215-217]. However, the CD25+CD127low phenotype may just be 

mirroring the elevated number of activated non-regulatory T cells 

at least in viremic HIV-infected patients [218]. Therefore, choos-

ing a stringent phenotypic method when identifying Tregs com-

bining the markers CD25, CD127 and FoxP3 better distinguish 

Tregs from activated cells [219;220]. Other markers have also 

been used to identify Tregs (including Glucocorticoid-induced 

TNFR family-related receptor (GITR), cytotoxic T-lymphocyte-

associated antigen 4 (CTLA-4), CD45RO, HLA-DR, CD38), but all 

have in common that all Tregs do not constitutively express them 

[24;201;221-223]. Whatever method used, human Tregs repre-

sent a minority of T cells comprising less than 10% of CD4+ cells. 

The precise mechanism of their suppressive function remains 

controversial, but most likely is exerted both by cell-to-cell con-

tact and by immunosuppressive cytokines such as IL-10 and TGF-

beta [224]. The suppressive function of Tregs can be studied in so-

called suppression assays where Tregs suppress polyclonal stimu-

lation (usually with anti-CD3) of T cells [208].  

Tregs in HIV-infection 

The relation between Tregs and HIV is controversial, and the level 

and function of Tregs in HIV-infected patients have been eagerly 

investigated. Persistent antigen exposure as in chronic HIV-

infection can induce normal CD4+ T cells to obtain Treg-

phenotype and -function, thus increasing number of Tregs [225]. 

In contrast, Tregs are themselves CD4+ and CCR5+, and hereby 

susceptible to HIV [222]. Therefore, the absolute number of Tregs 

is expected to decline with CD4 depletion during HIV-progression 

whereas the percentage of Tregs (%Tregs) more clearly reflects 

the kinetics of Tregs in HIV-infection. The relative sparing of Tregs 

in HIV-infection compared to other T cells has been suggested to 

be a consequence of the ability of FoxP3 to repress retroviral 

transcription from the HIV promoter [226]. Furthermore, expo-

sure of Tregs to HIV may selectively promote their survival via a 

CD4-gp120 dependent pathway [227]. In line with this, most 

studies demonstrate increased %Tregs in blood of HIV-infected 

patients compared with healthy controls [221;228-233]. However, 

some studies do show no difference or decreased levels of %Tregs 

compared to uninfected controls [24;234;235]. The discrepancy in 

these findings regarding %Tregs may in part be due to the above-

mentioned different technical approaches in identifying Tregs. 

Furthermore, not all early studies distinguished clearly between 

untreated and treated HIV-infected patients. An accumulation of 

Tregs in lymphoid tissues has been demonstrated in HIV-infection 

suggesting altered distribution patterns and dynamics of these 

cells [227;234].  

Of notice, the suppressive capacity of Tregs isolated from HIV-

infected patients seems unaltered [228;230;231], even if it has 

been suggested that the function of Tregs in HIV-infected patients 

with more advanced disease is impaired [228]. Several studies 

have demonstrated associations between high Treg levels, low 

CD4 counts, high degrees of immune activation, and/or high viral 

loads suggesting the expansion of Tregs to be harmful 

[229;230;232;236;237]. Accordingly, elite suppressors and long-

term non-progressors have normal or even low Treg levels com-

pared to non-controllers or HAART-suppressed patients [238-

240]. Interestingly, immune activation may still be higher in elite 

controllers than in controls [239]. 

In order to examine the influence of HAART on the Treg level in 

HIV-infected patients we designed a prospective study with 

measurements at weeks 0, 4, 12, and 24 of treatment in 26 

treatment-naïve HIV-infected patients initiating HAART [221]. 

Tregs were measured by flow cytometry using the (at that time 

standard) phenotype CD4+CD25high and by mRNA-expression of 

FoxP3. Both the percentage of CD4+CD25high cells and the ex-

pression of FoxP3 were significantly higher in HIV-infected pa-

tients compared to controls. Interestingly, during the 24 weeks of 

HAART where CD4 counts increased and viral loads decreased, 

neither of the two measures of Tregs changed, indicating that the 

elevated level of Tregs in HIV-infected patients is independent of 

both immunological and virological status. The study confirmed 

similar findings by Lim et al. where 12 treatment-naïve HIV-

infected patients were followed for median 36 weeks after initiat-

ing HAART and where no significant changes in 

CD4+CD25+CD127low Tregs were seen [232]. In both prospective 

studies, immune activation (CD4+ and CD8+ cells expressing 

CD38+ and HLA-DR+) remained significantly higher in patients 

compared with controls, and we questioned whether this was the 

reason why Treg levels were not normalized. We then examined 

Treg levels in 15 HIV-infected patients during prolonged HAART 

[V]. CD4+CD25+ CD127low Tregs and FoxP3 mRNA levels were 

measured after 1 and 5 years of HAART, and so was immune 

activation. Levels of Tregs were elevated after 1 year of HAART, 

and they remained elevated despite 5 years of HAART, sup-

pressed viral loads and normalized CD4 counts and immune acti-

vation suggesting that the expansion of Tregs in HIV-infection 

may be irreversible and does not reflect viral load, CD4 depletion 

or level of immune activation [V].  
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IMMUNOLOGICAL TOLERANCE AND PREGNANCY 

Pregnancy represents a major challenge to the immune system, 

and how fetal-maternal tolerance develops is intriguing. As the 

fetus expresses paternal antigens it is to be regarded as a semi-

allograft; nonetheless it is not attacked by the maternal immune 

system [241]. Historically, three reasons have been proposed to 

explain how the fetus evades an immunological reaction from its 

mother: 1) the fetus is anatomically separated from the mother 

and to be regarded as an immune privileged site 2) the fetus is 

unable to present antigens to the mother due to immunological 

immaturity 3) the mother somehow ignores fetal tissue [242]. It is 

now known that fetal cells are detectable in the maternal circula-

tion, they are antigenically mature, and the mother does respond 

to them, yet tolerates them [241], though occasionally suffers 

from secondary recurrent miscarriage. The association between 

HY-restricting HLA class II alleles and recurrent miscarriage subse-

quent to a first-born boy indicates a CD4+ T cell mediated mecha-

nism in these cases [243]. How maternal tolerance to fetal anti-

gens normally develops has not been fully clarified but seems to 

involve alteration of both central (thymic) tolerance [244-247] 

and peripheral tolerance mediated by Tregs [248-253]. 

In most mammals the thymus is reduced in size and changed in 

structure during pregnancy, and in mice a substantial loss of 

thymocyte proliferation and reduced thymic output occurs from 

early pregnancy [246;247;254]. This may promote survival of the 

fetus by reducing production of new potentially fetus-reactive T 

cells (in a way similar to deletion of self-reactive T-cells during the 

process of negative selection). Both thymic size and function 

return to normal postpartum, at least after cessation of lactation 

[247]. 

Regarding peripheral tolerance, studies in mice have shown that 

Tregs are expanded from early pregnancy by paternal antigens, 

and absence of Tregs can lead to pregnancy failure [248;252]. 

Furthermore, mice undergoing abortion have a diminished num-

ber of Tregs compared to normal pregnant mice [255]. Likewise, 

studies in humans have demonstrated an expansion of Tregs 

during pregnancy [249;251;252], and levels of human decidual 

Tregs are significantly lower from women undergoing spontane-

ous compared to induced abortion [250], supporting the impor-

tant role of Tregs in deter-mining pregnancy success. Inadequate 

numbers of Tregs have also been linked to infertility [256] and 

pre-eclampsia [257] and so has an imbalance in the ratio of 

FoxP3+ Tregs to IL-17-expressing CD4+ cells [258]. In contrast, an 

increase in Tregs during pregnancy may explain why a number of 

autoimmune conditions tend to remit during pregnancy [259]. 

Pregnancy and HIV 

It has long been a concern that the already impaired immune 

system of HIV-infected women might be further challenged by 

pregnancy [260;261]. Studies conducted before the introduction 

of HAART showed that pregnancy either slightly increased HIV 

disease progression (defined as an AIDS-defining event or death) - 

or had no effect [262;263]. In contrast, studies conducted in the 

HAART-era have demonstrated a protective effect of pregnancy 

on disease progression [264-266]. Furthermore, there seems to 

be a survival advantage in women with 2 pregnancies compared 

with 1 pregnancy [266]. This may be explained by the fact that 

healthier HIV-infected women are more likely to become preg-

nant or it may be due to a possible beneficial interaction between 

pregnancy and HAART. Regarding CD4 counts and HIV viral loads, 

no negative pregnancy-induced effect has been demonstrated in 

studies on HIV-infected women conducted during the HAART-era 

[264;265]. With the improved future prospects for HIV-infected 

patients and very good results in preventing mother-to-child 

transmission of HIV, an increasing number of HIV-infected women 

in the industrialized countries decide to become pregnant and 

have children. We designed a prospective study to investigate 

immunological consequences of pregnancy in HIV-infected 

women receiving HAART [VI]. A total of 20 HIV-infected women 

and 16 age- and ethnicity matched HIV-negative women were 

included and blood samples were drawn once during each trimes-

ter of pregnancy and once 2-6 months postpartum. All HIV-

infected women were treated with HAART during pregnancy, 8 

women were naïve to HAART prior to pregnancy and were 

treated from gestation week 14 according to national Danish 

guidelines, 12 women were on HAART already prior to pregnancy. 

The study showed that CD4 counts were significantly lower in 

HIV-infected women compared to HIV-negative women at all time 

points. Interestingly, CD4 counts were increased postpartum in 

both HIV-infected and HIV-negative women. Immune activation 

(CD4+/CD8+ cells co-expressing CD38+ and HLA-DR+) was signifi-

cantly reduced in HIV-infected women during pregnancy both in 

those already on HAART prior to pregnancy and in those begin-

ning treatment from gestation week 14. HIV viral load remained 

low in HIV-infected women already on HAART prior to pregnancy 

and was significantly reduced in those women starting HAART at 

gestation weeks 14. Thus, the study did not indicate that preg-

nancy adversely affects the virological and immunological course 

of HIV-infection [VI]. 

To explore the hypothesis that pregnancy success relies on altera-

tion of tolerance mechanism thymic output and %Tregs were 

measured in HIV-infected and HIV-negative women during and 

after pregnancy [VI]. In line with other studies, an expansion of 

CD4+CD25+CD127lowFoxP3+ Tregs with a peak during the second 

trimester and a drop during the third trimester was found, but 

only in HIV-negative women. Interestingly, Tregs in HIV-infected 

women were not mobilized. Previous studies have reported on an 

increased risk of spontaneous abortion in HIV-infected women 

[267], and it cannot be ruled out that lack of mobilization of Tregs 

play a role in this phenomenon. Interestingly, lack of Treg mobili-

zation in second trimester was accompanied by a decrease in 

TGF-beta levels in HIV-infected women possibly reflecting the 

important interaction and mutual regulation between Tregs and 

TGF-beta levels.  

With regard to thymic output significant reductions in naïve CD4 

counts and TREC measurements were not found during preg-

nancy. However, visually there was a trend showing the expected 

decrease in both CD4-TREC% and total CD4-TRECs during second 

trimester, but again only in HIV-negative women.  

In conclusion, the study demonstrated differences in immu-

nological measures during pregnancy between HIV-infected and 

HIV-negative women, some of which may have implications for 

the induction of fetal-maternal tolerance and in part explain the 

increased risk of abortion in HIV-infected women [VI]. Dysregula-

tion of Tregs may further be associated with reduced immuno-

genicity of influenza vaccines in HIV-infected pregnant women 

[268]. 

ORIGIN OF TREGS 

The fact that Tregs, as well as other T cells, are developed in the 

thymus, complicates the distinction between central and periph-

eral tolerance, since the thymus hereby, in part, is responsible for 

both. In the thymus the selection of Tregs resembles the selection 

of other thymocytes. However, there is a difference in the affinity 
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of interactions. Tregs have higher reactivity than other T cells to 

the selecting ligand, and this high self-reactivity of Tregs may 

guarantee their prompt and efficient activation upon encounter 

with a diverse range of self-antigen/MHC complexes in the pe-

riphery, ensuring dominant control of self-reactive T cells [269]. 

Even if originating in the thymus, it has been unclear if the thy-

mus still plays a role in maintaining the Treg pool in adults 

[194;270]. Thymic involution with age is assumed to affect both 

regulatory and non-regulatory T cells, the latter shown as reduced 

TREC contents with older age [3;82;83;223;271]. Until recently 

peripheral Tregs in adults were defined primarily as belonging to 

the memory T-cell population, and lifelong maintenance of the 

Treg pool was believed to be dependent upon peripheral prolif-

eration of existing Tregs independent of thymic output [194;223]. 

However, sub-fractioning Tregs on the basis of the CD45 splice 

variants CD45RA and CD45RO reveals that in adults a discrete 

population of Tregs with naive CD4+CD25+CD45RA+ phenotype 

does exist [223;271;272]. In cord blood and in neonates the ma-

jority of Tregs present naïve phenotype [223;271;273]. These 

naive Tregs may represent RTE Tregs supported by the demon-

stration of both longer telomeres and higher TREC contents in 

naive Tregs, similar to telomere length and TREC contents of 

other naive CD4+ cells [223;274]. In adults naive Tregs decline 

with age, as do thymic output and other naive T cells 

[107;223;271;275]. In contrast, memory and total Treg levels are 

increased with older age, even in HIV-infected patients, suggest-

ing other mechanisms in addition to thymic output to contribute 

to the lifelong maintenance of these cells [194;276-278]. Naive 

Tregs have equally potent immunosuppressive properties as do 

memory Tregs [223;271], but furthermore seem to have unique 

self-generating capacities and also seem to be more resistant to 

apoptosis [273]. Their level has been proposed to be critical for 

the suppressive function of the entire Treg pool [274]. We de-

signed a study to examine levels of naïve Tregs in adult HIV-

infected patients with known thymic output in order to investi-

gate if the expansion of Tregs seen in HIV-infection could be due 

to increased de-novo generation of naive Tregs from the thymus 

[V]. Naïve Tregs were defined as CD4+CD25+CD45RA+ according 

to the present literature [223;271;279]. Naïve Tregs, as well as 

total Tregs, were significantly higher in HIV-infected patients 

compared to controls. Furthermore, naïve Tregs depended signifi-

cantly on the TREC%, thus suggesting that higher Treg levels in 

HIV-infection can be partly explained by increased thymic produc-

tion of naïve Tregs [V]. Similar associations have been demon-

strated between CD4+CD31+CD45RA+ RTE Tregs and TREC% in 

HIV-infected patients [107]. Treg levels in thymic tissue isolated 

from adults undergoing cardiac surgery are also increased in HIV-

infected compared to HIV-negative individuals, and even if the 

naïve/memory phenotype was not evaluated in this study, it 

supports the hypothesis that thymic production of Tregs is in-

creased in HIV-infection [280]. To further investigate the associa-

tion between naïve Tregs and thymic output, naïve Tregs were 

measured in HIV-infected and HIV-negative women during preg-

nancy [VI]. Naïve Tregs were measured by 7-colour flow cytome-

try and defined as CD3+CD4+ cells co-expressing the markers 

CD25+, CD127low, FoxP3+, CD45RA+ and CD27+. Thus, compared 

to our other study [V], an additional naïve marker (CD27+) was 

now added, hereby narrowing the naïve Treg population. This 

study confirmed our previous findings and we found that per-

centages of naïve Tregs depended significantly on the CD4-TREC% 

in both HIV-infected and HIV-negative women. Interestingly, we 

further observed changes in naïve Tregs during pregnancy that 

were paralleling the changes in total %Tregs in HIV-negative 

women during pregnancy - that is an expansion during second 

trimester followed by a decrease thereafter (Kolte, unpublished). 

This may imply that the expansion of Tregs during pregnancy also 

relies, at least to some extent, on thymic production of naïve 

Tregs. No other human studies have investigated this issue so far, 

however, studies on mice demonstrate similar findings. Even if 

reduced in size during pregnancy, the thymus is enriched with 

Tregs in pregnant but not in non-pregnant mice and this is 

thought to protect the semi-allergenic fetus [247]. 

In conclusion, the precise mechanisms of Treg expansions in 

pathological (HIV-infection) and physiological (pregnancy) settings 

are still unclear. Our studies suggest that an increase in thymic 

generation of RTE Tregs contribute to Treg increases, but most 

likely this is accompanied by an increase in peripheral expansion 

and increased survival of existing Treg cells.  

THYMIC FUNCTION IN HIV-EXPOSED UNINFECTED CHILDREN 

BORN TO HIV-INFECTED MOTHERS 

HIV can be transmitted from mother to child (MTC transmission, 

also referred to as vertical transmission) during pregnancy, at 

delivery or through breastfeeding. Without any interventions 

taken, the risk of MTC transmission is 15 - 25 % [281;282]. In 

resource-rich countries like Denmark, where the studies included 

in this thesis were performed, appropriate prophylaxis has mark-

edly reduced the risk of MTC transmission to <1% [283;284]. 

International guidelines include antiretroviral treatment of the 

pregnant woman during pregnancy (if not already on HAART prior 

to pregnancy, then initiation of HAART from gestation weeks 14) 

supplemented with oral treatment of the child with zidovudine 

for four weeks after birth, and avoidance of breastfeeding [285]. 

Previous guidelines included intravenous zidovudine at time of 

delivery, but this is no longer implemented if viral load is unde-

tectable. As a consequence of effective interventions and the 

increasing success of programmes preventing MTC HIV transmis-

sion in developing countries, the number of HIV-exposed, unin-

fected (HIV-EU) infants in the world is growing. In some African 

countries it is anticipated that HIV-EU children in not far future 

will comprise more than 15% of all children being born. Any 

health problem or immune deficiency that these children may 

have, even of minor character, may thus be an enormous chal-

lenge, especially in developing countries [286]. 

Despite the fact that HIV-EU children remain uninfected, their 

immune system at birth has been shown to be impaired. HIV-EU 

newborns have increased immune activation and reduced total 

and naïve CD4 counts, and often they have anemia and neutro-

penia [287-291]. HIV-EU children may have been exposed to 

maternally derived HIV-proteins diffusing across the placental 

barrier during pregnancy, influencing the development of the 

fetal immune system including progenitor cell function and intra-

thymic lymphocyte maturation. This is supported by the presence 

of strong HIV-specific CD4 and CD8 responses in HIV-EU newborns 

[288;292-294]. Furthermore, bone marrow toxicity due to intrau-

terine and neonatal exposure to HAART probably contributes to 

lower CD4 counts and other haematological deficiencies in these 

newborns [295-297]. Both HIV-proteins and some antiretroviral 

drugs are known to inhibit progenitor cell function [69;70].  

Furthermore, thymic abnormalities have been described in foe-

tuses aborted from HIV-positive mothers even in the absence of 

thymic HIV-infection [298]. We have previously studied immune 

function in cord blood from 19 HIV-EU newborns and 19 matched 

controls of HIV-negative mothers [289]. We found decreased CD4 

counts and lower thymic output measured as both reduced naïve 
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CD4 counts and lower CD4-TREC% in HIV-EU newborns compared 

to control children. Furthermore, HIV-EU newborns had impaired 

progenitor function evaluated by CFC assay [289]. Thus, both 

impaired progenitor function and reduced thymic output may be 

responsible for lower CD4 counts in HIV-EU newborns. 

The clinical consequence, if any, of these immune abnormalities 

in HIV-EU newborns is unclear. Morbidity rates seem no higher in 

HIV-EU children [299], and growth patterns of HIV-EU children in 

the large European Collaborative Study were comparable to HIV-

unexposed children [300]. In addition, results from vaccination 

studies show normal responses both to measles [301], Bacille 

Calmette-Guérin [302] and rubella [303] vaccination in HIV-EU 

children. However, three studies have shown that HAART-

exposed compared to HAART-non-exposed HIV-EU children have 

slightly but significantly CD4 counts (although still within normal 

limits) persisting long after cessation of exposure up to the age of 

12 [304], 15 [297] and 24 [295] months, respectively. The clinical 

relevance of these findings has been discussed especially since no 

comparison was made to children born to HIV-negative mothers. 

We designed a study to investigate immunological consequences 

beyond infancy of in utero exposure to HIV-proteins and antiret-

roviral drugs [VII]. Thymic size and output, CD4/CD8 lymphocyte 

subpopulations including Tregs, and immune activation as well as 

cytokine profiles were evaluated in 20 HIV-EU children at median 

15 months of age and compared to HIV-unexposed control chil-

dren matched for age and ethnicity. Furthermore, the antibody 

response to Haemophilus Influenzae Type B (Hib) vaccination was 

evaluated. We found significantly lower thymic size as evaluated 

by sonography scans in HIV-EU children. However, CD4 counts 

and thymic output estimated as naïve CD4 counts and TREC 

measurements did not differ between HIV-EU children and con-

trols. Likewise, levels of immune activation, Tregs and cytokines 

were comparable between the two groups of children. Further-

more, no difference was seen in Hib vaccination responses indi-

cating that no qualitative immune deficits remain in HIV-EU chil-

dren at 15 months of age. In HIV-EU children we found no 

association between thymic size and output, as we demonstrated 

in adults. An explanation for this difference may be that the thy-

mus in children, large as it is, possesses an excess capacity just as 

it is known with liver tissue, so that size and function are not 

associated. In adults, however, thymic size is markedly reduced 

and the entire remaining tissue may be of functional character. 

Thymic size in children has been shown to be a general marker of 

immune function and lower thymic size is associated with child-

hood mortality in rural areas [305;306]. Thus, it cannot be ruled 

out that reduced thymic size in HIV-EU children, even not affect-

ing thymic output in childhood, may have consequences later in 

life. Furthermore, intrauterine exposure to antiretrovirals does 

seem to significantly reduce haematologic indices [295-297;304], 

and it is not yet definite if these reductions, although within 

normal limits, have long-term clinical implications for HIV-EU 

children. Finally, the data from this Danish study may not trans-

late to the much larger world population of HIV-EU children in 

developing countries where prophylactic interventions are less 

available. Therefore, long-term follow-up of uninfected, HIV- and 

HAART-exposed children into adulthood is indeed needed.  

CONCLUSIONS AND PERSPECTIVES 

The aim of our investigations was to contribute to the knowledge 

of the role of the thymus in different aspects of HIV-infection, and 

in order to explore this we set up four hypotheses (H1 - H4). 

Assessment of thymic function has been hampered by the incon-

venient location of the organ in the anterior mediastinum and 

lack of appropriate markers. Newer methods, however, including 

determination of naïve RTE subsets by multicolor flow cytometry, 

measurements of TREC-containing cells by PCR and definitions of 

the breath of the immunological repertoire have allowed for 

further investigation of thymic output in adulthood, and in T cell 

depleted settings, such as HIV-infection [3;72;104;109]. It is now 

generally accepted that thymopoiesis is ongoing even at high age. 

HIV diminishes thymic size and output, but it can recover with 

HAART [3;93;118;123-131]. We applied several methods for the 

estimation of thymic output and found that larger thymic size in 

adult HIV-infected patients on HAART is associated with improved 

recovery of total and naïve CD4+ cells, increased TREC frequen-

cies, and renewing of the TCR repertoire diversity [I;II]. Upon 

HAART, and likewise during T cell reconstitution following chemo-

therapy, the thymus may even “rebound” to greater than normal 

size when viewed by CT scans, reflecting renewal capacity 

[118;307]. Thus, mounting evidence points towards a central role 

of the thymus in immunological recovery in HIV-infection [308], 

even if the importance of the thymus to the rate of cellular resto-

ration primarily seems to lie within the first two years of HAART 

[III] (H1). 

Insufficient thymic activity may therefore, in part, explain the 

large variations in CD4+ cell recovery among HIV-infected patients 

as may a sustained immune activation and, possibly, ongoing low-

grade viral replication [148]. Since a considerable number of 

patients do not succeed in obtaining optimal immunological 

responses despite HAART-induced viral suppression, and are 

hereby in continuous increased risk of morbidity and death 

[141;150;151;156], strategies to further enhance immune recon-

stitution by supplementary immune-based therapies have been 

investigated in a number of studies. Of most promise seemed 

treatment with IL- that resulted in large increases in CD4 counts, 

most likely primarily by stimulating peripheral proliferation of 

CD4+ cells, however, unexpectedly proved non-beneficial with 

regard to a reduction in the risk of opportunistic infections and 

death [160]. In our work, we tested the effect of long-term low-

dose rhGH in a randomized, double-blind placebo controlled trial 

for the enhancement of thymopoiesis [IV]. Low-dose rhGH treat-

ment was associated with significant increases in thymic index, 

density and area and in TREC contents within CD4+ cells. This 

strongly supports that GH possesses the potential to enhance 

thymopoiesis and that reversal of HIV-related decreases in thymic 

function is pharmacologically possible [IV]. IL-7 is another good 

candidate because it promotes maturation of thymocytes and is a 

critical modulator of peripheral T cell homeostasis [60]. Even if 

promising, clinical studies on the role of rhGH and IL-7 in immune 

recovery in HIV-infected patients are to date few and more are 

definitely warranted to study in more details the clinical effects 

and side effects of such therapies. Especially, it is a concern that 

stimulation of the thymus induces autoimmunity due to an imbal-

ance in the positive and negative selection processes. In contrast, 

if proven efficient and well tolerated, thymic-stimulatory thera-

pies may in the future have wide implications not only in patho-

logical T cell depleted settings but also to restore the important 

set of thymic functions that are compromised by ageing. GH or 

other therapies may possess the potential to correct oligoclonal-

ity of the immunological repertoire, which is one of the significant 

features of immunosenescence leading to susceptibility of elderly 

people to infectious diseases and declines in immune responses 

against vaccines [173]. Moreover, increasing knowledge of the 

processes underlying ageing of the immune system has re-

evaluated the potential immunological consequences of total 
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thymectomy, which has been common practice during cardiac 

surgery in children. Whether or not thymectomized individuals, 

due to enhanced immune senescence, are at increased risk of 

developing inflammatory diseases, have diminished immune 

responses or vaccination responses, and suffer from increased 

morbidity or mortality, is as yet not clear, but recommendations 

may likely change to encourage partial resection of the thymus in 

order to limit premature ageing of the immune system [62-65] 

(H2). In this regard, our studies on HIV-EU children demonstrating 

reduced thymic size at 15 months of age may raise concern [VII]. 

Even if encouraging that HIV-EU children compared to children 

born to HIV-negative mothers have no qualitative immune deficits 

at 15 months of age, it cannot at present be ruled out that persis-

tently reduced thymic size may have consequences later in life 

where age-related thymic atrophy and immunosenescence set in. 

Further studies on HIV-EU children into adulthood are definitely 

warranted to enlighten this issue (H4). 

Tregs constitute the peripheral strategy of our immune system to 

tame self-reactive T cells slipping past the defenses in the thymus 

and to suppress inappropriate or exaggerated immune activation 

induced by pathogens [309]. Our studies demonstrate increased 

levels of Tregs in HIV-infected patients despite long-term treat-

ment with HAART, suppressed viral loads, and normalized CD4 

counts and immune activation suggesting that the expansion of 

Tregs in HIV-infection may be irreversible and does not reflect 

viral load, CD4 depletion or level of immune activation [V]. Our 

data further suggest that elevated levels of Tregs in HIV-infected 

adults may in part be due to in-creased thymic production of 

naive Tregs [V]. Understanding the interplay between HIV and 

Tregs is complex [310;311], and with recent advances indicating 

that the balance between Tregs and Th17 cells presumably mat-

ters more than levels of Tregs itself in inducing microbial translo-

cation and chronic immune activation, complexity definitely 

increases [205;206]. Even though it remains blurred whether or 

not Tregs are directly responsible for HIV-dependent immunode-

ficiency, reductions in Treg numbers or Treg activity probably will 

increase HIV-specific T cell responses generating the type of 

immunity that is seen in elite suppressors and long-term non-

progressors, and at present it cannot be ruled out that this may 

be a design for future therapies in HIV-infection (H3). 

During pregnancy, establishing fetal-maternal tolerance is essen-

tial to pregnancy success [241], and we found alterations in 

thymic output and Treg levels compatible with such an establish-

ment in HIV-negative pregnant women. However, HIV-infected 

women displayed different immunological profiles compared to 

HIV-negative women, and were not able to mobilize Tregs during 

pregnancy [VI]. This suggests an immune unbalance during HIV-

positive pregnancy possibly interfering with the prevention of 

fetal rejection and partly accounting for the increased risk of 

abortion in HIV-infected women [267]. Understanding into more 

detail the mechanisms that enable maternal Tregs to overcome 

alloreactivity during pregnancy may have implications not only for 

a more profound understanding of Treg function but also for 

development of therapeutic interventions for a variety of human 

conditions where peripheral tolerance mechanisms fail such as 

spontaneous abortion, infertility and autoimmune diseases (H2-

3). 

The greatest need for HIV-infected patients with access to anti-

retroviral therapy is no longer new antiretroviral drugs, but new 

therapeutic strategies to ensure successful immune reconstitu-

tion and to help decrease the inappropriate immune activation 

associated with HIV-infection. Biologicals enhancing thymopoiesis 

hold great promise to complete CD4 restoration and renew the 

TCR repertoire in those patients who insufficiently respond to 

HAART. Furthermore, given the probable causal role of an unbal-

anced ratio between Tregs and Th17 cells in microbial transloca-

tion, interventions designed to restore this unbalance in order to 

decrease microbial translocation and its downstream inflamma-

tory consequences may be future strategies. Finally, strategies to 

face the non-AIDS complications that remain in HIV-infected 

patients in the HAART era including cardiovascular disease, can-

cer, and osteoporosis and osteopenia will become the challenge 

for the next decade [312;313]. 

SUMMARY 

This thesis is based on seven previously published articles. The 

work was performed during my employment at The Department 

of Infectious Diseases, Copenhagen University Hospital, Hvidovre, 

as a scholarship student from 2000-2001 and as a research assis-

tant in the period 2004-2010. 

HIV-infection is characterized by CD4+ cell depletion. The differ-

ences between patients in the degree of CD4+ cell recovery upon 

treatment with highly active antiretroviral therapy (HAART) may 

in part be due to differences in the supply of naïve CD4+ cells 

from the thymus. The thymus atrophies with increasing age for 

which reason the adult thymus was previously assumed to be 

without function. The aim of these investigations was to examine 

the role of the thymus in different aspects of HIV-infection: In 

adult HIV-infected patients, during HIV-positive pregnancy, and in 

HIV-exposed uninfected (HIV-EU) children born to HIV-infected 

mothers. 

Thymic size and output were determined in 25 adult HIV-infected 

patients receiving HAART and in 10 controls. Larger thymic size 

was associated with higher CD4 counts and higher thymic output. 

Furthermore, patients with abundant thymic tissue seemed to 

have broader immunological repertoires, compared with patients 

with minimal thymic tissue. The study supports the mounting 

evidence of a contribution by the adult thymus to immune recon-

stitution in HIV-infection. In a follow-up study conducted till 5 

years of HAART, the importance of the thymus to the rate of 

cellular restoration was found to primarily lie within the first two 

years of HAART.  

The effect of recombinant human growth hormone (rhGH) was 

then investigated in a randomized, double-blind placebo con-

trolled trial in 46 adult HIV-infected patients on HAART. Daily 

treatment with a low dose of rhGH of 0.7mg for 40 weeks stimu-

lated thymopoiesis as expressed by thymic size, density, and 

output strongly supporting the assumption that rhGH possesses 

the potential to stimulate the ageing thymus, holding promise as 

a future means to complete CD4 restoration and renew the TCR 

repertoire in patients who respond insufficiently to HAART.  

Apart from naïve T cells, Regulatory T cells (Tregs) are developed 

in the thymus. Tregs play a critical role in peripheral tolerance 

and suppress inappropriate immune activation such as induced by 

HIV. We studied levels of Tregs in adult HIV-infected patients with 

known thymic output. Our studies demonstrate increased levels 

of Tregs in HIV-infected patients despite long-term treatment 

with HAART, suppressed viral loads, and normalized CD4 counts 

and immune activation suggesting that Tregs expand irreversibly 

in HIV-infection independently of viral load, CD4 depletion or 

level of immune activation. Our data further suggest that ele-

vated levels of Tregs in HIV-infected adults may in part be due to 

increased thymic production of naive Tregs.  

During pregnancy, establishing fetal-maternal tolerance is essen-

tial to pregnancy success. In a prospective study on HIV-positive 
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and HIV-negative pregnant women we found alterations in thymic 

output and Treg levels in HIV-negative pregnant women compati-

ble with such an establishment. HIV-infected women, however, 

displayed different immunological profiles from HIV-negative 

women, and this immune unbalance may interfere with the pre-

vention of fetal rejection and may partly explain the increased 

risk of abortion in HIV-infected women.  

We finally examined thymic function in 20 HIV-EU children at 15 

months of age. The thymus was reduced in size in HIV-EU children 

compared with children born to HIV-negative mothers, but no 

evidence of impaired thymic function, immune regulation, or 

antibody vaccination response was detected, suggesting that no 

qualitative immune deficits persist in HIV-EU children beyond 

infancy.  

In conclusion, the thymus is functional in adults, and it contrib-

utes to immunological recovery in HIV-infected patients primarily 

during the first two years of HAART. Treg levels are increased in 

HIV-infected patients independent of viral load, CD4 cell deple-

tion or level of immune activation, and this may be due to in-

creased thymic production of naïve Tregs. Alteration of thymic 

function in adults is possible, both by stimulation of thymopoiesis 

with rhGH therapy and as a result of pregnancy. Finally, immu-

nological abnormalities detected in HIV-EU infants are recovered 

at 15 months of age, and even if diminished in size, thymic func-

tion is normalized at this age. 

LIST OF ABBREVIATIONS 

AIDS: acquired immunodeficiency syndrome 

FoxP3: forkhead box P3 

GALT: gut-associated lymphoid tissue 

GH: growth hormone 

HIV: human immunodeficiency virus 

HIV-EU: HIV-exposed, uninfected 

HAART: highly active anti-retroviral treatment 

IGF-1: insulin-like growth factor-1 

IL: interleukin 

INR: immunological non-responders 

MHC: major histocompatibility complex 

MTC: mother to child 

PBMCs: peripheral blood mononuclear cells 

PCR: polymerase chain reaction 

Rh: recombinant human 

RTE: recent thymic emigrants 

SIV: simian immunodeficiency virus 

Sj: signal joint 

TCR: T cell receptor 

TREC: T-cell receptor excision circles 

TREC%: TREC frequency  

Tregs: regulatory T cells 
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