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INTRODUCTION 
The Danish police lack resources to maintain effective investi-

gation of crimes. In 2013, 244 550 criminal cases were reported 
where 18 327 of the cases were classified as dangerous including 
murders, rapes, armed burglaries, violence, threats, arson, and 
several others [1]. The police filed charges in 92.7% of the danger-
ous cases indicating that the cases have been highly prioritised. 
However, the evidence collected and later presented by the pros-
ecutors tends to be weak as only 56.7% of the cases were solved. 
The lack of resources is also supported by the fact that 73 370 
burglaries were reported in 2013 where the police filed charges in 

15.5% of the cases and only 8.5% of the cases were solved [1]. Ad-
ditionally, according to a police report leaked by the newspaper 
BT in July 2014 larcenies below 1 000 000 DKR. are not investi-
gated due to the lack of resources [2].  

To meet these challenges in the future, the police investiga-
tion methods have to be optimised by automating trivial work 
and new effective investigation methods have to be developed. 
Automated back tracking of perpetrators through closed circuit 
television (CCTV) data could reduce the workload by the police, 
but also automatic recognition based on biometrics as finger-
prints, DNA, facial features, body dimensions and gait would aid 
in this and strengthen the evidence as human bias will be mini-
mised.  

Today CCTV can provide strong evidence and plays an im-
portant role in criminal investigations [3]. However, recognition in 
CCTV is resource-demanding, as the police technicians have to 
collect the video data and extract the relevant sequences. In the 
cases where the perpetrators cannot be recognised by the face, 
forensic anthropologists have to analyse other biometric features 
in the images, which may also require a field calibration of the 
cameras as illustrated in Fig. 1.  

 
 
Figure 1  

Typical setup for camera calibration on a crime scene. Photo: P K 
Larsen 

 
Various biometric features can be extracted and analysed 

from CCTV data. The shape of the ear, facial features, tattoos, 
birthmarks, eye colour and body dimensions are the classical ex-
amples but also gait is of increasing interest. For centuries gait 
has been known to be unique among individuals as Shakespeare 
can be cited for this in this work The Tempest from 1610-1611. 

Applications of markerless motion capture in gait 
recognition 

 

Martin Sandau 
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Cutting and Kozlowski [4] were the first to report scientific results 
on this as people recognised their friends by their walk when 
shown video recordings of markers mounted on the joints. The 
first time gait was used as evidence in Denmark was in 2002 
where a bank robber had a highly characteristic gait [5, 6]. After 
this episode the interest of applying photogrammetric measures 
as evidence has increased but today these techniques are only ap-
plied in the most urgent cases due to the high resource demand 
and the varying strength of evidence caused by poor image qual-
ity and challenging perspectives [6-8]. The strength of evidence is 
also affected by the intra- and inter-observer variability of the gait 
kinematics and the body dimensions. This issue was studied by 
Larsen, Hansen [9] and the results showed that measures of seg-
ment lengths were not reliable for recognition as the intra- and 
inter-observer variability were high compared to the expected 
variability of the segment lengths within participants of similar 
stature. 

To reduce the issues related to human interference and the 
resource demand, fully automatic recognition algorithms have 
been proposed [10-17]. The algorithms can be grouped into 
model-based and appearance-based methods. In model-based 
methods, kinematics are obtained by fitting an articulated limb 
segment model to silhouettes or 3D reconstructions extracted 
from video data [11, 18]. The articulated models comprise a sur-
face mesh and an underlying stick model representing the skele-
ton. As the surface mesh is fitted, the underlying skeleton is sub-
sequently used to estimate the locations of joint centres and the 
joint angles. Participants are then recognised by their gait based 
on the extracted kinematic parameters. The advantage of the 
model-based approaches is that joint angles can be analysed sep-
arately, but the methods reported are often presented without a 
quantification of the kinematic precision as no golden standards 
exist (P4). It is thus difficult to clarify whether it is the actual joint 
angles or participant specific biases that provide the kinematic 
differences between participants [10, 11]. In appearance-based 
methods, image features are extracted from the video sequence 
and mapped directly to a low-dimensional space for classification. 
Among the appearance-based methods, the Gait Energy Image 
[19] appears to be the most successful representative in gait 
recognition [16]. Appearance-based approaches provide promis-
ing results for recognition and compared to the model-based ap-
proaches they generally perform better [10-12, 16]. As these ap-
proaches consider gait as a holistic pattern, body dimensions and 
gait parameters cannot be interpreted separately, which makes it 
is difficult to explain which parameters provide distinct discrimi-
nation between participants contrary to the model-based meth-
ods.  

Motion analysis with motion capture is applied for various 
other purposes as clinical analysis, sports analysis, animating mo-
tions and controlling avatars in computer games. However, mo-
tion capture systems perform differently according to the in-
tended use. For instance, motion capture systems for gaming are 
highly dependent on estimating kinematics in real-time whereas 
motion capture in clinical biomechanics are dependent on high 
accuracy of the estimated kinematics and are less dependent on 
the processing time, which is similar to the needs in forensic sci-
ences. Motion capture systems intended for clinical analysis can 
therefore provide inspiration for precise gait analysis in the foren-
sic sciences with the exception that clinical biomechanics fre-
quently allows the attachment of markers. A survey of formal 3D 
markerless motion capture systems was conducted in P4 with a 
discussion of their potential applications in the forensic sciences. 

Probably the most popular device for markerless motion cap-
ture is the Kinect (Microsoft, Redmond, Washington, USA), which 
is a motion controller for video gaming. The Kinect is based on a 
hybrid motion capture method, which means that it is a combina-
tion of model-based and appearance-based methods [20, 21]. 
This enabled markerless motion capture in real time sufficiently 
precise for a wide range of applications including gaming and 
training for therapeutic rehabilitation. However, considerations in 
the data interpretation are required when applying the Kinect for 
clinical analysis as the precision is markedly lower than the tradi-
tionally applied marker-based systems [22]. 

Stanford University’s BioMotion Laboratory has provided sev-
eral essential contributions to precise measurement of 3D kine-
matics with markerless motion capture. Corazza, Mündermann 
[23] proposed to use participant specific articulated models that 
were fitted to primitive 3D reconstructions. The use of participant 
specific articulated models obtained from laser scans enabled 
precise estimations of sagittal plane joint angles. Mündermann, 
Corazza [24] expanded the approach by replacing the personal la-
ser scans with models retrieved from a repository of laser 
scanned humans with varying body dimensions and used soft con-
straints on the joints of the articulated model to enable small 
movements of the joints. The generation of participant specific 
articulated models was further refined by Corazza, Gambaretto 
[25] and Corazza, Mündermann [26] also showed that combining 
the recent methods and adding rotational constraints to the artic-
ulated models enabled a high precision of the joint centre estima-
tions. However, the precision of the 3D joint angles in the hip, the 
knee and the ankle were not quantified, which would have been 
interesting in regard to clinical applications as well as in forensic 
sciences. 

To analyse the precision of the kinematics estimated by mark-
erless motion capture systems, marker based motion capture sys-
tems are often applied as the ‘true’ reference. But several factors 
induce considerable errors including the placement of the mark-
ers, the regression equations used to predict the joint centres and 
the motion of the markers relative to the underlying bone. The 
errors regarded to the placement of the markers and the motion 
of the markers also called soft tissue artefacts are well known [27, 
28], but quantifications of the errors regarding the regression 
equations to predict the knee and ankle joint centres have not 
been reported.    

To summarise, current photogrammetric methods used to 
recognise perpetrators in CCTV are based on manual measures of 
body dimensions and gait kinematics. This is resource demanding 
and heavily affected by intra- and inter-observer variability. These 
issues can be minimised by using automatic recognition methods 
but the precision of the kinematics extracted with such methods 
are unknown and the reference techniques to quantify this are 
also affected by errors that have not been quantified. Therefore, 
this thesis provides three essential contributions to meet these 
challenges. The first contribution (P1) is a quantification of the in-
tra- and inter-observer variability of annotations on 3D recon-
structions and an analysis of the associated effect on recognition. 
The second contribution (P2) is a new model based markerless 
motion capture method to achieve automatic and precise estima-
tion of gait parameters. The third contribution (P3) quantifies the 
errors of established marker based regression equations to pre-
dict joint centres and generates new equations corrected for bi-
ases.  

In the first contribution, highly accurate 3D reconstructions of 
participants were annotated by eight expert observers to quantify 
the intra- and inter-observer variability of gait kinematics and 
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limb segment lengths and the associated effect on recognition. 
The recognition was performed with  random forests [29], which 
provided easy interpretation of the parameter importance. The 
study shows how recognition can be performed reliably with min-
imal human interference in the future.  

In the second contribution the accurate 3D reconstructions 
improved the precision of model-based markerless motion cap-
ture, which was validated for all 3D joint angles in the lower ex-
tremities. The study provides insight into how markerless motion 
capture systems might develop to acquire reliable gait recognition 
systems.  

In the third study the error of established marker based meth-
ods to predict the joint centres in the lower extremities was quan-
tified and a new unbiased set of equations were regressed, which 
also accounted for sex differences in pelvis anthropometrics. This 
was achieved with MRI and CT scans of ten males and ten females 
As marker-based motion capture is frequently applied for scien-
tific analysis of gait, the increased accuracy will first of all contrib-
ute to the understanding of gait dynamics but will also provide 
more reliable validations of markerless motion capture systems as 
marker-based motion capture is frequently applied as the ‘true’ 
reference.  

The purpose of the three contributions was to increase the re-
liability of recognition based on body dimensions and gait kine-
matics and to reduce the resource demand of criminal investiga-
tions in the future. 

MATERIALS AND METHODS 
This section is divided into five subsections: The DATA OVER-

VIEW section describes the data applied in the study. THE GAIT 
LABORATORY section describes the laboratory setup and the 3D 
reconstruction algorithms that were applied to synthesise the 3D 
reconstructions. THE VARIABILITY OF GAIT AND THE EFFECT ON 
RECOGNITION section describes how the variability of gait kine-
matics and limb segment lengths was quantified and compared 
with the intra- and inter-observer variability. It also describes how 
the importance of the kinematics and the limb segment lengths 
were quantified regarding recognition. The AUTOMATIC POSE ES-
TIMATION section describes how to extract joint angles in the 
lower extremities from the 3D reconstructions with high precision 
and with minimal human interaction. Finally, the NEW REGRES-
SION EQUATIONS section explains how the error of the existing 
marker based regression equations was quantified and how new 
accurate equations were regressed. 
DATA OVERVIEW 
The gait data set 

Data from 16 male participants were recorded in the gait la-
boratory to obtain 3D reconstructions of them during normal 
walking. The participants were Caucasians aged 22-33 years and 
had no history of lower extremity pathology. The heights ranged 
from 1.69 to 1.89 m and the BMI ranged between 20.6 to 25.7 
kg/m2. Data from each participant were recorded over two differ-
ent days where the participants performed ten gait trials with a 
walking speed of 1.1 m/s (4.0 km/h) ±10% each day. The walking 
speed was measured by two photo cells and the participants were 
allowed to practice the desired walking speed and were given im-
mediate oral feedback. The participants were dressed in leopard 
spandex to enhance the curvatures and the texture on the body 
as illustrated in Fig. 2.  

 
 
Figure 2  

To enhance the body curvatures and the texture on the body the 
participants were dressed in leopard spandex 
 

The 3D reconstructions from all 16 participants were applied 
in P1 and 10 of them were randomly included in the validation of 
the proposed markerless motion capture approach in P2. The 16 
participants are 3D reconstructed in appendix.   
The anthropometric reference data set 

To quantify the errors in P1 and P3, ‘true’ anthropometric 
measurements were obtained from structural MRI scans and CT 
scans. In P3 the hip joint centre (HJC) regression equations were 
based on CT scans of the 10 male and the 10 female cadavers to 
account for sex differences. All participants were Caucasians aged 
21-57 years with a body mass index (BMI) between 17.8-27.2 
kg/m2. CT scans were preferred because CT provides excellent 
contrast between the bone and soft tissues and motion artefacts 
were avoided by using cadavers instead of living participants. The 
CT scans were performed using a Somatom Definition CT scanner 
(Siemens AG, Erlangen, Germany) with the following settings: 120 
kV and 285 mAs and a spatial resolution at 3x3x3 mm3.  

The ‘true’ segment lengths in P1 and the ‘true’ locations of 
the knee joint centres (KJC) and the ankle joint centres (AJC) in P3 
were obtained from structural MRI scans. The MRI scans were ob-
tained with a 1.0 Tesla, Harmony MRI scanner (Siemens AG, Erlan-
gen, Germany). The Transmit-receiver body coil was used for exci-
tation and signal detection. A gradient echo T1-weighted pulse 
sequence was used in order to provide the best possible tissue 
contrast between muscle and bone tissue. The spatial resolution 
was 0.8x0.8 mm2/pixel in the frontal plane slices and the slice 
thickness was 3 mm.  

To obtain the full length of the long bones, the MRI scans 
were fused by 3D registration. The registration was performed by 
rigid transformation using the correlation coefficient of the over-
lapping anatomical structure as similarity measure and the sim-
plex search method for optimisation [30]. To quantify the error 
caused by the 3D registration and inhomogeneity in the magnetic 
field, a femur phantom was constructed as illustrated on Fig. 3.  

The phantom consisted of a polypropylene tube with a length 
of 60.0 cm and a diameter of 5.0 cm and a polyvinylchloride (PVC) 
ring with a length at 4.0 cm and a diameter at 12.0 cm fixed mid-
way of the tube. The PVC ring was labelled with nine equally dis-
tributed elliptical markers consisting of fish oil with a length at 2.3 
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cm and a diameter at 1.0 cm. Along the first 30.0 cm of the tube, 
15 markers were placed with 2.0 cm between the markers 
whereas 13 markers were placed at the other side of the ring also 
with 2.0 cm space between the markers. The 15 aligned markers 
on one side of the ring were used to provide a linear model. This 
was obtained with the first component from a Principal Compo-
nent Analysis (PCA) where the two other components quantified 
the regression error together with the variability of the distances 
between the markers. To quantify the 3D registration error, the 
root-mean-squared-error (RMSE) was computed of the residual 
between the linear model and the 13 aligned markers in the 
transformed MRI scan.  

 
 
Figure 3  

Femoral phantom to quantify the measurement error related to 
image registration and distortion of the MRI scans 

 
Definition of the joint centres 

In P1 and P3 the joint centres correspond to the centre of ro-
tation (CoR). The CoR of the shoulder and the elbow joint were 
assumed to be the centre of caput humeri and trochlea humeri, 
respectively. The wrist was more complex consisting of the radio-
lunate and lunate-capitate joint [31]. This was simplified to be a 
single joint located in the joint line between os lunatum and os 
capitatum as illustrated in Fig. 4.  

 
 
Figure 4  

Sketch of the wrist with the medial axis (blue), the radio-lunate 
and lunate-capitate joints (green) and the simplified rotation cen-
tre (red) (P1) 

With regard to the lower extremities, the hip joint centre was 
assumed to be in the centre of the femoral head. The knee joint 
centre in medial/lateral direction was assumed to be located in 
the midway between the epicondyles, whereas the flexion/exten-
sion axis was estimated similar to the method by Iwaki, 
Pinskerova [32] as image slices in the sagittal plane were obtained 
of the knee joint with flexion angles at 0 and 35 degrees. The tib-
ias were superimposed in the images and the contact region on 
the tibial articular surface was labelled. Circles were then fitted to 
the tibio-femoral contact surface within the regions where the 
centre of the circles was considered as the instantaneous rotation 
centre[32]. The fixed CoR was defined as the mean of the circle 
centres as illustrated in Fig. 5. The same approach was applied to 
the AJC where the plane of intersection to the estimated axis was 
assumed to be in the midway between the medial and lateral side 
of trochlea tali.  
 
THE GAIT LABORATORY 

The following sections are describing the setup and the con-
siderations regarding the hardware, the camera calibration, the 
software development and the validation of the 3D reconstruc-
tions obtained with the system.  
The hardware setup 

The setup was built in an already existing gait laboratory 
measuring 9.0x7.0x2.3 m3 with the Volume of Interest (VoI) in the 
centre of the room covering roughly 2.0x2.0x2.0 m3. To cover this 
volume, eight cameras were located in pairs with a vertical base-
line between them as sketched in Fig. 6. The eight cameras were 
connected to one computer with four Matrox Radient eCL-DF 
frame grabbers (Matrox Electronic Systems Ltd., Montreal, Que-
bec, Canada), which enabled hardware synchronisation through 
external auxiliary I/O connectors. The computer had a BIG BANG 
– MARSHAL (B3) Series (MS-7670) ATX mainboard (Micro-Star 
Int’l Co. Ltd., New Taipei City 235, Taiwan) and 16 GB DDR3-1600 
SDRAM.   

 
 
Figure 5  

a: fitting a circle to the tibiofemoral contact surface of a stretched knee. b: superimposing shank of a flexed knee and fitting a new circle 
to the contact surface. c: the mean position of  the instantaneous joint centres represents the fixed CoR (blue) (P3) 
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Imaging of highly dynamic motions requires a short shutter 
time to avoid motion blur and a high sampling frequency. In addi-
tion, highly detailed 3D reconstructions require a high spatial res-
olution. The Camera Link cameras: Gazelle GZL-CL-41C6 (Point 
Grey Research Inc., Richmond, British Columbia, Canada) meets 
this with 2048x2048 pixels and a maximal frame rate at 142 fps. 
However, we could sustain a maximal frame rate at 135 fps with 
the current setup. 

The imaging sensors in the cameras were monochromatic 1” 
CMOS with global shutter. Monochromatic 1” CMOS imaging sen-
sors has a relatively high light affinity. This was preferred to ob-
tain low noise images with a shutter time at 1 ms and 850 LUX il-
luminating the VOI. The global shutter was also preferred as 
rolling shutters induces motion artefacts.  

The data size of the images was 4MB, resulting in 540 MB/s 
for each camera and 4.32 GB/s from eight cameras. As this re-
quires a relatively large band width, it was necessary to use DDR3 
SDRAM with a data transfer rate at 1066 MT/s in the computer 
memory. 

The cameras were connected to the computer with 12 metre 
BitMaxx™ extended length cables (Components Express Inc, 
Woodbridge, Illinois, USA) as they were certified up to 85 MHz, 
which was required to run the Camera Link cameras in full 8-tap 
configuration (the highest performance). 

The 1” format 25 mm fixed focal length lenses (Edmund Op-
tics Inc., Barrington, New Jersey, USA) was mounted on the cam-
eras to cover the VOI with optimal spatial resolution. The lens res-
olution at 100±20 line pairs (lp)/mm matched the spatial sensor 
resolution at 90 lp/mm).   

PhotoModeler® (Eos Systems Inc., Vancouver, Canada) was 
used for both intrinsic and extrinsic calibration. The intrinsic cali-
bration was performed with a calibration board and the extrinsic 
calibration was performed with a 1.55x1.05x1.35 m3 frame with 
42 coded targets.  

 
Background subtraction 

To speed up the image processing, the amount of pixels to be 
processed was reduced by segmenting the object of interest with 
background subtraction. Typical problems in background subtrac-
tions are regarded to variations in the background, inconsistent 

lighting and low contrast between object and background. Shad-
ows also caused problems in the current setup and high contrast 
between object and background were also challenging as the lab 
environment was cluttered. However, accurate background sub-
traction was not crucial as the inclusion of background pixels in 
the segmentation resulted in a prolonged computation time and 
redundant 3D points near the reconstructed participant.  On the 
other hand, parts of the participant that were erased by the back-
ground subtraction were not recovered in the 3D reconstruction. 
Therefore, to ensure full recovery of the participant, a dilation of 
the segmentation was performed according to van den 
Boomgaard and van Balen [33].   
The PMVS algorithm 

From the background subtracted multi-view images a 3D 
point cloud was reconstructed of the participant with the ‘Patch 
based multi-view stereo algorithm’ (PMVS) [34]. The PMVS algo-
rithm processes 3D reconstructions in a three step procedure em-
bracing matching, expanding and filtering. The image features to 
be matched were based on Harris corners [35] and Difference of 
Gaussians (DoG) [36]. After matching, an expansion step and a fil-
tration step was iteratively executed to create a denser point 
cloud and to filter the outliers using constraints concerning visibil-
ity consistency and spread.   
Matching  

Corners are good image features because the intensity gradi-
ent is high in two directions, which can be extracted with DoG 
and Harris corners. DoG is a filtering technique whereas Harris 
corners are based on 2D structure tensor representations of the 
intensity gradients. The features extracted by these two methods 
were matched by finding a corresponding pixel with low photo-
grammetric discrepancy. The discrepancy was quantified by fol-
lowing cross-correlation based method: Given a reference image 
and another image in which the feature point is visible, the dis-
crepancy is computed by 1) overlaying a 11x11 pixel2 grid on the 
feature point in reference image 2) Project the grid into the other 
image and sample the corresponding pixel colors 3) computing 
one minus the normalised cross-correlation between the grid and 
its projection. The grid represents a patch in 3D that is a local tan-
gent plane approximation of a surface where the center and the 
normal of the patch is optimised and re-projected into the image 
planes to obtain minimal discrepancy. In this optimisation the 

 
 
Figure 6  

Reconstruction of the camera locations and the Volume of Interest (VoI) (P1) 
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center of the patch is constrained to lie along the epipolar line. 
Potential matches of a feature point in a reference image are the 
features within n pixels from the epipolar lines in the other im-
ages where the best match is considered as a point correspond-
ence.  
Expansion 

In the expansion step each image was divided into small cells 
(4x4 pixels2 in our study). The goal of the expansion step was 
hereby to reconstruct at least one patch within each cell. New 
patches were generated by taking existing patches and generate 
new ones in the nearby empty spaces that satisfy certain criteria. 
The first expansion criterion is that the expansion is unnecessary 
if a patch has already been reconstructed in the current cell. The 
second criterion is that even if no patches have been recon-
structed, the expansion is unnecessary for a cell if there is a depth 
discontinuity viewed from the corresponding camera. 
Filtering 

Three filters were applied to remove outlier patches. The first 
filter relies on visibility consistency: Consider the patches that are 
in the same cell as the current patch. The current patch is filtered 
out if 1) the other patches cannot be considered as neighbouring 
in 3D and 2) the photogrammetric discrepancy is higher of the 
current patch than the photogrammetric discrepancy of the other 
patches. Secondly if the number of images in which the patch is 
visible is less than 𝛾 then the patch is filtered out as an outlier. 
Since the cameras were placed pairwise in the corners of the 
room in the current approach, 𝛾 was set to 2. The third filter is a 
weak form of regularisation: Consider the patches on its own and 
in the adjacent cells in all images where the current patch is visi-
ble. If the proportion of the surrounding patches that can be con-
sidered as neighbouring in 3D is less than 0.25, then it is removed 
as an outlier. 
Closed Surface Reconstruction 

The PMVS algorithm reconstructed a 3D point cloud that was 
used to synthesise a closed surface mesh with the Poisson Surface 
Reconstruction (PSR) algorithm by Kazhdan, Bolitho [37] as illus-
trated in Fig. 7. The closed surface was created to fill holes in the 
point cloud caused by self-occlusion. By this method, around 75 
000 3D points were recovered from the body surface which corre-
sponded to a point density less than one centimetre on average. 

 
 
Figure 7  

a: The 3D point cloud obtained with the PMVS algorithm. b: The 
closed surface mesh obtained with the PSR algorithm (P2) 
Validation of the 3D reconstructions 

The precision of the 3D reconstructions obtained from the la-
boratory setup was quantified by reconstructing a mannequin 
dummy, which was compared to a 3D reconstruction obtained by 
laser scan. The laser scanned 3D reconstruction was obtained 
with a FastSCAN, COBRATM C1 hand held laser scanner 
(Polhemus, Colchester, Vermont, USA), with a precision of < 1 
mm. To avoid distortion in the laser scanned 3D reconstruction, 
all metal in the mannequin doll was removed. Like the partici-
pants, the doll was dressed in a snow leopard spandex suit to en-
hance the texture as illustrated in Fig. 8. The head was not in-
cluded in this study as the head on the test participants was also 
ignored. The laser scan and the photogrammetric reconstruction 
was registered with the Iterative Closest Point algorithm [38]. The 
error metric was based on the distance between the nearest 
neighbour point correspondences in the reconstruction obtained 
by the current method and the reconstruction obtained by the la-
ser scan.  

 
 
Figure 8  

Setup for validating the accuracy of the 3D reconstructions (P1) 
 

THE VARIABILITY OF GAIT AND THE EFFECT ON RECOGNITION 
The 3D reconstructions were annotated by eight expert ob-

servers to quantify the intra- and inter-observer variability of the 
extracted kinematics and body dimensions and to observe the as-
sociated effect on recognition. The observers annotated one gait 
trial from six participants who were randomly selected from the 
data set. The annotated landmarks included the wrist, the elbow, 
the shoulder, the hip, the knee, the ankle and the metatarsal 
head II. The landmarks were annotated in the frontal and the sag-
ittal plane during heel strike (corresponding to the initial state in 
the gait cycle), mid-stance (corresponding to 15% in the gait cy-
cle), toe-off (corresponding to 60% in the gait cycle) and mid-
swing (corresponding to 73% in the gait cycle) in the gait trials as 
illustrated in Fig. 9. The segment lengths were defined as the dis-
tance between the estimated joint centres and the frontal and 
the sagittal plane kinematics were computed directly from the an-
notations in the two planes. The shoulder to shoulder angle and 
hip joint angle were computed in the global reference frame 
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whereas the elbow, knee and ankle joint angles were computed 
relative to the proximal limb segment. 

Test statistics for a two-factor factorial with random factors 
were applied to analyse the variability in the data under the as-
sumption that the extracted parameters 𝑦𝑖𝑗 could be described by 

the following linear model:  

 𝑦𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + 𝜖𝑖𝑗 {
𝑖 = 1,2, … , 𝐼
𝑗 = 1,2, … , 𝐽

 (1) 

where I = 6 participants, J = 8 observers, 𝜇 is the mean param-
eter value and the model parameters 𝜏, 𝛽 and 𝜖 are participant 
specific bias, observer specific bias and the error, respectively. 
The model parameters was assumed to be independent random 
variables and the total variance of the parameters was  

 𝑉(𝑦𝑖𝑗) =  𝜎𝜏
2 + 𝜎𝛽

2 + 𝜎2 (2) 

where 𝜎𝜏
2, 𝜎𝛽

2 and 𝜎2 are the variance components of the par-

ticipants, observers and the error, respectively. The error ac-
counted for the variability of the annotated parameters when the 
same participant was annotated by the same observer. This is re-
ferred to as intra-observer variability. The participant component 
accounted for the variation of the parameters between partici-
pants and the observer component accounted for the variation 
between the observers also referred to as the inter-observer vari-
ability. The variance component was computed by a two-way 
ANOVA. 

Recognition of the participants was performed using Random 
forests [29] and the discriminatory power of the parameters in-
cluded were estimated by the out-of-bag variable importance 
[29]. Random forest classification was preferred because 1) ran-
dom forests perform well and they are simple to tune, 2) the dis-
tribution of the votes from the trees allows estimation of a cer-
tainty score and 3) the parameter importance is estimated 
automatically. This provides substantial information that can sup-
port the decisions made by the forensic anthropologists. The 
recognition was based 3D reconstructions from 16 participants, 
which were annotated by the same expert.  Five trials from each 

day were applied as test and training data respectively. The train-
ing data were applied to train the random forest, whereas recog-
nition was performed on the test data.  
AUTOMATIC POSE ESTIMATION 

Automatic extraction of gait parameters is preferred to avoid 
human bias, which can be obtained with model based markerless 
motion capture. The pipeline of the proposed model-based mo-
tion capture system consists of four steps: 1) Data acquisition, 2) 
3D reconstruction, 3) articulated model generation and 4) pose 
estimation. Data acquisition comprises the hardware and soft-
ware required to capture the image data. The 3D reconstruction 
is the conversion of recorded image data to 3D surface meshes. 
Articulated model generation is the synthesis of the articulated 
model that will be fitted to the 3D reconstructions to estimate the 
poses. In pose estimation the pose is estimated by fitting the ar-
ticulated model through numerical optimization. Step 1 and 2 are 
described in THE GAIT LABORATORY section whereas step 3 and 4 
are described in the following sections. 
Articulated model generation 

This study focused on the lower extremities as forensic gait 
analysis as well as clinical gait analysis often only concern this [8, 
11, 18]. The articulated model thus consisted of the pelvis, thigh, 
shank and foot. Articulated models can either be synthesised by 
fully automatic approaches [25] or by manual annotation of the 
joint centres like the proposed method in THE VARIABILITY OF 
GAIT AND THE EFFECT ON RECOGNITION section. However, as the 
proposed method was compared to marker-based motion cap-
ture, joint centres and reference frames of the segments were 
transferred directly from the marker based on a 3D reconstruc-
tion of the participant in a standing pose to obtain similar initial 
conditions between the two methods. The 3D reconstruction was 
automatically segmented into the limb segments by associating 
each 3D point to the nearest line segment going through the joint 
centres. The synthesis of the articulated model is shown in Fig. 
10. 

 
 
Figure 9  

Screenshot from the annotation of the 3D reconstructions (P1) 
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Figure 10  

Synthesis of the articulated model. a: 3D reconstruction with la-
beled joint centers and orientations of the limb segments; b: seg-
mentation of the 3D model; c: the articulated model with all joint 
angles set to zero and points near the knee and the hip joint re-
moved (P2) 
 

 
Pose estimation 

Pose estimation was performed by fitting the articulated 
model to the 3D reconstructions using a hierarchical Iterative 
Closest Point (ICP) algorithm. The algorithm was hierarchical in 
the sense that the pose of the proximal limb segments was esti-
mated before the pose of the distal segment. The order of the 
pose estimation was therefore: Pelvis, thigh, shank and foot.  

The cost function that was minimised in the ICP algorithm was 
based on the Euclidian distances between the point correspond-
ences defined by the nearest neighbour criteria 

 min
p𝑟𝜖R3

‖𝑓(𝒑𝑎) − 𝒑𝑟‖2 (3) 

where pa is a point in the articulated model and pr is a point 
in the 3D reconstruction. The function 𝑓(𝒑𝑎) is the transfor-
mation function defined by 

 𝑓(𝒑𝑎) = 𝑹𝒑𝒂 + 𝒕 (4) 
where R is the rotation matrix and t is the translation vector. 

Since rotation and translation is relative to the local coordinate 
system of the proximal limb segment, the resulting rotation and 
translation is calculated by  

 𝑹𝑡𝑜𝑡𝑎𝑙 = 𝑹𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 ∙ 𝑹𝑑𝑖𝑠𝑡𝑎𝑙 (5) 

 𝒕𝑡𝑜𝑡𝑎𝑙 = 𝒕𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 + 𝒕𝑑𝑖𝑠𝑡𝑎𝑙  (6) 

The final cost function for each limb segment is hereby 

 min
𝑹𝒅𝒊𝒔𝒕𝒂𝒍∈R3,𝒕𝒅𝒊𝒔𝒕𝒂𝒍∈R3

1

𝑁𝑎
∑ min

p𝑟𝜖R3
‖𝑓(𝒑𝑎) − 𝒑𝑟‖2

2

𝑁𝑎

𝑎=1

 (7) 

where Na is the number of points in the articulated model 
and Rdistal and tdistal are the variables to be optimised with 6 
DoF for each limb segment resulting in 42 DoF for the articulated 
model in total. ICP was iterated according to Besl and McKay [38] 
until convergence. To speed up the computation time, kd-trees 
were used to find the nearest neighbour correspondences be-
tween the articulated model and the 3D model. The articulated 
model fitted to a 3D reconstruction is illustrated in Fig. 11. 

 
 
Figure 11  

Pose estimation by fitting an articulated model (red) to a 3D re-
construction (cyan) (P2) 

 
ICP requires a qualified starting guess. Fit n-1 was therefore 

used as starting guess in frame n. To make a qualified starting 
guess for frame one, it was assumed that the participant was 
standing upright facing the direction of motion. The initial transla-
tion of the pelvis of the articulated model was roughly estimated 
by aligning the sacral landmark of the articulated model with the 
mean position of the points of 3D reconstruction in frame one.  

From the relative orientations of the segmental reference 
frames in the fitted articulated model, joint kinematics could be 
extracted directly with the kinematic equations by Vaughan, Davis 
[39] 
Experimental work 

The markerless motion capture system was validated on ten 
gait trials from ten randomly selected participants. The kinemat-
ics obtained from the markerless approach were compared to 
data obtained from a marker-based motion capture system. The 
marker setup consisted of 15 markers placed on sacrum, the left 
and right anterior superior iliac spine (ASIS), the medial and lat-
eral femoral epicondyles, the medial and lateral malleolus the cal-
caneal bone and the metatarsal head V. The hip joint centres 
were predicted with the regression equations by Davis, Ounpuu 
[40] and the knee and ankle joint centres were predicted by  the 
midpoint between the epicondyle markers and the malleoli mark-
ers, respectively. The orientation of the limb segments was de-
fined by a plane intersecting the proximal joint centre and the 
two markers defining the distal joint centre. The local coordinate 
system of the ankle was defined according to Vaughan, Davis [39]. 
To use the same joint angle conventions as the marker based 
model, the joint angles were computed using the equations by 
Vaughan, Davis [39]. The 3D positions of the predicted joint cen-
tres from the marker-based system were transferred to the 3D re-
construction of the articulated model to obtain comparable data. 
The joint angles were low-pass filtered at 10 Hz (zero-phase-lag 
filtered with a 6th order Butterworth filter with cut off frequency 
at 10 Hz) to reduce high frequency noise on both the marker 
based and markerless results. Only the joint angles from the left 
leg are presented in the present study, since the differences be-
tween the left and right leg were negligible. 
Statistics 

The mean difference, understood as the mean of the differ-
ence between the joint angles obtained with the present ap-
proach and the marker-based system, was quantified with its 
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standard deviation (SD) to investigate the bias and the variability. 
The Root-Mean-Square Deviation (RMSD) and the Range of Mo-
tion (RoM) averaged over all the participants were also quantified 
in order to provide a relative measure of the differences.  

The average difference was also obtained for heel strike (HS), 
mid-stance (MST) (corresponding to the maximum knee flexion 
angle in the stance phase), toe off (TO) and mid-swing (MSW) 
(corresponding to the maximum knee flexion in the swing phase). 
The level of significance was evaluated with a paired, two-tailed 
students t-test with a level of significance at 95%. MATLAB’s sta-
tistics toolbox (Math Works Inc. MA, USA) was used for this pur-
pose. 
NEW REGRESSION EQUATIONS 

In P3 the errors of the joint centre predictions obtained with 
the Conventional Gait Model (CGM) were quantified and a new 
set of equations were regressed to correct for biases. The CGM 
predicts the joint centres in the lower extremities based on an-
thropometric measures. The regression equations  were originally 
proposed by Davis, Ounpuu [40] and Kadaba, Ramakrishnan [41] 
and the most common modification is described by Vicon® [42]. 
The new set of equations were regressed with the same anthro-
pometric measures as those applied in the regression equations 
described by and Vicon® [42] but with the pelvic depth added as a 
parameter and was defined as the distance between the midpoint 
of the ASIS-markers and the sacral marker.  

The new hip joint centre regression equation was obtained by 
forward-stepwise selection [43]. The forward-stepwise selection 
was performed in three steps: 1) Start with a model equal to zero. 
2) For each variable not in the model, try to include it and check if 
it contributes to the reduction of the sum of squared error of the 
regression using students t-test. If any variables have p-values 
less than p=0.05, add the one with the smallest p-value and re-
peat this step, else, go to step 3. 3) For each variable in the 
model, test for sex differences in the coefficients for each model 
variable. If any variables have p-values less than p=0.05, add the 
one with the smallest p-value and repeat this step, else, end. The 
differences between sexes were tested in a separate step to avoid 
falling into non-plausible local minima.  

The sensitivity of the regression coefficients was evaluated 
with Cook’s Distance [44]. A high sensitivity could be caused by in-
sufficient samples, outliers or the coefficient being close to zero.  
The sample with the largest Cook’s Distance in the data set was 
removed and the regression rebuilt. In case a coefficient changed 
more than 10%, the variable with the highest p-value was ex-
cluded from the regression. By reducing the model, a little bias 
was sacrificed to reduce the sensitivity of the predicted coeffi-
cients. The level of significance of the new coefficients was quan-
tified with the p-value of the t-statistics. Differences of the mean 
errors between regression equations were tested with a one-way 
ANOVA with Tukey's correction and a level of significance of 95%.  

Only one anthropometric parameter was included in the ex-
isting regression equations for the KJC and the AJC. Therefore, 
new regression equations for these joints were regressed with a 
General linear model (GLM) using the same parameters but in 
new local reference frames. Constants in the regression equations 
were not included to avoid over-fitting. The new reference frames 
were defined by the proximal joint centre, the proximal wand 
marker and the lateral epicondyle/malleolus marker. The x-axis 
was defined by the normal plane formed by the markers pointing 
anteriorly. The z-axis was parallel to the vector pointing from the 
lateral epicondyle/malleolus marker to the proximal joint centre. 
The y-axis was orthogonal to the x-axis and z-axis pointing medi-
ally.  

The prediction errors of regression equations are reported 
relative to the reference frame of the proximal limb segment. The 
pelvic reference frame is defined with a right handed coordinate 
system so the z-axis is the normal of the plane defined by the ASIS 
markers and the sacral marker pointing superiorly. The y-axis is a 
vector parallel to the ASIS markers and the x-axis is perpendicular 
to these axes pointing anteriorly. For the thigh, the reference 
frame is defined so that the HJC and the KJC define the z-axis, lat-
eral epicondyle marker and the KJC define the y-axis and the x-
axis is perpendicular to these pointing in the anterior direction. In 
this study the y-axis is pointing medially for both knees to make 
interpretation of the results easier. The reference of the calf is de-
fined so that the KJC and the AJC define the z-axis, the malleolus 
marker and the AJC define the y-axis and the x-axis is perpendicu-
lar to these axes pointing in the anterior direction. Again, the y-
axis is pointing medially for both ankles to facilitate interpretation 
of the results. The prediction error (𝜺) is hereby defined by 

 𝜺 = 𝑀(𝒚) − 𝒚 (8) 
where M(y) is the joint centres predicted with the regression 

equations and (y) is the ‘true’ joint centres extracted from the 
scans.  

RESULTS & DISCUSSION 
THE ANTHROPOMETRIC REFERENCE DATA 

A MRI scanned femur phantom was applied to quantify the 
measurement error caused by the 3D registration of the MRI 
scans and the inhomogeneous magnetic field. The registration is 
illustrated in Fig. 12 with the regressed linear model applied to 
quantify the error. The SD residual of the regressed linear model 
was estimated to 1.2 mm and the Root-mean-squared-error 
(RMSE) of the 3D registration was estimated to 3.9 mm. The 
RMSE of the 3D registration was high compared to the residual of 
the regressed linear model. However, compared to average bone 
lengths of adults that usually span between 40 and 50 cm, the 
prediction error is smaller than one percent, which is acceptable.  

The result of a 3D registration of four MRI scans of the lower 
extremities is illustrated in Fig. 13. Note the mismatch between 
the overlapping images near the image borders at the proximal 
end of the thigh, which is a result of the inhomogeneous mag-
netic field. This could have a severe effect on the anthropometric 
measures but the error quantification obtained from the femur 
phantom showed that the distortion is limited near the long 
bones where the anthropometric measures was extracted. 

 
 
Figure 12  

Sagittal view of the MRI scanned femur phantom. Green intensity 
image is the scan of the 15 markers used for the regression. The 
red intensity image is the scan of the 13 markers used for predic-
tion.  The cyan line represents the linear regression that was esti-
mated from the green markers 
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Figure 13  

MRI of the lower extremities consisting of four registered scans 
 

THE GAIT LABORATORY 
The accuracy of the 3D reconstructions obtained with the pro-

posed laboratory setup was quantified with a laser scan of a man-
nequin dummy as a reference. The RMSE were estimated to 1.76 
mm, the mean error to 1.26 mm and the median error to 0.97 
mm and the distribution of the errors on the 3D reconstruction is 
also visualised in a heat map in Fig 14. The results show that the 
proposed setup was capable of reconstructing human bodies with 
a high precision allowing anatomical landmarks to appear distinct 
on the surface. However, holes caused by self-occlusion as in the 
areas near the armpit and the groin causes considerable errors, 
which might confuse expert observers in the annotations of the 
nearby joint centres. The accuracy achieved with the multi-view 
stereo approach outperforms the Shape-From-Silhouette ap-
proaches, which was validated for human motion analysis by 
Mündermann, Corazza [45] and is probably the most applied algo-
rithm in laboratory setups intended for this purpose [14, 23, 46-
48]. Comparing the current setup with other laboratories using 
stereo vision based algorithms for human motion analysis [49] the 
improvement gained by the current setup is the reduced number 
of cameras from 20 to 8 and a frame rate increased from 30 fps to 
135 fps. However, the leopard spandex suit is a drawback for the 
current approach, which makes it infeasible for surveillance but 
the suit can be replaced by projection of a random or pseudoran-
dom pattern onto the participant with an infrared projector. A 
similar accuracy may be achievable with other depth sensors as 
the Kinect 2® (Microsoft, Redmond, Washington, USA). Such al-
ternatives may therefore provide new opportunities in surveil-
lance to obtain reliable gait recognition in the future. 

 
 
Figure 14  

The error of the stereo vision based 3D reconstruction.  The error 
equals the distance between the nearest neighbour point corre-
spondences in the current 3D reconstruction and the laser scan 
(P1) 

 
THE VARIABILITY OF GAIT AND THE EFFECT ON RECOGNITION  

The 3D reconstructions obtained from the laboratory setup 
were applied for recognition based on limb segment lengths and 
gait kinematics. The validity of the parameters is dependent on 
the variability between participants and the measurement errors 
related to the inter- and intra-observer variability. The inter- and 
intra-observer variability and the systematic errors of the seg-
ment lengths are illustrated in Fig. 15. The results show that the 
observers generally underestimated the thigh length, the forearm 
tended to be overestimated whereas the error of the shank was 
small compared to the other segment lengths. The shank also 
provided the highest agreement between observers. 
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Figure 15  

Box plots of the segment length errors. Errors are relative to the 
segment lengths measured from the MRI scans. Positive errors 
are overestimation and negative errors are underestimation. The 
red central mark is the median, the edges of the boxes are the 
25th and 75th percentiles, the whiskers extend approximately to 
+/–2.7σ corresponding to 99.3% coverage if the data are normally 
distributed (P1) 

 

The pie charts in Fig. 16 show that the majority of the param-
eters are dominated by inter observer variability, which means 
that the parameters are difficult to compare between observers 
but also the intra-observer component is large compared to the 
participant component. The shank length in general and the 
length between the shoulders measured at heel strike were less 
affected compared to the other parameters. Compared to the re-
sults by Larsen, Hansen [9] the inter-observer variability of the es-
timated segment lengths was markedly reduced by the current 
approach but this was still not sufficient to obtain valid compari-
sons between observers.  

 
 
Figure 16  

The pie charts of the variance components of the segment length 
measured during heel strike, mid-stance, toe off and mid-swing. 
The red, green and blue colour represent the variance compo-
nents of inter observers, intra observers and participants, respec-
tively (P1) 
 

Considering the sagittal kinematics illustrated in Fig. 17, ankle 
joint angles are not comparable between observers and neither 
are any of the parameters in the mid-stance phase. On the con-
trary, parameters during heel strike and toe-off provided high re-
liability overall. Regarding the frontal kinematics illustrated in Fig. 
18, the elbow joint angles are difficult to estimate precisely and 
the shoulder joint angles and the hip joint angles are generally 
not comparable between observers. With the exception of sagit-
tal ankle and frontal elbow joint kinematics, the observers were 
highly consistent in extraction of segment lengths and kinematics 
but they clearly had a different intuitive understanding of the 
joint centre locations resulting in a high inter-observer variability 
of the segment lengths in particular. Training the experts or 
providing a common understanding of the joint centre locations 
among the observers might have a reducing effect on the inter-
observer variability.  
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Figure 17  

The pie charts of the variance components of the sagittal plane 
kinematics measured during heel strike, mid-stance, toe off and 
mid-swing. Red, green and blue represent the variance compo-
nents of inter observers, intra observers and subjects, respec-
tively (P1) 

 
 
Figure 18  

The pie charts of the variance components of the sagittal plane 
kinematics measured during heel strike, mid-stance, toe off and 
mid-swing. Red, green and blue represent the variance compo-
nents of inter observers, intra observers and subjects, respec-
tively. * indicates negative variance component for the inter ob-
server factor, which was set to zero [50] (P1) 

As the expert observers annotated the landmarks on the 3D 
reconstructions from two fixed views as illustrated in Fig. 5 the ef-
fect of using 3D reconstructions might be limited compared to a 
synchronised multi-view CCTV system with cameras directed fron-
tally and sagittally to the participants. However, these criterions 
are far from trivial to meet in practice.  

Random forests were applied for recognition and ranking of 
the parameter importance. The random forest was built with 250 
trees as the out-of-bag recognition error hereby reached conver-
gence. The fraction of correct recognitions as a function of the 
number of parameters included in the recognition is illustrated in 
Fig. 19. Parameters were included according to the ranking of the 
parameter importance listed in Fig. 20 in decreasing order. The 
results show that single parameters have a relatively weak dis-
criminatory power with up to 40% correct recognitions when 
recognition is based on one gait trial and this was not considera-
bly improved when based on five gait trials. With inclusion of ten 
parameters, all participants were correctly recognised based on 
five trials and the correct recognition rate for one gait trial con-
verged around 30 parameters with over 99% correct recognitions.  

 The ranking of the parameter importance listed in Fig. 20 
shows that shank lengths, shoulder to shoulder angles, shoulder 
joint angles and the knee joint angles were among the most im-
portant parameters and both the frontal and the sagittal parame-
ters were considerable important for recognition. The importance 
of the shank length and the shoulder joint angles were surprising 
since no previous studies have reported these parameters to be 
of considerable importance in human recognition and contrary to 
Larsen, Hansen [9] our findings showed that shank lengths are 
comparable under the assumption that the same observer per-
forms the measurements on all the participants. 

 Studying the inter- and intra-observer variability and the as-
sociated effect on recognition are important in understanding the 
reliability of gait recognition and such study had to be conducted 
with a controlled experimental setup to reduce the impact from 
other factors. Challenges related to gender, adiposity, clothing, 
lighting conditions etc. were therefore not considered in this 
study. These parameters are highly relevant and have to be ad-
dressed in future studies to reflect the practical issues related to 
surveillance. 

 
Figure 19  

Correct recognitions as function of number of features included in 
the random forest. Parameters were included according to their 
importance in decreasing order. The blue line and the red line are 
recognition based on one and five gait trials, respectively (P1)  
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Figure 20  

The out-of-bag parameter importance is ranked in increasing order, such the most important parameter is in the bottom of the list. Out-
of-bag parameter importance is the out-of-bag error increase as a fraction of the error before the parameter was randomly permuted 
(P1)   
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AUTOMATIC POSE ESTIMATION 
The poses were also estimated automatically on the 3D re-

constructions with markerless motion capture (P2) and the results 
were compared to a marker-based motion capture system. The 
mean difference and the SD of the joint angles were sampled dur-
ing heel strike, mid-stance (corresponding with maximum knee 
flexion angle during the first 60% of stance), toe-off and mid-
swing (corresponding with maximum knee flexion angle during 
the mid-swing), which are illustrated in Table 1. All joint angles 
were significantly different from the marker-based system with 
exception of a few angles that differed less than 0.3 degrees. 
However, the SD was generally high compared to the mean differ-
ence with a slight exception of the knee joint angles. 

 It was noticed in the results presented in Table 1 that the 
knee FE angle was overestimated during the whole gait cycle 
compared to the marker-based approach. This difference was 
likely to be induced by STA affecting the markers on the femoral 
condyles. Reinschmidt, vandenBogert [51] and Benoit, Ramsey 
[52] have both reported an underestimation of the knee joint an-
gle when using skin markers where Benoit et al. reported a mean 
and SD of the absolute rotational error of 2.8 (2.6), 2.4 (2.0), 2.7 

(2.4) degrees during HS, MST and TO, respectively. Similarly, the 
mean and SD of the differences between the markerless and the 
marker based system were 2.8 (1.1), 1.8 (1.7) and 3.6 (1.5) de-
grees in the three phases, respectively, which closely resembled 
the errors of the marker based system. Hence, the current ap-
proach was likely to be more accurate for knee FE.  

The dorsi/plantar flection in the ankle joint were also very 
promising in relation to previous markerless approaches [23] as 
the highest obtainable mean error was  -1.0 (2.7) degrees com-
pared to 3.5 (8.2) degrees. 

Fig. 21 illustrating the average and 95% confidence interval 
for an arbitrary test participant shows that the variability of the 
trials was similar for the two approaches with a slight exception 
of knee IE rotation and ankle valgus/varus, which indicates that 
observed variation between the gait trials is mainly related to the 
variability in gait. The hip IE rotation seemed to be more inter-
nally rotated about toe off (40-60% of the gait cycle), which also 
appeared for other participants in various degrees. 

   McGinley, Baker [53] reviewed the session to session (or day 
to day) variability of kinematic measurements for marker-based 
systems and reported that the SD of repeated marker-based 

Table 1  
The mean difference and the STD of the rotation angles during heel strike, mid-stance, toe-off and mid-swing. Those who are labelled with * was not 
significant at a level of significance at 95% (P2) 

Joint Angle Heel strike [o] Mid-stance [o] Toe-off [o] Mid-swing [o] 

Hip Flexion/extension 0.4 (2.3) -1.6 (2.3) -0.2 (2.2)* 1.4 (2.7) 
 Abduction/ adduction 2.1 (1.4) 0.5 (1.4) -0.4 (1.3) 0.6 (1.2) 
 Internal external rotation -2.1 (5.7) 0.1 (4.5)* 0.8 (4.7) 0.1 (4.2)* 
Knee Flexion/extension 2.8 (1.1) 1.8 (1.7) 3.6 (1.5) 5.4 (2.0) 
 Abduction/ adduction 0.4 (1.5) 0.0 (2.1)* 0.9 (3.1) -0.2 (3.5)* 
 Internal external rotation 0.8 (5.5) 2.5 (4.0) 2.5 (4.1) 0.8 (4.2) 
Ankle Dorsiflexion/plantar flexion -0.5 (2.1) 0.9 (2.0) -1.0 (2.7) -0.7 (2.0) 
 Eversion/inversion 3.9 (2.8)  1.5 (2.5) 1.7 (2.9) 1.5 (2.5) 
 Valgus/varus 2.7 (2.8) 4.0 (2.6) 1.4 (4.5) 3.4 (2.6) 

 

 
 
Figure 21  

Mean and 95% confidence intervals for the joint angles from an arbitrary test participant (P2) 
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measurements was between 2 to 5 degrees and inconsistent 
marker placement was considered the main error source. By us-
ing the proposed markerless system, issues regarded to this 
would be eliminated by applying the same articulated model from 
session to session under the assumption that the body shape re-
mains unchanged between sessions. However, a few disad-
vantages are related to the system: 1) Fitting articulated models 
assume limb segments to be rigid, which means that defor-
mations caused by muscle contractions and wobbling masses in-
terfere with accurate pose estimation. In the present study the 
thigh and the pelvis segment seemed to suffer from this in partic-
ular. This is likely to be the most critical factor when estimating 
the IE rotations in the hip and the knee joint. The patella and the 
shank are reliable indicators for the orientation of the thigh [54, 
55]. Integrating this in the pose estimation might improve the ac-
curacy but has to be explored further.  2) The joint centres and 
the orientation of the limb segments have to be annotated manu-
ally on a static 3D reconstruction when generating the participant 
specific articulated model. This is somewhat time consuming but 
still more efficient than the physical placement of the markers. 

Inter-observer variability will not be eliminated either, due to 
the manual annotation. This could be avoided with a fully auto-
mated method for articulated model generation as proposed by 
Corazza, Gambaretto [25]. 3) The proposed approach is computa-
tionally heavy with a computation time of approximately three 
minutes for each frame on an Intel® Core™ i7 2.67 GHz CPU. This 
was mainly caused by the PMVS algorithm and the PSR algorithm, 
which together accounted for two minutes computation. Distor-
tion correction and the pose estimation did also contribute to the 
long computation time. It should be noted that all processing was 
performed in MATLAB with the exception of the stereo algo-
rithms. GPU processing or C++ compilation would greatly reduce 
the computation time. 4) The system has a limited record time, 
because only RAM and on-board-memory in the cameras could 
store the data with sufficient speed. This system has 7.5 GB RAM 
dedicated for data storage resulting in recordings up to 3.3 sec-
onds. 

Limitations of the present study design are mainly that only 
healthy young men were used as participants and only one fixed 
walking velocity was used. However, to the best of our 
knowledge, difficulties with patients as opposed to healthy partic-
ipants concerning the use of marker-based systems have not 
been reported. Accordingly, it may be assumed that the same will 
be the case for markerless approaches. Extremely obese partici-
pants are known to increase inaccuracies with maker-based sys-
tems, but this may not necessarily be the case with markerless 
systems, which have no problems with hidden markers and as-
sumably less problems with wobbling masses. Regarding slower 

and faster walking velocities, it cannot be predicted whether or 
not this could have any influence of the performance of a marker-
less system, but it seems rather unlikely. However, future re-
search should be directed towards the possible limitations men-
tioned.  
NEW REGRESSION EQUATIONS 

The new regression equations for the CGM were estimated by 
forward-stepwise selection and GLM with the following results: 

 

pHip, male = pmid ASIS − 0.324(Pelvis depth)xpelvis

± 0.095(Leg length)ypelvis

− 0.092(Leg length)zpelvis 

(9) 

 

 

pHip, female = pmid ASIS − 0.324(Pelvis depth)xpelvis

± 0.103(Leg length)ypelvis

− 0.092(Leg length)zpelvis 

(10) 

 

 

pKnee = pFemoral epicondyle

− 0.024(Knee diameter)xthigh

+ 0.484(Knee diameter)ythigh

+ 0.133(Knee diameter)zthigh 

(11) 

 

 

pAnkle

= pLateral malleolus + 0.86(Malleolus width)xcalf

+ 0.570(Malleolus width)ycalf

− 0.115(Malleolus width)zcalf 

(12) 

 
The prediction errors provided by the original and the new re-

gression equations are listed in Table 2. The results showed signif-
icant errors with RMSE up to 28.1 mm, 9.0 mm and 14.6 mm for 
the existing hip, knee and ankle regression equations. The ob-
served error for the KJC is relatively small compared to the STA 
which is typically up to 20 mm in the knee region [27]and because 
the fixed joint centre is a simplification of an instantaneous joint 
centre [56]. Regarding the KJC and the AJC, the error may be ac-
ceptable in a comparison with a markerless system as the kine-
matic effect may be limited. However, as the errors were most 
dominant in the proximal/distal direction, they may have a critical 
effect on the computations of the kinetics as the errors propagate 
through the segments [57, 58]. The new regression equations sig-
nificantly reduced the RMSE to 9.2 mm, 3.5 mm and 3.6 mm for 
the HJC, KJC and AJC, respectively. 

The marker size is not accounted for in the new regressions. 
However, in the modifications of the CGM these corrections are 
quite simple to implement, because the corrections primarily con-
cern a single axis. It is therefore recommended to correct for the 

Table 2  
The prediction errors provided by the original regression equations in the CGM and the new regression equations (P3) 
 

Equations x Ant.(+)/post.(-) [mm] y Lat.(+)/med.(-) [mm] z Sup.(+)/inf.(-) [mm] RMSE total 
[mm] 

Hip equations     
Original equation 17.4 (5.6)/1.9.10-11 -13.2 (11.3)/4.5.10-5 -11.1 (5.2)/1.0.10-8 28.1  
New equation 0.3 (6.5)/8.6.10-1 -0.7 (5.2)/5.4.10-1 0.5 (3.7)/ 5.7.10-1 9.2* 
Knee equations     
Original equation 2.9  (3.3) / 2.2.10-2 0.0 (0.7) /9.1.10-1 -7.8 (1.2) /8.2.10-9 9.0 
New parameters 0.1 (3.3) / 8.8.10-1 0.0 (1.0) / 4.6.10-1 0.0 (1.2) / 8.7.10-1 3.5* 
Ankle equations     
Original equation -5.4  (1.3) / 3.8.10-7 -5.2 (1.8) /9.6.10-6 12.0 (2.9) /3.4.10-7 14.6 
New equation 0.0 (1.5) / 9.7.10-1 0.1 (1.8) / 8.3.10-1 0.0 (3.0) / 9.7.10-1 3.6* 
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marker size by adding the marker radius posteriorly in the pro-
posed HJC regression and medially in the proposed KJC and AJC 
regressions. 

As marker-based motion capture is frequently applied for sci-
entific analysis of gait in 3D, this improvement will provide higher 
accuracy of gait analysis and thus contribute to the understanding 
of gait dynamics. The contribution is also expected to provide ba-
sis for more reliable comparisons of markerless and marker based 
motion capture systems in future. 

CONCLUSIONS 
The contributions of this work occasioned following conclu-

sions: 
3D reconstructions are feasible for biometric measurements 

in forensic sciences as alternative to video data obtained from 
CCTV. However, uncontrolled factors as gender, clothing, adipos-
ity, lighting conditions, incomplete and noisy 3D reconstructions 
might challenge the reliability and has to be addressed in the fu-
ture. 

Limb segment lengths, ankle joint kinematics and elbow joint 
kinematics annotated by different observers are difficult to com-
pare. Despite this, gait recognition can be obtained with high reli-
ability also when the data have been annotated by different ob-
servers.  

Not only kinematic parameters from the lower extremities are 
important for gait recognition but also shoulder kinematics and 
calf length are reliable parameters to consider. 

Markerless motion capture systems can provide highly relia-
ble estimation of all FE angles and hip AA angles which can be ap-
plied for gait recognition. Large differences in IE rotations were 
found and these rotations remain to be addressed in the future. 
However, IE rotations are not necessarily important in gait recog-
nition as existing methods in gait recognition are generally based 
on joint angles measured in a frontal view plane and a sagittal 
view plane, which are invariant to IE rotations. 

As the bone dimensions are different between males and fe-
males, using different regression equations for the sexes provide 
more accurate predictions of the hip joint centres.  

The prediction errors of the CGM were surprising and could 
have a critical effect on the computed kinetics but these errors 
were significantly reduced by the new regression equations.  

SUMMARY 
This thesis is based on four manuscripts where two of them 

were accepted and two were submitted to peer-reviewed jour-
nals. The experimental work behind the thesis was conducted at 
the Institute of Neuroscience and Pharmacology, University of Co-
penhagen. The purpose of the studies was to explore the variabil-
ity of human gait and to conduct new methods for precise estima-
tion of the kinematic parameters applied in forensic gait analysis.  

The gait studies were conducted in a custom built gait labora-
tory designed to obtain optimal conditions for markerless motion 
analysis. The setup consisted of eight synchronised cameras lo-
cated in the corners of the laboratory, which were connected to a 
single computer. The captured images were processed with ste-
reo vision based algorithms to provide accurate 3D reconstruc-
tions of the participants. 

The 3D reconstructions of the participants were obtained dur-
ing normal walking and the kinematics were extracted with man-
ual and automatic methods. The kinematic results from the auto-
matic approach were compared to marker based motion capture 
to validate the precision. The results showed that the proposed 

markerless motion capture method had a precision comparable 
to marker-based methods in the frontal plane and the sagittal 
plane. Similar markerless motion capture methods could there-
fore provide the basis for reliable gait recognition based on kine-
matic parameters. 

The manual annotations were compared to the actual anthro-
pometric measurements obtained from MRI scans and the intra- 
and inter-observer variability was also quantified to observe the 
associated effect on recognition. The results showed not only the 
kinematics in the lower extremities were important but also the 
kinematics in the shoulders had a high discriminatory power.  
Likewise, the shank length was also highly discriminatory, which 
has not been previously reported. However, it is important that 
the same expert performs all annotations, as the inter-observer 
variability was high compared to the variability between the par-
ticipants.  

The MRI scans were also applied to estimate the errors of ex-
isting marker-based regression equations to predict the joint cen-
tres. The errors in the HJC and the AJC were surprisingly high, 
which may affect the computations of the joint kinetics and thus 
the understanding of gait dynamics. On the other hand, the effect 
on the kinematics would be limited and thus the existing regres-
sion equations provide a reliable basis to validate markerless mo-
tion capture methods as long as the limitations regarding STA and 
the placement of the markers are considered in the data interpre-
tation. New regression equations corrected the estimated bias 
and they also accounted for the significant sex differences in pel-
vis. 

ACKNOWLEDGEMENTS 
Funding for this PhD thesis was granted from the Danish 

Agency for Science, Technology and Innovation. The project was 
conducted as an Industrial PhD by The Danish Institute of Fire and 
Security Technology.  
 

A special thanks to: 
Erik B Simonsen, Henrik Aanæs, Thomas B Moeslund, Tine 
Alkjær, Niels Lynnerup, Peter K Larsen, Karl Erik Jensen, Rikke 
V Heimbürger, Chiara Villa, Peter Raffalt, Henrik Koblauch, 
Carsten Damgaard, 

  
who have made substantial contributions to the conception and 
design of the study, the acquisition of data, analysis and interpre-
tation of data, revising the manuscripts critically or supported my 
work in other ways. 

 
Also thanks to: 

- PAR Scientific A/S 
- The Neural Control of Movement Laboratory, Uni-

versity of Copenhagen 
- The Visual Analysis of People Laboratory, Aalborg 

University 
- The Image Analysis and Computer Graphics Section, 

DTU 
for their hospitality and support of the project.  

REFERENCES 
1. Højbjerg JH, Hasselgaard O, Vollmer CK. Politiets og 

Anklagemyndighedens årsrapport. Copenhagen 
2014:49. 

2. Krog TN, Jørgensen U. BT afslører politi-rapport: Her gør 
politiet intet - tyve får frit spil. BT. 2014 20th july. 



 DANISH MEDICAL JOURNAL   17 

3. Crhristiansen K, Sørensen SN. TV-overvågning. In: Råd 
DK, ed. Glostrup 2005:25. 

4. Cutting J, Kozlowski L. Recognizing friends by their walk: 
Gait perception without familiarity cues. Bull Psychon 
Soc 1977; 9: 353-6. 

5. Lynnerup N, Vedel J. Person identification by gait 
analysis and photogrammetry. Journal of Forensic 
Sciences 2005; 50: 112-8. 

6. Larsen PK, Simonsen EB, Lynnerup N. Gait Analysis in 
Forensic Medicine. Journal of Forensic Sciences 2008; 
53: 1149-53. 

7. Bouchrika I, Goffredo M, Carter J, Nixon M. On Using 
Gait in Forensic Biometrics.  J Forensic Sci: Blackwell 
Publishing Ltd 2011:882-9. 

8. Larsen PK, Lynnerup N, Henriksen M et al. Gait 
Recognition Using Joint Moments, Joint Angles, and 
Segment Angles. Journal of Forensic Biomechanics 2010; 
1: 7. 

9. Larsen PK, Hansen L, Simonsen EB, Lynnerup N. 
Variability of Bodily Measures of Normally Dressed 
People Using PhotoModeler® Pro 5. Journal of Forensic 
Sciences 2008; 53: 1393-9. 

10. Ariyanto G, Nixon MS. Marionette mass-spring model 
for 3D gait biometrics. 2012: 354-9. 

11. Ariyanto G, Nixon MS. Model-based 3D gait biometrics.  
2011 International Joint Conference on Biometrics, . 
Washington, DC IEEE 2011:1-7. 

12. Bouchrika I, Goffredo M, Carter J, Nixon M. On Using 
Gait in Forensic Biometrics. Journal of Forensic Sciences 
2011; 56: 882-9. 

13. Matovski DS, Nixon MS, Mahmoodi S, Carter JN. The 
Effect of Time on Gait Recognition Performance. 
Information Forensics and Security, IEEE Transactions on 
2012; 7: 543-52. 

14. Seely RD, Samangooei S, Middleton L et al. The 
University of Southampton Multi-Biometric Tunnel and 
introducing a novel 3D gait dataset.  2nd IEEE 
International Conference on Biometrics: Theory, 
Applications and Systems. Arlington, VA IEEE 2008:1 - 6. 

15. Guan Y, Li C-T. A robust speed-invariant gait recognition 
system for walker and runner identification. the 6th 
IAPR International Conference on Biometrics: IAPR 
2013:1-8. 

16. Guan Y, Li C-T, Hu Y. Robust Clothing-Invariant Gait 
Recognition.  Proceedings of the 2012 8th International 
Conference on Intelligent Information Hiding and 
Multimedia Signal Processing, Iih-msp 2012 — 2012, pp 
321-324 2012:321-4. 

17. Huang PS, Harris CJ, Nixon MS. Recognising humans by 
gait via parametric canonical space. Artificial 
Intelligence in Engineering 1999; 13: 359-66. 

18. Ariyanto G, Nixon MS. Marionette mass-spring model 
for 3D gait biometrics.  5th IAPR International 
Conference on Biometrics (ICB), 2012; 2012 March 29 
2012-April 1 2012; 2012. p. 354-9. 

19. Han J, Bhanu B. Individual recognition using gait energy 
image. IEEE Transactions on Pattern Analysis and 
Machine Intelligence 2006; 28: 316-22. 

20. Shotton J, Fitzgibbon A, Cook M et al. Real-Time Human 
Pose Recognition in Parts from Single Depth Images. 
2011 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR) 2011: 1297-304. 

21. Taylor J, Sharp T, Fitzgibbon A, Shotton J. The Vitruvian 
manifold: Inferring dense correspondences for one-shot 
human pose estimation. Proceedings of the IEEE 
Computer Society Conference on Computer Vision and 
Pattern Recognition 2012: 103-10. 

22. Lligadas X, Susín A, Fernández-Baena A. Biomechanical 
validation of upper-body and lower-body joint 
movements of kinect motion capture data for 
rehabilitation treatments. Proceedings of the 2012 4th 
International Conference on Intelligent Networking and 
Collaborative Systems, INCoS 2012 2012: 656-61. 

23. Corazza S, Mündermann L, Chaudhari AM et al. A 
Markerless Motion Capture System to Study 
Musculoskeletal Biomechanics: Visual Hull and 
Simulated Annealing Approach. Ann Biomed Eng 2006; 
34: 1019-29. 

24. Mündermann L, Corazza S, Andriacchi TP. Accurately 
measuring human movement using articulated ICP with 
soft-joint constraints and a repository of articulated 
models. 2007 IEEE Conference on Computer Vision and 
Pattern Recognition, Vols 1-8 2007: 2550-5. 

25. Corazza S, Gambaretto E, Mündermann L, Andriacchi 
TP. Automatic Generation of a Subject-Specific Model 
for Accurate Markerless Motion Capture and 
Biomechanical Applications. IEEE Trans Biomed Eng 
2010; 57: 806-12. 

26. Corazza S, Mündermann L, Gambaretto E et al. 
Markerless Motion Capture through Visual Hull, 
Articulated ICP and Subject Specific Model Generation. 
International Journal of Computer Vision 2010; 87: 156-
69. 

27. Peters A, Galna B, Sangeux M et al. Quantification of 
soft tissue artifact in lower limb human motion analysis: 
A systematic review. Gait & Posture 2010; 31: 1-8. 

28. Della Croce U, Cappozzo A, Kerrigan C, Lucchetti L. Bone 
Position and Orientation Errors: Pelvis and Lower Limb 
Anatomical Landmark Identification Reliability. Gait & 
Posture 1997; 5: 156-7. 

29. Breiman L. Random Forests. Machine Learning 2001; 
45: 5-32. 

30. Lagarias JC, Reeds JA, Wright MH, Wright PE. 
Convergence properties of the Nelder-Mead simplex 
method in low dimensions. SIAM JOURNAL ON 
OPTIMIZATION 1998; 9: 112-47. 

31. Ferris BD, Stanton J, Zamora J. Kinematics of the wrist: 
Evidence for two types of mevement. Journal of Bone & 
Joint Surgery, British Volume 2000; 82-B: 242-5. 

32. Iwaki H, Pinskerova V, Freeman M. Tibiofemoral 
movement 1: the shapes and relative movements of the 
femur and tibia in the unloaded cadaver knee. Journal 
of Bone & Joint Surgery, British Volume 2000; 82: 1189-
95. 

33. van den Boomgaard, van Balen. Methods for fast 
morphological image transforms using bitmapped 
binary images. CVGIP: Graphical Models and Image 
Processing 1992; 54: 252-8. 

34. Furukawa Y, Ponce J. Accurate, dense and robust multi-
view stereopsis. 2010; 32: 

35. Harris C, Stephens M. A combined corner and edge 
detector.  Alvey vision conference; 1988: Manchester, 
UK; 1988. p. 50. 



 DANISH MEDICAL JOURNAL   18 

36. Marr D, Hildreth E. Theory of Edge Detection. 
Proceedings of the Royal Society B: Biological Sciences 
1980; 207: 31. 

37. Kazhdan M, Bolitho M, Hoppe H. Poisson surface 
reconstruction. ACM International Conference 
Proceeding Series 2006; 256: 61-70. 

38. Besl PJ, McKay ND. A Method for Registration of 3-D 
Shapes. IEEE Transactions on Pattern Analysis and 
Machine Intelligence 1992; 14: 239-56. 

39. Vaughan CL, Davis BL, O'Connor JC. Dynamics of human 
gait. Champaign, Illinois: Human Kinetics Publishers 
1992. 

40. Davis RB, III, Ounpuu S, Tyburski D, Gage JR. A Gait 
Analysis Data Collection and Reduction Technique. 
Human Movement Science 1991; 10: 575-88. 

41. Kadaba M, Ramakrishnan H, Wootten M et al. 
Repeatability of kinematic, kinetic, and 
electromyographic data in normal adult gait. Journal of 
Orthopaedic Research 1989; 7: 849-60. 

42. Vicon®. Bodybuilder for Biomechanics. Oxford: Oxford 
Mertics Ltd 2002. 

43. Hastie T, Tibshirani R, Friedman J et al. The elements of 
statistical learning. New York: Springer 2009. 

44. Cook RD. Detection of Influential Observations in Linear 
Regression. Technometrics 1977; 19: 4. 

45. Mündermann L, Corazza S, Chaudhari AM et al. Most 
favorable camera configuration for a shape-from-
silhouette markerless motion capture system for 
biomechanical analysis. SPIE - The International Society 
for Optical Engineering 2005:278-87. 

46. Aguiar Ed, Stoll C, Theobalt C et al. Performance capture 
from sparse multi-view video. ACM Trans Graph 2008; 
27: 1-10. 

47. Vlasic D, Baran I, Matusik W et al. Articulated mesh 
animation from multi-view silhouettes. ACM Trans 
Graph 2008; 27: 1-9. 

48. Starck J, Hilton A. Surface Capture for Performance-
Based Animation. Computer Graphics and Applications, 
IEEE 2007; 27: 21-31. 

49. Kun L, Qionghai D, Wenli X. Markerless Shape and 
Motion Capture From Multiview Video Sequences. IEEE 
Transactions on Circuits and Systems for Video 
Technology 2011; 21: 320-34. 

50. Montgomery DC. Design and analysis of experiments. 
5th rev. ed. New York: John Wiley & Sons 2008. 

51. Reinschmidt C, vandenBogert AJ, Lundberg A et al. 
Tibiofemoral and tibiocalcaneal motion during walking: 
external vs. skeletal markers. Gait & Posture 1997; 6: 
98-109. 

52. Benoit DL, Ramsey DK, Lamontagne M et al. Effect of 
skin movement artifact on knee kinematics during gait 
and cutting motions measured in vivo. Gait & Posture 
2006; 24: 152-64. 

53. McGinley JL, Baker R, Wolfe R, Morris ME. The reliability 
of three-dimensional kinematic gait measurements: A 
systematic review. Gait & Posture 2009; 29: 360-9. 

54. Lamoreux LW. Errors in thigh axial rotation 
measurements using skin mounted markers. Journal of 
Biomechanics 1992; 25. 

55. Wren TAL, Do KP, Hara R, Rethlefsen SA. Use of a patella 
marker to improve tracking of dynamic hip rotation 
range of motion. Gait and Posture 2008; 27: 530-4. 

56. Drake RL, Vogl AW, Mitchell AWM, Gray H. Gray's 
Anatomy for Students: Churchill Livingstone/Elsevier 
2010. 

57. Stagni R, Leardini A, Cappozzo A et al. Effects of hip joint 
centre mislocation on gait analysis results. Journal of 
Biomechanics 2000; 33: 1479-87. 

58. Schutte MSL. The Effects of Variability of Placement of 
the Knee Alignment Device on Kinematic Data. Gait & 
Posture 1996; 4. 

 
 
 


