# Low back load in airport baggage handlers

# Henrik Koblauch

This review has been accepted as a thesis together with three previously published papers by University of Copenhagen February 12th 2015 and defended on June 12th 2015

Tutor(s): Erik B. Simonsen, Mark de Zee and Sigurd Mikkelsen

Official opponents: Professor Jaap van Dieën and Associate Professor Henrik Sørensen

Correspondence: University of Copenhagen, Department of Neuroscience and Pharmacology, Nørre Allé 20, 2200 Copenhagen N, Denmark.

E-mail: henrik@koblauch.dk

Dan Med J 2016;63(4):B5233

#### 1. LIST OF PAPERS

This thesis is based on the following original papers, which will be referred to with their respective roman numerals.

#### PAPFR I

Local muscle load and low back compression forces evaluated by EMG and video recordings of airport baggage handlers. Henrik Koblauch, Simon Falkerslev, Stine Hvid Bern, Tine Alkjær, Charlotte Brauer, Sigurd Mikkelsen, Mark de Zee, Lau C. Thygesen, and Erik B. Simonsen. (Draft)

## PAPER II

The validation of a musculoskeletal model of the lumbar spine. Henrik Koblauch, Michael Skipper Andersen, Mark de Zee, John Rasmussen, Tine Alkjær, Charlotte Brauer, Sigurd Mikkelsen, Lau C. Thygesen, Sylvain Carbes, and Erik B. Simonsen,

(Submitted to Journal of Biomechanics)

## PAPER III

Spinal loads in asymmetrical and dynamic lifting tasks: A modeling approach.

Henrik Koblauch, Michael Skipper Andersen, Tine Alkjær, Charlotte Brauer, Sigurd Mikkelsen, Mark de Zee, Lau C. Thygesen, and Erik B. Simonsen

(Submitted to Journal of Applied Ergonomics)

## 2. INTRODUCTION

This PhD study was an important part of the Danish Airport Cohort study. The general aims of this study were to describe and analyse the causes of musculoskeletal loading in airport baggage handlers in Copenhagen Airport. To do this a cohort of 3092 present and previous baggage handlers and a reference group consisting of 2478 men in other unskilled work without heavy lifting was established (1). The present PhD project set out to provide biomechanical input to the epidemiological exposure matrices so highly accurate measurements of the musculoskeletal loading was part of the epidemiological study.

# 3. BACKGROUND

#### LOW BACK PAIN

Low back pain (LBP) is a major problem in the industrialized parts of the world. It is a massive problem for the single patient, but also a huge problem for the populations in general (3-5). Over the past two decades reports have consistently reported lifetime







Global burden of disease measured in DALY (2)

prevalences between 60 % and 80 % (6-9). In 15 EU countries, Norway, USA, Canada and Australia LBP is the largest burden of disease in 2010 (2;5;10) (Figure 1). LBP is the largest burden of disease measured in both Disability Adjusted Life Years (DALY) and Years Lived with Disability (YLD). DALY is defined as the number of years lost due to ill-health, disability or early death (11). YLD is years lived with disability(11). Furthermore, LBP is the sixth largest burden of disease in the world measured in DALY and the largest measured with YLD. LBP is the most activity-limiting complaint in young and middle aged and the second most frequent cause of sick-leave (12). This implies that LBP is also a large occupational health problem. Punnet et al (13) estimated that 37 % of LBP is caused by occupational exposure and many occupational groups have increased prevalence of LBP (14-21).

Holmstrom et al. (22) found a 1-year-prevalence of 54 % for LBP and 7 % for severe LBP in construction workers. Another occupational group with a high prevalence of musculoskeletal complaints is airport baggage handlers. Dell et al. (23) found that one in 12 baggage handlers experienced back injuries and Stålhammar et al. (24) found that more than half complained of shoulder, knee or LBP. However, these previous studies were based on limited sample sizes and there was no reference group present in either study. In a large epidemiological investigation, Bern et al. (1) found that the amount of musculoskeletal complaints increased with seniority.

#### THE BAGGAGE HANDLER

The baggage handlers in Copenhagen Airport are a group of only men, though primarily unskilled there are many skilled craftsmen (37 %) and a few with academic degrees (4 %). It is the primary responsibility of the baggage handler to handle baggage and make sure that baggage is correctly distributed on flights. The baggage handlers perform some different tasks but the core task is the manual handling of baggage. This implies a large amount of heavy lifting.









#### Figure 2

Examples of work task performed by baggage handlers in Copenhagen Airport. Top left: Baggage hall task, Top right: The conveyer-task, Bottom left: Kneeling, Bottom right: stooped positions in the baggage compartment task.

The average weight of a suit case is 15 kg (25) but many airlines allow baggage weights up to 32 kg (Qatar Airlines, American Airlines, British Airways etc.). When cargo is loaded on the aircraft the burdens can be even heavier. In average the baggage handler lifts 4-5 tonnes per day, and some days up to 10 tonnes (25). The baggage handling is mainly performed in three different settings: 1) Inside the baggage hall where the baggage is distributed to the correct baggage cart or container, 2) outside the narrow-bodied aircraft where the baggage is transferred from the baggage cart onto a conveyer that moves the baggage to the aircraft baggage compartment, 3) inside the aircraft baggage compartment of the narrow-bodied aircrafts where the baggage is stacked. In the baggage compartment the space is limited and the ceiling height is only about 1 m in a Boeing 737-800 (26) which is the most widely used commercial airplane worldwide. This requires the baggage handler to perform lifting in awkward positions (Figure 2) of which the most common are kneeling, stooped and sitting position. Wide-body aircrafts are most commonly loaded with baggage containers and the manual handling takes place in the baggage hall and not on the ramp. There is not much research available on the lifting conditions of the baggage handler. Splitstoesser et al. (27) performed a study of lifting in kneeling position and Stålhammar et al. (24) studied manual material handling in sitting, kneeling and squatting position. Furthermore, the British Health and Safety Executive have performed two studies on the risk of ill-health and how to reduce risks associated with manual handling in an airport setting (28;29). Bern et al. (1) found that 32 % of baggage handlers in the Copenhagen Airport Cohort reported complaints regarding back ache. This was significantly more than in a comparable reference group. In addition, the odds ratio for self-reported musculoskeletal symptoms increased with increasing seniority. This effect persisted when adjusted for age, BMI, smoking and leisure time physical activity. Hence, it appears that baggage handlers are at increased risk of sustaining LPB. However, this report was based on self-reported musculoskeletal complaints and not registry data.

## CAUSES AND RISK FACTORS OF LOW BACK PAIN

Pain in the lumbar spine region may originate from many different conditions. Injured ligaments, prolapsed discs, inflammation in the facet joints, muscle spasms, compression of spinal nerve roots, vertebral periosteum are just some of the causes of pain and impairment (30). However, often no physio-pathological cause for the pain can be located and the condition is termed idiopathic. Between 14 % and 80 % of LBP are classified as "sprain and strain", "idiopathic" or "no cause" (30;31). This is probably due to lack of adequate diagnostic tools to assess injured tissue or detect a change in biomarkers. Even though idiopathic LBP has been extensively investigated, nobody has successfully located a single source for non-specific LBP.

Many risk factors for the development of LBP have been identified. High psychological work pressure (32), cigarette smoking and alcohol consumption (33), previous episodes of LBP (34), whole body vibration (35), highly repetitive work (36;37) and frequent, heavy lifting (37-45) are some of the most important risk factors for LBP. Several sub-factors, which all have a worsening effect, can be added to heavy lifting. High frequency of lifting (46), asymmetrical lifting (47), lifting in confined space (34;48), and lifting in awkward positions (34;47;48) all increase the risk of LBP. Coenen et al. (49) found that high cumulative mechanical loading of the low back estimated by observation in the workplace leads to a 2fold increase in the risk of LBP. In general, high level of biomechanical loading is an established risk factor for LBP (9;49-53). Furthermore, Marras et al. (54) found that patients with LBP were subject to larger spinal loading than matched asymptomatic subjects due to increased activation of paraspinal muscles. In this way LBP may be a vicious circle where LBP breeds further LBP. Another risk factor for LBP has been proposed in terms of large spinal compression and shear forces (36;52;55). These forces are increased with many of the above worsening factors. Lifting in

awkward positions, lifting in confined space and asymmetrical lifting are all factors which have been shown to increase the forces on the spine (54;56-59).

So why are high compression- and shear forces damaging to the vertebrae? Van Dieën and Toussaint (60) investigated vertebral motion segment damage due to cyclic compression loading. They found that peak compression force was the leading factor in compression failure. It has been hypothesized that a possible connection between spinal loading and LBP is that high compression and shear forces can cause microfractures in the vertebral endplates and loosening of periost from the compact bone (60;61). Based on this a possible cause for non-specific LBP is microfractures with high spinal forces as the leading risk factor. However, compression and shear forces are not easily studied.

## MEASUREMENT OF SPINAL FORCES

It is very difficult to obtain compression and shear forces from in vivo studies. Currently, the only method for obtaining these forces directly is when a patient agrees to have an instrumented implant inserted. Spinal forces obtained by this method have been studied by a few authors (62-68), but this type of implant is extremely rare. As a consequence of this the authors have published data for public use on the orthoload-database (orthoload.com). This is extremely beneficial in many ways and especially for model validation purposes. However, many of the spinal force measurements lack kinematic descriptions of movements, which complicates the comparison with modelled estimates of spinal forces. Apart from the implant-method some authors have presented data on in vivo intra-discal pressure (69-76). However, this method is also rather inaccessible, as it is based on the insertion of a pressure gauge into the nucleus pulposus of the intervertebral disc. These measurements have been performed during different type of activities from everyday activities and body positions (68;71;73-75) to spinal manipulation (69) and heavy weight lifting (72;77). Because this level of invasiveness is preferably avoided, these data are also very rare.

#### MEASUREMENT OF COMPRESSION TOLERANCE

There have been published several measurements of compression tolerance of spinal segments performed in vitro (78-84). In this approach a spinal segment, typically consisting of two vertebrae with the adjacent intervertebral disc, is mechanically compressed and the compression force at failure is measured. In a literature review, Jäger et al. (83) reported on a maximum compression tolerance in 776 cadaveric segments and found an average of 6180 N (SD 2660) in men and 4060 (SD 1750) in women. Furthermore, they found that the lowest compression tolerance was 1230 N and the largest was 10990 N. This large range of compression tolerances was also found by Granhed et al. (79). They found the lowest compression tolerance to be only 810 N and the largest 10090 N. In addition, Brinckmann et al. (78) found a 55 % risk of sustaining a compression injury if a segment was loaded with 40-50 % of the maximum compression tolerance 500 times. The bone mineral content in the lumbar segments is the largest predictor for the ultimate compression tolerance. A cadaver study has shown that the compression tolerance increased with 1685 N when the bone mineral content increased by one g/cm3 (79). Other factors with an influence on the compression tolerance are age, sex and nutritional status (84), which again all influence the bone mineral density.

#### LIFTING RECOMMENDATIONS

In an occupational setting it is unacceptable to allow workers to expose themselves to potentially damaging loads. Therefore, some recommendations for heavy lifting have been proposed (36;84-88). Some recommendations use limits of maximal compression and shear force (36;84;86), while others, like the Danish Working Environment Authority, take a more pragmatic position and recommend maximal frequency and burdens in different positions and postures (85). The National Institute of Occupational Safety and Health (NIOSH) in USA recommended a limit of 3400 N as the maximal compression force in the low back allowed during continuous manual handling. This recommendation was based on computations on a two-dimensional static model of lifting, physiological measurements and vertebral compression tolerance in cadaver studies (36).

#### Table 1 Dortmund recommendations (84)

| Age        | Women  | Men    |
|------------|--------|--------|
| 20 years   | 4400 N | 6000 N |
| 30 years   | 3800 N | 5000 N |
| 40 years   | 3200 N | 4100 N |
| 50 years   | 2500 N | 3200 N |
| ≥ 60 years | 1800 N | 2300 N |

In addition to recommend limits of manual material handling the NIOSH guidelines have shown the ability to predict the risk of LBP due to lifting (89). Jäger et al. (83;84) have, based on a review of the literature, suggested another set of lifting recommendations. Unlike the NIOSH recommendations the so-called "Dortmund recommendations" are based solely on cadaver studies of vertebral compression tolerance. While the NIOSH recommendations have a fixed compression limit, the Dortmund recommendations are modulated by sex and age of the worker involved (Table 1). Based on the conclusions from the in vitro studies of compression tolerance, age and sex are imperative factors to include. However, the Dortmund recommendations completely disregard all physiological, psychological and biomechanical factors by only basing the recommendations on cadaver studies. Limits for shear forces during lifting have also been suggested. In a review of the literature, Gallagher & Marras (86), found that appropriate limits for shear forces were 1000 N for few (<100) cycles per day and 700 N for frequent shear loading.

#### COMPUTER MODELS

The most accessible way to estimate spinal forces is to use a computer model. Many kinds of models have been suggested including; static, dynamic, EMG-driven, hybrid, single muscle equivalent, multi-muscle, and finite element models. Since the 1980's a great variety of computer models have been published and along with increasingly powerful computers the models have increased in detail. There are advantages and shortcomings to all of them and in the following paragraphs the most important will be described.

4D Watbak (91) is a biomechanical software tool, which is easy to use. It calculates primarily the loading in the lumbar region. Watbak uses a 2D static model and single, non-wrapping joint muscle to solve the moment equilibrium. One shortcoming of the model is that it is static, so it does not account for accelerations. The model is two dimensional but it does distinguish between right and left. Furthermore, the estimation of joint moments and compressions are assumed at a single level (L4/L5) with no consideration for the equilibrium at other levels.

The AnyBody Modeling System (AMS) (92) is a commercially available software-tool for full-body musculoskeletal simulations of various activities. The main aim is to solve design problems in ergonomics, and in the AnyBody Managed Model Repository many different models for a variety of task can be found. In this system, the joint reaction forces and moments are calculated by the inverse dynamics method, where external forces and inertial properties of each segment are accounted for. The muscle redundancy issue is solved by static optimization, where different muscle recruitment criterions can be applied. A shortcoming to AMS is that it requires knowledge of the AnyScript language in which the models are programmed. Furthermore, the processing of results can be time-consuming due to the high level of detail. A similar product to this is the open source software OpenSim (93), which is slightly more user-friendly.



#### Figure 3

Full-body models in the AMS (90)

In finite element models it is possible to quantify the load in very complex mechanical systems. A finite element is a subdivision of a larger problem or structure. Using finite elements it is possible to estimate the load locally in the model. However, it requires an indepth knowledge of the structure and material properties on both microscopic and macroscopic level in the different types of tissue included in the model. Previously detailed models of spinal segments and intervertebral discs have been published (94-97). Even though this method has become increasingly approachable for different occupations over the recent years, it still remains primarily an engineering tool.

For computer simulations of musculoskeletal systems a general challenge is the validity and how to verify the validity of the model (98). This is partly due to the difficulties in obtaining muscle- and joint forces from in vivo studies. Spinal models can be particularly difficult to validate, because spinal forces can only be acquired by invasive methods or from patients with instrumented implants.

In the present PhD-study we set out to investigate the lumbar load in baggage handlers. To achieve this we performed a series of EMG measurement of back and shoulder muscles, static 2D measurements of lumbar forces, and a modelling study of two common work tasks for baggage handlers, with the aim of estimating the compression and shear forces during the task. Prior to the modeling-study we performed a study of validity of the lumbar spine model in the AMS.

## 4. MATERIAL AND METHODS

DESCRIPTION OF THE BAGGAGE HANDLING WORK First, we observed baggage handlers working in the airport during a two week period and interviewed twelve of the baggage handlers about their work. Based on this information baggage handler work tasks were divided into work in the baggage hall and work on the ramp. Work in the baggage hall consisted of loading and unloading of baggage containers and belly-carts with baggage to or from a belt conveyer. A pneumatic lifting hook was available for belly-cart and open-roofed container work but could not be used with fixed-roofed containers. Work on the ramp consisted of work on the ground and work inside the airplane baggage compartments. On the ground the work was loading and unloading belly-carts with baggage to or from a belt conveyer that transported baggage between the airplane baggage compartment opening and the belly-cart on the ground. If the aircraft baggage compartment opening was low the baggage was lifted directly to or from the opening without using a conveyer. Inside the baggage compartment the work consisted of lifting the baggage to or from the ground-to-airplane conveyer and to pack or unpack the baggage inside the compartment. Some belt conveyers were extendible and flexible allowing the baggage to be conveyed to any place in the compartment (RampSnake®, Power Stow®). Depending on the size of the compartment and conveyer belt system, loading and unloading work inside the compartment was done by one or two baggage handlers. Work positions depended on the height of the compartment relative to the height of the baggage handler and personal preferences, and were divided into standing, stooped, sitting, squatting and kneeling positions. From these basic work characteristics we defined 20 specific work tasks (Table 2).

## STUDY DESIGNS

#### Paper I

This study was an observational study, which aimed to describe the general loading on the spine and shoulder in baggage handling work tasks. Furthermore, the aim was to investigate whether changes between three general handling tasks existed. We performed both task-based and full-day EMG measurements of back and shoulder muscles. In addition we performed 2D static load analysis on similar work tasks.

#### Paper II

This study was a validation study of the estimates of intervertebral compression forces in the spine model from the AMS. In this study we compared a series of in vivo intra discal pressure measurements in different body positions and during simple lifting tasks to the output estimates of compression forces from the AMS model in similar positions and conditions.

## Paper III

This study was an observational study, which sought to describe the loading on the lumbar spine during common lifting tasks for baggage handlers. We recorded kinematics and kinetics by means of motion capture and used the kinematics to drive an AMS model. With the AMS model we estimated the compression and shear force, joint moments, and muscle forces.

## **REDUCTION OF WORK TASKS**

## Paper I

It was decided to collapse the 20 work tasks into 3 more general tasks: "The baggage hall", "By the conveyor", and "Inside the baggage compartment" for Paper I. The reduction was based on work tasks being very similar, being unmeasurable and a general question of resources. Loading and unloading at the conveyer outside

## Table 2

#### Overview of the 20 general work tasks for baggage handlers

| The Ramp                             | The Baggage hall                                                         |
|--------------------------------------|--------------------------------------------------------------------------|
| Outside the baggage com-<br>partment | Loading baggage containers                                               |
| Loading without conveyer             | Unloading baggage containers                                             |
| Loading with conveyer                | Loading baggage-carts without lifting hook                               |
| Unloading without conveyer           | Loading baggage-carts and<br>open-roof containers with lift-<br>ing hook |
| Unloading with conveyer              | Unloading baggage-carts with-<br>out lifting hook                        |
| Inside the baggage compart-          | Unloading baggage-carts and                                              |
| ment                                 | open-roof containers with lift-                                          |
|                                      | ing hook                                                                 |
| Loading/Unloading with               |                                                                          |
| conveyer in                          |                                                                          |
| Standing                             |                                                                          |
| Sitting                              |                                                                          |
| Kneeling                             |                                                                          |
| Squatting                            |                                                                          |
| Stooped                              |                                                                          |
| Loading/Unloading with ex-           |                                                                          |
| tendible conveyer in                 |                                                                          |
| Standing                             |                                                                          |
| Sitting                              |                                                                          |
| Kneeling                             |                                                                          |
| Squatting                            |                                                                          |
| Stooped                              |                                                                          |

the aircraft and in the baggage hall were considered to be similar. Loading and unloading with a pneumatic lifting hook were considered unmeasurable in the static computer model, as the load is carried by the hook. However, it was still a part of the baggage hall task in the EMG study, but was performed rarely, as most baggage handlers did not use the lifting hook regularly. The loading and unloading without conveyer outside the aircraft were excluded because the tasks were relatively rare, and we did not succeed in collecting sufficient data from these tasks. After this reduction the "baggage hall" task consisted of loading and unloading belly-carts and containers, the "conveyor" task consisted of loading and unloading belly carts, and the "baggage compartment" task consisted of baggage handling in sitting, kneeling and stooped positions inside the baggage compartment. In Paper I, we did not distinguish between use of extendible conveyer in any task. For overview reasons, we report on the forces from all subtasks.

## Paper III

In paper III we report results from two selected, very common work tasks for baggage handlers (kneeling and stooped). Furthermore, in Appendix 1 results from another 12 work tasks are reported. These 12 tasks were reduced from the original 20 tasks. The reduction was based on the same criteria as in Paper I. Both loading and unloading without conveyer were included, whereas the baggage hook tasks were not included due to modeling issues. Furthermore, the sitting tasks with and without the extendible belt loader (RampSnake®/Power Stow®) were considered identical, because the baggage handlers, when sitting, always position a large suitcase at the end of the conveyer which the following suitcases can roll onto. Therefore, the effect is rather equal to what the extendible conveyer is used for. The baggage handlers rarely use the full functionality of the extendible conveyer and most choose not to adjust the extendible conveyer for every suitcase.

## SUBJECTS

## Paper I

Twentythree baggage handlers, 39.6 years of age (range 24-56), were recruited for the EMG study. The first 11 subjects were selected by the nearest department leader. The remaining 12 were approached directly at the beginning of the workday and if the baggage handler agreed to participate he was included in the study. Full day EMG-measurements were obtained from the first 11 participants. In average the full day measurements lasted 4.6 (SD 1.2) hours. This was due to loss of data, mounting of equipment, termination of the workday due to injury and short shifts. The 11 full day measurements were from four baggage handlers on international ramp, two on domestic ramp, and two from the baggage hall. The task specific measurements were from seven baggage handlers on the international ramp and five from the baggage hall. There were no task specific measurements from the domestic ramp. In total the 23 participants contributed with a total of 102 task specific measurements, divided on 47 from baggage compartment, 19 measurements from the conveyer task and 36 from the baggage hall. In average the baggage hall tasks lasted (mean(SD)) 28.2 (14.0) minutes, the conveyer task 19.3 (13.0) minutes, and the baggage compartment task 22.6 (17.5) minutes

In the study of 2D static loading 10 baggage handlers were filmed in each sub task, and some were filmed in several tasks, so a total of 44 baggage handlers (40.2 years, 82.6 kg, 180.0 cm) participated. The authors recruited baggage handlers directly while they were performing the desired task. This method was mainly based on chance, and whoever performed a desired task was approached and asked to participate in the study. Nine baggage handlers participated in both parts of the study, but this did not influence the performance in either studies.

## Paper III

The average age and self-reported height and weight of baggage handlers in Copenhagen Airport were retrieved from Bern et al. (1) and a male subject with these average characteristics (48 years , 87 kg, 1.81 m) was recruited.

#### EMG MEASUREMENTS

#### Paper I

Bipolar EMG-electrodes (Multi Bio Sensors, Texas, USA) with a fixed interelectrode distance of 20 mm were placed on five sites on the right side: 1) m. deltoideus anterior part, 2) m. deltoideus intermediate part, 3) m. erector spinae at L4/L5-level, 4) m. erector spinae at Th12-level, and 5) descending part of m. trapezius. A reference electrode was placed on the processus spinosus of C7. Prior to electrode mounting the skin was shaved, sanded and cleaned with alcohol to reduce skin impedance. The electrodes were connected to lightweight preamplifiers equipped with an A/D-converter with 16 bit resolution. The signals were transmitted from the preamplifiers through wires to a recording box (MQ16, Marq Medical) where data were band-pass filtered (10-1000 Hz). The recording box transferred data wirelessly via Bluetooth-technology to a PC, where data was sampled using a custom-written Matlab-script. The quality of the signals was checked on the computer screen, where data were displayed in real-time. EMG was sampled at 512 Hz.

#### EMGmax

After the mounting of the electrodes, the maximal EMG amplitude (EMGmax) was measured during three isometric contractions for all muscles. For the anterior deltoid muscle the subject was standing with the right shoulder flexed 30 degrees. The measurement was performed while the subject pushed a tight nylon strap upwards with the back of the hand. The EMGmax recording for the intermediate deltoid was performed similarly, but with the shoulder in 30 degrees abduction. For the trapezius muscle, the subjects elevated the right shoulder against the resistance of a tight strap fixed to the floor. For both m. erector spinae parts the subjects extended the trunk against the resistance of a nylon strap around the shoulders, while the anterior part of the pelvis was supported against a plate (99).

#### Data processing

The full day measurements were divided into task specific measurements based on trigger signals from the start and end of tasks. Out of the total 102 we had 27 tasks specific measurements (15 baggage compartment, 12 conveyer, 5 baggage hall) from the fullday measurements. Data analysis was performed by a custom written Matlab-script. Both amplitude probability distribution functions (APDF) and rolling root mean square (RMS) amplitude were calculated. In both cases EMG-signals were band-pass filtered at 10-250 Hz using a fourth order Butterworth filter. The EMG signals were visually and manually inspected for unrealistic spikes, drift and short periods of high noise. These were rare and removed before further analysis.



#### Figure 4

Example of an APDF-curve obtained from m. deltoideus intermedius. Lines show the levels p10, p50 and p90.

The method described by Jonsson et al. (100) was used to produce APDF curves. Also according to Jonsson et al. (100), three levels of activity were selected for further analysis (Figure 2). The 10th percentile (P10) was considered the static level, the 50th percentile (P50) was the median level, and the 90th percentile (P90) was considered the peak level of activity (100;101). Rolling RMS windows of one second (RMS1), 5 seconds (RMS5), and one minute (RMS60) were calculated and expressed relative to EMGmax (%EMGmax). The peak values from the three RMS analyses along with the P10, P50 and P90 from the APDF analysis were input to the statistical analysis.

#### STATIC 2D LOAD MEASUREMENTS

#### Paper I

Initially the biomechanical loading analysis was performed on all nine subtasks in the three general work tasks. However, because it was impossible to isolate the EMG measurements in the single subtasks, we decided to collapse the biomechanical loading analysis into the same three more general tasks for comparability reasons. We therefore report on the results with both methods. The compression force and flexor/extensor moment between the L4/L5 vertebrae and the right shoulder flexor moment were calculated for the same work tasks (baggage hall, baggage compartment and by the conveyor) as the EMG analysis. In each task the baggage handler was video recorded from a sagittal view. From the video five still images representing different parts of the handling task were extracted. Segment angles for foot, shank, thigh, torso, head, upper arm, forearm and hand were measured on the still images with ImageJ (National Institute of Health, USA). The segment angles were used as input to a nine segment rigid body Watbak model (University of Waterloo, Canada) which calculated the compression force and joint moment at L4/L5-level and shoulder flexor moment for the right arm.

For each of the five still pictures from every lift analysis 10 kg, 15 kg and 20 kg were used as baggage weight. To make the results comparable, all biomechanical parameters are expressed relative to body mass.

#### MOTION CAPTURE OF HANDLING TASKS

#### Paper III:

Two handling tasks were selected out of the 14 general tasks for in-depth analysis. Baggage handling in a kneeling position and in a stooped position is commonly used to handle baggage inside the air craft baggage compartment because of the limited space available. Results from the remaining models are also presented in Appendix I.

The simulation of the handling tasks took place in a lab. The setup for every task was designed based on observations of baggage handlers in Copenhagen Airport. In addition, the subject in Paper III was asked to confirm the tasks as representative before the recording.

#### Kneeling position

In general the subject was instructed to handle the suitcase like it was in the real airport setting. A certain speed was not specified, but a trial was considered successful if the subject approved that it was similar to lifts in the airport. The subject moved a standard suitcase (57x23.5x37 cm) from the floor using both hands and transferred it to the left and placed it on a platform 30 cm above the floor. Starting position was with the suitcase placed to the right of the subject at a 45° angle. The subject was instructed to transfer the suitcase to the designated destination at a 45° angle to the left (Figure 5). This lifting technique is frequently used by baggage handlers inside the aircraft baggage compartment lifting suitcases from the floor to a belt conveyer or vice versa.

#### Stooped position

The subject was instructed to stand stooped but was allowed to bend his knees. The subject picked up the suitcase from the floor on the right side at a 20° angle using both hands and transferred it to the left in front of the body and placed it on a platform 50 cm above the floor. The platform was placed next to the subject at a 90° angle (Figure 1). This lifting technique is another option for baggage handlers inside the aircraft baggage compartment. However, this technique requires a higher ceiling in the aircraft than the kneeling position. This is why the platform height was 50 cm and not 30 cm as in the kneeling task.

Three suitcase weights of 10 kg, 15 kg and 20 kg were used and both lifting tasks were performed experimentally in a laboratory. In the analysis one trial from each task was used.

The subject practiced each task until the performance was considered consistent regarding speed and movement. The two tasks were filmed at 75 frames per second by a custom-built motion capture system of eight synchronized high speed HD cameras (GZL-CL-41C6M-C, Gazelle, Point Grey, Richmond, Canada). The subject was equipped with a full-body marker setup of 37 luminous markers with a diameter of 5 mm while three markers were placed on the suitcase.

Two force platforms (AMTI, Watertown, MA, USA) measured ground reaction forces in the standing task, while four force plates were used in the kneeling task, one under each foot and one under each knee.



















Figure 5 Time series of the two lifting tasks. Left: Kneeling. Right: Stooped

## COMPUTER SIMULATION

#### Paper II:

The models were all modifications of the "StandingModel", which is freely available in the AMMR v. 1.6.2, and were built in AMS 6.0.4. The base model was scaled to fit the bodily measures of the subject in the Wilke et al.-study (74) (72 kg, 173.9 m). Segment masses and lengths were scaled according to Winter et al (102). The muscle redundancy problem was solved with two different criteria: 1) by minimizing the sum of muscle activities squared (2nd order polynomial) and 2) according to a minimum fatigue criterion (min/max criterion).

We compared common positions (Figure 6) in daily living (lying, sitting, standing, standing flexed) adapted from Wilke et al. (74), and since descriptions of velocities and accelerations were not provided by Wilke et al. (74), we chose to analyse the positions



#### Figure 6

Nine different positions of the model in Paper II

that were static or involved static lifting only. In the positions where the model is lying or seated, the connection between the human model and table or chair was modelled using conditional contact elements. This contact model was similar to the one published by Rasmussen et al. (103). The box had a mass of 20 kg. The output parameter (compression force) was measured in local coordinates on the cranial endplate of the L5 vertebra. The L5 endplate formed a plane to which the compression force was perpendicular.

In order to compare the in vivo measurements from Wilke et al. (74) with the compression forces from the models, the spinal pressures (MPa) were converted to force (N) by:

$$F = PAC_{corr}$$

where P is the measured intra-discal pressure, A is the cross-sectional area of the L4/L5 intervertebral disc (1800 mm2) obtained from an MRI scanning and reported along with the pressure measurements (74) and Ccorr is a correction constant of 0.77. The correction factor has shown good correlation between intra-discal pressure and compression force in a finite element model (104).

## Paper III:

Inverse dynamics-based musculoskeletal models of the two tasks were built in the AMS v. 6.0.4. The models were modifications of the "GaitFullBody" model available from the AnyBody Managed Model Repository v. 1.5 (92) and were scaled to match the bodily measures of the subject through optimization using the method of Andersen et al.(105). The spine model consisted of seven segments (pelvis, thorax and five lumbar segments), more than 170 back and abdominal muscles parts and a model of the intra-abdominal pressure (IAP)

The muscle activities were estimated according to a 2nd order polynomial optimization. This criterion proved superior in a previous validation of the lumbar spine model where it was compared with another muscle recruitment criterion (min/max) (90). Furthermore, a suitcase-segment was added, which had the same spatial and inertial properties as the suitcase in the data collection. The model's right hand was linked to the suitcase by a revolute joint. The remaining degree of freedom was balanced by a dynamic contact model on the opposite end of the bag consisting of two contact points on the left hand and a cylindrical contact zone on the suitcase. Whenever the contact points were within the contact zone, a set of virtual muscles provided normal and frictional forces to balance the remaining degree of freedom, kinetically. This method was validated by Fluit et al. (106) for the prediction of ground reaction forces during activities of daily living. The activity of these virtual muscles was computed together with the remaining muscles in the muscle recruitment.

#### STATISTICAL ANALYSIS

#### Paper I

A linear mixed model with post-hoc tukey-corrected multiple comparisons performed in SAS 9.3 (SAS institute Inc., Cary, NC, USA) was applied to identify statistically significant differences between the general and specific tasks in spinal loading and levels of muscle activity. Level of significance was set to 5 %. 6.10 Ethics

All subjects that participated in the studies involved in this thesis gave their informed consent before participation was accepted. All parts of the study were assessed by the Regional Scientific Ethics Committee, which concluded that these studies were not notifiable (J. nr. H-3-2011-140).

The Danish Data Protection Agency allowed that data from all studies were stored (J nr. 2011-41-6915)

#### 5. RESULTS

PAPER I

## EMG

Relative muscular activity for all APDF levels, muscles, and tasks are presented in Table 3. In all APDF activity levels and muscles (except for the erector spinae L4/L5, P10 and trapezius, P50) the baggage compartment task had the highest level of activity. This did not reach statistical significance. In the ADPF-analysis of the full day recordings (Table 4) all activity levels were equivalent to what was found in the task-based analysis (Table 3) Table 5 contains peak levels of muscle activity from RMS1, RMS5, and RMS60. In the intermediate deltoid, the baggage compartment task had significantly higher muscle activity than the baggage hall task. No task had higher general level of muscle activity in the remaining muscles.

## Table 3 APDF in five muscles and three tasks. Mean (SE)

| Muscle              | Deltoideus ant. | Deltoideus int. | Erec. Spin.L4/L5 | Erec. Spin.Th12 | Trapezius  |
|---------------------|-----------------|-----------------|------------------|-----------------|------------|
|                     |                 | P10 (%EMGmax)   |                  |                 | •          |
| Baggage hall        | 0.7 (0.2)       | 0.6 (0.4)       | 3.1 (1.0)        | 4.1 (1.1)       | 2.4 (0.4)  |
| By conveyor         | 0.6 (0.2)       | 0.8 (0.3)       | 4.2 (1.0)        | 4.5 (1.2)       | 1.7 (0.4)  |
| Baggage compartment | 0.6 (0.2)       | 0.9 (0.3)       | 3.5 (0.7)        | 6.0 (0.8)       | 1.5 (2.9)  |
|                     |                 | P50 (%EMGmax)   |                  |                 |            |
| Baggage hall        | 3.5 (1.4)       | 2.8 (1.1)       | 8.4 (2.7)        | 11.8 (3.3)      | 7.1 (1.0)  |
| By conveyor         | 3.3 (1.5)       | 3.5 (1.0)       | 12.6 (2.7)       | 14.5 (3.5)      | 6.0 (1.0)  |
| Baggage compartment | 4.5 (1.0)       | 4.2 (0.8)       | 12.9 (2.0)       | 18.1 (2.4)      | 6.6 (0.8)  |
|                     |                 | P90 (%EMGmax)   |                  |                 |            |
| Baggage hall        | 19.7 (4.3)      | 11.8 (3.6)      | 21.9 (5.1)       | 26.8 (7.2)      | 17.6 (2.7) |
| By conveyor         | 18.1 (4.0)      | 17.3 (3.3)      | 33.9 (5.6)       | 38.7 (7.7)      | 20.3 (2.9) |
| Baggage compartment | 23.2 (3.1)      | 19.4 (2.6)      | 34.9 (3.9)       | 41.9 (5.3)      | 23.6 (2.2) |

#### Table 4

APDF based on full day recordings from five muscles, but not divided into tasks. Mean (SE)

| Muscle              | Deltoideus ant. | Deltoideus int. | Erec. Spin.L4/L5 | Erec. Spin.Th12 | Trapezius   |
|---------------------|-----------------|-----------------|------------------|-----------------|-------------|
| Baggage hall        | 0.9 (0.3)       | 0.3 (0.04)      | 2.5 (0.3)        | 4.8 (0.9)       | 3.8 (2.2)   |
| By conveyor         | 6.3 (2.2)       | 2.6 (0.5)       | 9.6 (1.4)        | 12.3 (1.5)      | 11.4 (4.6)  |
| Baggage compartment | 23.8 (5.5)      | 19.8 (3.9)      | 41.2 (9.3)       | 28.2 (2.8)      | 29.4 (10.5) |

#### Table 5

Rolling RMS averages in five muscles and three tasks. +: hall ≠ compartment indicate statistically significant differences at p < 0.05. Mean (SE)

| Muscle              | Muscle Deltoideus ant. |                 | Erec. Spin.L4/L5 | Erec. Spin.Th12 | Trapezius   |  |  |
|---------------------|------------------------|-----------------|------------------|-----------------|-------------|--|--|
|                     |                        | RMS1 (%EMGmax)  | •                | •               | •           |  |  |
| Baggage hall        | 99.8 (14.8)            | 51.1 (6.6)†     | 90.0 (37.1)      | 100.3 (32.7)    | 63.3 (10.0) |  |  |
| By conveyor         | 69.6 (12.6)            | 64.5 (6.7)      | 96.1 (34.3)      | 104.7 (34.4)    | 72.2 (9.4)  |  |  |
| Baggage compartment | 80.6 (12.6)            | 77.5 (4.7)      | 113.4 (24.87)    | 123.5 (22.6)    | 63.8 (6.9)  |  |  |
|                     |                        | RMS5 (%EMGmax)  |                  |                 |             |  |  |
| Baggage hall        | 66.5 (10.0)            | 30.1 (4.0)†     | 50.7 (23.6)      | 58.1 (21.0)     | 40.6 (5.9)  |  |  |
| By conveyor         | 41.8 (8.6)             | 36.7 (4.2)      | 56.8 (22.4)      | 73.8 (21.8)     | 44.0 (5.7)  |  |  |
| Baggage compartment | 50.2 (6.6)             | 48.1 (2.9)      | 72.1 (16.0)      | 79.0 (14.4)     | 37.9 (4.1)  |  |  |
|                     |                        | RMS60 (%EMGmax) |                  |                 |             |  |  |
| Baggage hall        | 40.3 (7.7)             | 13.9 (2.4)†     | 24.8 (11.4)      | 34.8 (11.5)     | 20.7 (3.1)  |  |  |
| By conveyor         | 20.4 (6.5)             | 18.1 (2.4)      | 34.2 (10.7)      | 44.4 (11.5)     | 23.5 (3.1)  |  |  |
| Baggage compartment | 25.6 (5.1)             | 24.6 (1.7)      | 40.0 (7.7)       | 44.7 (7.8)      | 20.5 (2.2)  |  |  |
| Table 6             |                        |                 |                  |                 |             |  |  |

## Static 2D load measurement

The L4/L5 extensor moments, compressions and shoulder moments from the general tasks are presented in Table 6 and estimates from the subtasks are presented in Table 7. The L4/L5 extensor moment in the baggage compartment task was significantly higher than in the two other tasks (Table 6). The compression force between L4 and L5 in the baggage compartment task was significantly higher than the conveyor task and the baggage hall task. There was no difference between the conveyor task and the baggage hall task (Table 6). The biomechanical varia bles increased significantly (p<0.001) with increasing baggage weight in all tasks.

There were no significant differences in the shoulder flexor moment between the tasks. Compression force and extensor moment at the L4/L5 joint along with shoulder flexor moment. All are relative to body mass. †: hall  $\neq$  compartment, 0: conveyor  $\neq$  compartment indicate statistically significant differences at p < 0.05. Mean (SE).

| Task/Baggage<br>weight   | 10 kg        | 15 kg        | 20 kg        |  |  |  |
|--------------------------|--------------|--------------|--------------|--|--|--|
|                          | Compressi    | on (N/BM)    |              |  |  |  |
| Baggage hall             | 22.6 (0.5)†  | 27.3 (0.6)†  | 32.0 (0.7)†  |  |  |  |
| By conveyor              | 21.3 (0.6)0  | 26.2 (0.7)0  | 31.1 (0.8)0  |  |  |  |
| Baggage com-<br>partment | 29.0 (1.0)   | 34.1 (1.1)   | 39.0 (1.3)   |  |  |  |
|                          | Extensor mon | nent (Nm/BM) |              |  |  |  |
| Baggage hall             | 0.96 (0.03)† | 1.20 (0.04)† | 1.44 (0.05)† |  |  |  |
| By conveyor              | 0.89 (0.03)0 | 1.14 (0.03)0 | 1.40 (0.04)0 |  |  |  |
| Baggage com-<br>partment | 1.42 (0.07)  | 1.70 (0.08)  | 1.97 (0.08)  |  |  |  |
| Shoulder moment (Nm/BM)  |              |              |              |  |  |  |
| Baggage hall             | 0.24 (0.01)  | 0.33 (0.01)  | 0.43 (0.02)  |  |  |  |
| By conveyor              | 0.26 (0.01)  | 0.37 (0.02)  | 0.48 (0.02)  |  |  |  |
| Baggage com-<br>partment | 0.22 (0.01)  | 0.33 (0.01)  | 0.40 (0.03)  |  |  |  |

#### Paper II

The measured and estimated compression forces are depicted in Figure 7. The estimated compression forces and their differences from the measured compressions are shown in Table 8. When the 2nd order polynomial criterion for muscle recruitment was applied there was high agreement between the experimental and the modelled results. The largest absolute error was in the "sitting straight" and the "max flexed"-positions and was 176 N (resp. 29 % and 10 %) lower than in vivo data. The average relative error was 9% with the 2nd order polynomial and 16 % with the min/max criterion. ). With measured values exceeding 1200 N the average error for the 2nd order polynomial was -5 % and 34 % with the min/max criterion. The largest absolute error with the min/max criterion was 831 N (33 %) in "lifting with flexed back" (Table 8).

#### Table 7

Compression force and extensor moment at the L4/L5 joint along with shoulder flexor moment for each task. All are relative to body mass. †: Stooped  $\neq$  all other tasks, ‡: unload cart  $\neq$  unload container, §: unloading container  $\neq$  stooped, \*: unloading container  $\neq$  sitting indicate statistical differences at p < 0.05. Mean (SE)

| Task/Baggage<br>weight | 10 kg              | 15 kg         | 20 kg         |  |  |  |  |  |
|------------------------|--------------------|---------------|---------------|--|--|--|--|--|
|                        | Compression (N/BM) |               |               |  |  |  |  |  |
| Loading cart           | 20.9 (0.82)        | 25.5 (0.95)   | 30.1 (1.1)    |  |  |  |  |  |
| Unloading cart         | 21.9 (0.75)        | 27.0 (0.89)   | 32.0 (1.0)    |  |  |  |  |  |
| Stooped                | 42.0 (0.96)†       | 47.8 (1.2)†   | 53.9 (1.3)†   |  |  |  |  |  |
| Kneeling               | 26.7 (0.96)        | 31.8 (1.1)    | 36.2 (1.2)    |  |  |  |  |  |
| Sitting                | 18.4 (1.3)         | 22.7 (1.6)    | 27.0 (1.9)    |  |  |  |  |  |
| Unloading con-         |                    |               |               |  |  |  |  |  |
| tainer                 | 22.8 (1.0)         | 26.6 (1.3)    | 30.3 (1.6)    |  |  |  |  |  |
| Loading contai-        |                    |               |               |  |  |  |  |  |
| ner                    | 24.9 (1.3)         | 30.3 (1.6)    | 35.7 (1.8)    |  |  |  |  |  |
|                        | Extensor mon       | nent (Nm/BM)  |               |  |  |  |  |  |
| Loading cart           | 0.87 (0.05)        | 1.11 (0.06)   | 1.35 (0.07)   |  |  |  |  |  |
| Unloading cart         | 0.91 (0.04)        | 1.18 (0.05)   | 1.45 (0.06)   |  |  |  |  |  |
| Stooped                | 2.40 (0.05)†       | 2.74 (0.07)†  | 3.08 (0.07)†  |  |  |  |  |  |
| Kneeling               | 1.23 (0.06)        | 1.51 (0.07)   | 1.73 (0.08)   |  |  |  |  |  |
| Sitting                | 0.62 (0.09)        | 0.87 (0.10)   | 1.10 (0.12)   |  |  |  |  |  |
| Unloading con-         |                    |               |               |  |  |  |  |  |
| tainer                 | 1.04 (0.07)        | 1.24 (0.08)   | 1.45 (0.09)   |  |  |  |  |  |
| Loading contai-        |                    |               |               |  |  |  |  |  |
| ner                    | 1.02 (0.10)        | 1.27 (0.13)   | 1.52 (0.15)   |  |  |  |  |  |
|                        | Shoulder mon       | nent (Nm/BM)  |               |  |  |  |  |  |
| Loading cart           | 0.22 (0.01)        | 0.32 (0.02)   | 0.42 (0.02)   |  |  |  |  |  |
| Unloading cart         | 0.29 (0.02)‡       | 0.41 (0.02)‡  | 0.54 (0.03)‡  |  |  |  |  |  |
| Stooped                | 0.12 (0.03)        | 0.18 (0.04)   | 0.24 (0.05)   |  |  |  |  |  |
| Kneeling               | 0.26 (0.02)        | 0.37 (0.03)   | 0.45 (0.04)   |  |  |  |  |  |
| Sitting                | 0.30 (0.03)        | 0.40 (0.05)   | 0.51 (0.06)   |  |  |  |  |  |
| Unloading con-         |                    |               |               |  |  |  |  |  |
| tainer                 | 0.12 (0.02)        | 0.16 (0.04)   | 0.19 (0.04)   |  |  |  |  |  |
| Loading contai-        | 0.32               |               |               |  |  |  |  |  |
| ner                    | (0.02)*§           | 0.44 (0.02)*§ | 0.56 (0.03)*§ |  |  |  |  |  |

When the compression forces were low both recruitment criteria produced comparable results, and regardless of muscle recruitment criterion the model predicted the changes in spinal compression well (Figure 7).



#### Figure 7

Estimated compression forces from the model and in vivo measurements. Purple: in vivo measurements, turquise: 2nd order polynomial, red: min/max criterion. Black bars represent compression forces in 50 and 70 degrees of flexion.

## Paper III

The compression forces are presented in Table 9. For the 20 kg suitcase the largest compression force was found in the stooped position (4692 N) and the largest A-P shear force (289 N) also in the stooped position. For the 15 kg suitcase the largest compression force (4801 N) and A-P shear force (488 N) were also found in the stooped position. For the 10 kg suitcase the largest compression force (5541 N) and the largest A-P shear force (346 N) were found in the stooped position as well.

In the stooped position, a peak of compression force occurred in the beginning of the task when the suitcase was accelerated (Figure 8). The largest peak of both compression and A-P shear forces occurred halfway through the task. This coincided with the instant at which the box was lifted off the floor. The peak compression and A-P shear forces in the kneeling position occurred in the last third of the task, where the subject lifted the suitcase towards his chest (Figure 9).

The maximal muscle force was 362 N in the right obliquus internus in the stooped position (Figure 8) and 135 N in the right obliquus externus in the kneeling position (Figure 9). In the stooped position, the first overall peak of muscle force coincided with the first peak in the compression and A-P shear force. Furthermore, the second peak of the left and right obliquus internus coincided with the largest peak of the compression force and A-P shear force (Figure 8). At the time of the overall peak of compression force the right obliquus internus also showed a peak of force. In the kneeling position, the peak of the right obliquus internus force occurred at the same instant as the largest peak of compression force (Figure 9).





#### Figure 8

Stooped task. The time course of compression and A/P shear forces are on top and corresponding muscle forces are below

#### Figure 9

Kneeling task. The time course of compression and A/P shear forces are on top and corresponding muscle forces are below

## Table 8

Absolute compression forces from two muscle recruitment criterions and the in vivo study. Error is the difference between the modeled estimate and the in vivo measurement.

| Position/Measu-<br>rement | Wilke in vivo (N) | 2nd order polynomial (N) | Difference (N / %) | Min/Max-criterium (N) | Difference (N / %) |
|---------------------------|-------------------|--------------------------|--------------------|-----------------------|--------------------|
| Lying supine              | 110               | 113                      | 3/3                | 138                   | 28 / 25            |
| Sitting relaxed           | 361               | 281                      | -80 / -22          | 290                   | -71 / -20          |
| Standing                  | 548               | 518                      | -30 / -5           | 548                   | 0/0                |
| Sitting straight          | 602               | 426                      | -176 / -29         | 424                   | -178 / -30         |
| Standing flexed<br>(60°)  | 1205              | 1159                     | -46 / -4           | 1730                  | 525 / 49           |
| Lift close to body        | 1205              | 1104                     | -101 / -8          | 1553                  | 348 / 29           |
| Max flexed                | 1766              | 1590                     | -176 / -10         | 2375                  | 609 / 34           |
| Lift stretched<br>arms    | 1971              | 1862                     | -109 / -6          | 2581                  | 610 / 31           |
| Lift flexed back<br>(60°) | 2519              | 2573                     | 54 / 2             | 3350                  | 831 / 33           |

## Table 9

The peak, median and inter quartile range for compression, A/P shear forces, and internal/external rotator moment for 10 kg, 15 kg and 20 kg suitcase in the two tasks.

| Task     | Weight (Kg) | Compression (N)<br>(peak/median/IQR) | Shear (N)<br>(peak/median/IQR) | Rotator moment (Nm)<br>(peak/median/IQR) |
|----------|-------------|--------------------------------------|--------------------------------|------------------------------------------|
| Kneeling | 20          | 4197/2977/1051                       | 237/148/71                     | 69/9/79                                  |
| Stooped  | 20          | 4692/3407/605                        | 389/151/85                     | 165/94/60                                |
| Kneeling | 15          | 3341/2688/997                        | 168/102/52                     | 66/-2/75                                 |
| Stooped  | 15          | 4801/3030/987                        | 488/68/132                     | 152/82/74                                |
| Kneeling | 10          | 3039/2108/1067                       | 125/98/70                      | 47/-22/66                                |
| Stooped  | 10          | 5541/2740/3525                       | 346/111/284                    | 173/81/31                                |

#### 6. DISCUSSION

This thesis aimed to describe and analyse the loading on the lumbar spine in airport baggage handlers. This was performed with a work task based approach, and the musculoskeletal loading in the different tasks will be included in the epidemiological study as exposure weights to the questionnaire and registry based data. Hence, we aimed to investigate if a dose-response relationship existed for heavy lifting and musculoskeletal pain.

The first study aimed to investigate the loading on a broad range of baggage handling tasks. This was performed with EMG measurements and static 2D load measurements. We found that the muscular activity was quite high in short periods of time, but the APDF analysis did not show remarkable levels of muscular activity. Furthermore, there were very few differences between the general work tasks in the EMG analysis. In the spinal loading estimates he level of compression force was remarkably low, in spite of high muscle activity. We found that it was significantly more loading to work in the baggage compartment than in the baggage hall and outside the aircraft by the conveyer.

The second study sought to validate the compression forces estimated with the lumbar spine model included in the AMS. This was done by comparing the compression forces in different body position with intra-discal pressures in similar position taken from the literature. We found high agreement between the model estimates and the in vivo measurements.

In the third study we used the AMS spine model to investigate two common work tasks for baggage handlers. We found that all tasks exceeded the recommended limits for compression and some approached the average maximal compression tolerance in vertebrae. Furthermore, though not in the paper, we analysed another 12 work tasks for musculoskeletal load (Appendix I).

#### METHODOLOGICAL CONSIDERATIONS

#### Paper I

The selection of participants for the studies in Paper I was mostly random. The first 11 participants were selected by the local leader, and a date and time was agreed with the test leader. This method of recruitment led to some suspicion from the baggage handlers, who thought that the baggage handler in question would be assigned to easier tasks so the job would seem less strenuous. To counter this the authors decided that the selection of participants for the rest of the data collection should be independent of company management. We decided to show up unannounced and pick a baggage handler to test. Therefore the last 12 subjects were selected based on who would volunteer to be tested when approached on a given day.

Initially we selected 20 tasks (Table 2) that largely described the job as a baggage handler. Later we decided to collapse these 20 tasks into 3 more general tasks based primarily on where the baggage handling took place; baggage handling in the baggage hall, by the conveyer or inside the baggage compartment. The merger of these tasks could have caused us to overlook some detail, as the tasks are not necessarily comparable. If the baggage handler sits in the baggage compartment while lifting a 20 kg suitcase the compression on the L4/L5 is 27 N/BM but if the baggage handler stands stooped the compression force is 54 N/BM. And because the baggage handler does not necessarily spend equal amounts of time in each position, a simple average does not express the true loading on the lumbar spine in the general baggage compart-ment-task. To achieve a more valid measure of the true loading in

the general task a weight for the time spend in each task could have been added. However, we are not convinced that the estimates of lumbar compression force in Paper I are valid. The calculations were performed with the Watbak-software, which provided a static 2D estimate of the L4/L5 compression force based on segment angles and the weight and direction of the burden. Because the models were two-dimensional and static, they did not take into account the movements in other than sagittal direction, nor the accelerations of the body and burden that was handled. This will most likely underestimate the compression forces and joint moments. Moreover, the model only contains one muscle producing the lumbar extensor moment with a fixed moment arm of 6 cm. This is a very crude assumption since there are many muscles balancing the extensor moment and they originate and insert at different sites, thus producing force on the lumbar spine with individually different moment arms that vary with body size. In addition, this model estimates the load on the lumbar spine on a single segment level, which does not satisfy the equilibrium at different levels of the spine. However, the method did allow us to explore differences between the tasks. Another strength of the methods in Paper I is that the measurements are from a real life setting, so it reflects a simplified version of the actual work of the baggage handlers.

#### Paper II

Generally the validation process of musculoskeletal model is very difficult. This is mostly due to the issue of retrieving valid muscle and joint forces from in vivo studies. In Paper II we compared intra-discal pressure measurements to compression forces estimated by the lumbar spine model in AMS. The conversion between force and pressure poses a potential flaw. Earlier it has been shown that a simple conversion from pressure to force (F=PA, where A is the area of the involved disc) is inadequate due to the heterogeneous material composition and therefore nonuniform loading of the disc (104;107), and will overestimate the force up to 40 % (71;104). Furthermore, during human movement the axial loading is always accompanied by shear forces and joint moments. Therefore we used a correction factor of 0.77 found in the literature (104). This correction factor is a model specific constant, and therefore probably not accurate in our case, but only in the case in which Dreischarf et al(104). introduced it. If we wanted an accurate correction factor a finite element analysis investigating the tissue-response to different types of compression in this specific model should be conducted.

The positions of the model in Paper II were all estimated based on descriptions and photographs from Wilke et al (74). The validity of the estimations would have improved markedly if kinematic data or segment/joint angles had been available. In the present case we estimated the positions, and this poses a potential bias. We showed that an estimation error of 20 degrees flexion between the pelvis and the thorax can result in estimates with an error larger than 500 N wrong (Figure 7). Also, the segment properties were estimated based on the anthropometric fractions by Winter (102), and therefore pose a potential bias, as it is uncertain if the subject in Wilke et al. (74) had a body composition that matched the general anthropometric fractions. Wilke et al. (74) did report on a variety of anthropometric parameters, but these were not applicable with the required anthropometric input in AMS. 8.1.3 Paper III and dynamic measures of musculoskeletal loading In general, many of the issues mentioned in section 8.1.2 apply to Paper III as well. The same spinal model was applied, but the model was dynamic and driven by kinematics from the motion

capture. Another limitation is the design of the study, which is based on one subject performing one trial of each baggage handling task. This limits the generalizability. However, we took measures to reduce the variation between the tasks. The subject practiced the task until the quality was considered consistent. However, this did not prove sufficient, as we have estimated larger forces in some 10 kg tasks than in the associated 20 kg tasks. This implies that the loading on the spine is not only influenced by the weight of the burden, but also indeed by the speed and accelerations of the lift.

The results from Paper III may be highly dependent of the orientation of the L5 coordinate system (Figure 10). The orientation of the coordinate system was changed to a more anatomically correct orientation. We used the current orientation, because it was validated for compression forces in Paper II (90). However, there is no report on the validity of the shear forces, joint moments or muscle forces in the present model. Therefore the sensitivity of these variables to changes in the orientation of the L5 coordinate system should be investigated in more detail. In addition, estimates of shear force, joint moments and muscle forces should be used with caution.

In the present model of the lumbar spine no ligaments are included. Instead we assumed that the joints between the vertebrae were spherical joints, hence disallowing any translations. In the human body these translations would have been limited by spinal ligaments, during which the ligaments would have contributed to the compression force. This may have caused us to underestimate the compression forces. However, the moment arm of these ligaments is very small and we assumed the contribution to be negligible.

Lastly the models are based on motion capture in a lab-setting and not a real life setting. This may further weaken the generalizability of the results, compared to a scenario where the models were based on movements recorded in the actual tasks. This could be done with the recently progressing accelerometer-based motion capture systems and the method for estimating ground reaction forces that we used in Paper II, which has previously been validated for activities of daily living (106). This would have added an extra aspect of generalizability to the results.

#### DISCUSSION OF FINDINGS

#### Paper I

The level of activity (APDF) in the trapezius was equivalent to the level of muscle activity in house painters in a laboratory setting (P10: 1.59 %EMGmax, P50: 6.8 % EMGmax, P90: 17.47 %EMGmax) (108). However, the painters performed intensive periods of work in different tasks as opposed to Paper I which was performed in a genuine work setting where both expected and unexpected breaks in the tasks occurred. This may also be the reason for the lack of statistical differences between the full day recordings and the task based results. We expected that the task based results would show a higher level of activity than the full day recordings, because all breaks and other types of less strenuous work tasks were included. However, the APDF analysis does not take the lengths of breaks into account. So a baggage handler performing the conveyor task could have several small periods without baggage handling, and the results from the APDF would be similar to those from a baggage handler who had a long break and then more continuous strenuous work. This means that we may have underestimated the muscle activity in the work tasks of the baggage handlers because the work task did not solely consist of the work task but involved a lot of small breaks also. However, the results do reflect the actual activity demands, as the recordings were done in the genuine work environment of the baggage handlers.

The RMS analysis showed some large muscle activity levels exceeding 100 %EMGmax. In a study of dentists Finsen & Christensen (109) found a max level of 17 %EMGmax in m. trapezius during cavity filling with a one second rolling RMS window. In comparison we found 72 %EMGmax in m. trapezius in average for baggage handler tasks. This is not surprising since the work as a baggage handler is obviously more strenuous than dentist work. However, the results from the RMS analysis did not concur with the results from the APDF. This may be due to the inability of APDF to adequately handle highly dynamic work. The APDF analysis is more suited for analysis of work with a static component, which was not the case in baggage handlers.

In the biomechanical loading analysis we found that the level of compression in the L4/L5 segment did not exceed the NIOSH recommendations of 3400 N (36) for the average baggage handler (82.6 kg) (1) in any of the general tasks. One explanation for the low level of compression force in the baggage compartment task is that this was an average of several positions including kneeling, stooped, and sitting. In the stooped task we recorded larger compression forces (4460 N), whereas the sitting task only produced around 2230 N of compression. This is not an unreasonable conclusion, as the baggage handler can switch between positions at will. In a previous study, Skotte et al (59), found compression forces of up to 4400 N during patient handling tasks, but with a dynamic 3D model. Furthermore, Granhed et al (110) found compression levels of up to 36,000 N during extremely heavy lifting with a 2D, static model. However, in a study of weightlifters the assumption of staticity and two-dimensionality is more correct that in a study of baggage handlers that perform highly dynamic and asymmetric lifts.

The low estimates of spinal loading and the high values of muscle activity in RMS1 do not correspond well. Normally high levels of muscle activity would result in high levels of compression, as the muscles compress the joints they span during contractions. The results from Paper I do not support that. However, the shortcomings of the musculoskeletal model (static, two-dimensional, single extensor muscle, single level disc equilibrium etc.) make it clear that the validity of the absolute compression estimates is not sufficient to draw any conclusion in that respect. Even though the validity of the absolute values is poor, the relative differences between the tasks can still provide knowledge. We found that the load on the lumbar spine was significantly larger in the baggage compartment task than the baggage hall and conveyer tasks. This could form the basis for recommending job rotation. However, the results from the model in Paper I are insufficient and should be supported by more valid models.

## Paper II

In Paper II we have presented a comparison between L4/L5 intradiscal pressures measured in vivo and estimates of L4/L5 compression force from a musculoskeletal model with two different muscle recruitment criteria. When the 2nd order polynomial criterion was applied the agreement between the measured and the estimated L4/L5 compression forces was very high and errors nearly negligible (Table 8). Especially for high levels of spinal forces the relative differences between measured and estimated compression forces were small (< 10 %). To be able to compare different positions and investigate differences in compression force, the model must be sensitive to changes in compression force between positions and tasks. In the present study, the model showed high sensitivity to the compression force between positions and a high degree of agreement with the changes in the measured intra-discal pressure. Even though the absolute errors with the min/max criterion were large, the response to changes in conditions was adequate. Even when the forces were low, the model predicted the change in the measured compression between positions fairly well.

The present validation study on the spine model shows that the 2nd order polynomial for muscle recruitment is a more appropriate recruitment criterion than the min/max criterion when the muscle forces larger than 1200 N. When the muscle forces are low the min/max and 2nd order polynomial produce the same level of compression.

In a previous comparison between the compression estimates from the AMS spinal model, Rajaee et al. (111) found good agreement with the intra-discal pressures converted to force. Rajaee et al. (111) used the min/max criterion, which we found to overestimate forces. However, there are some issues that may explain why they also found good agreement. Firstly, Rajaee et al. (111) used a different correction factor taken from Shirazi-Adl & Drouin (107), which may influence the level of estimated force markedly. Secondly, Rajaee et al. (111) also estimated positions based on photographs of the subject in Wilke et al. We have shown that an erroneous estimation of flexion angle of 20 degrees may produce errors in compression estimates larger than 500 N (Figure 2).

#### Paper III and estimates of musculoskeletal loading

In Paper III we described the spinal loading in two common baggage handler tasks. Enclosed in Appendix I is a supplement of force estimates for spine, shoulder, knee, and hip in 14 different baggage handler tasks with three different baggage weights (10kg, 15 kg, and 20 kg). This is, to the best of our knowledge, the first and most extensive set of modelled estimates of musculoskeletal loading in baggage handlers. Previously the kneeling (24;27;112), and stooped (57;113-115) positions have been investigated, but with models containing less detail than the one in this study.



#### Figure 10

The anatomical reference frame. Compression force is measured in the Y-direction.

Jäger et al. (84) found in their review of the literature that the estimated in vitro average compression tolerance for lumbar segments was 6180 N (SD 2660 N). Based on the compression forces from the model in the present study and the large variation of the estimate from Jäger et al. (84), compression injuries in the L4/L5 vertebrae are not unlikely to occur in baggage handling work. However, in vitro tolerance results may not be applicable for in vivo conditions. Some evidence exist that compression injuries to endplates and the underlying trabecular bone may be quite common and could be a cause for LBP (80;116). Especially large compression forces cause these injuries (60) and repeated loading increases the risk of compression injuries (60;78;82). In an in vitro study, Brinckmann et al. (78) found a 55 % risk of sustaining a compression injury if a segment was repeatedly loaded 500 times with 40-50 % of the maximum compression tolerance. This could possibly explain the high prevalence of LBP in different occupational groups with frequent heavy lifting (1;19;117). Therefore, additional mechanisms in the living organism must relieve the compression of the lumbar spine. The IAP may play an important role in reduction of the compression forces in the lumbar spine. It has been suggested that the IAP can reduce the compression force by means of a passive extensor moment (118;119). However, this will not be detectable in spinal models, which do not include a specific IAP model, as only net moments are accounted for in inverse dynamic analysis. Another possibility is that the intra-abdominal pressure acts as a semi-rigid cylinder on which the load from the upper extremities and thorax can rest (118). This will enlarge the target area for the compression from the area of the disc to the cross-sectional area of the trunk and therefore reduce the pressure on the spine markedly (118).

The shear forces found in Paper III must be considered rather modest. In a review of the literature Gallagher & Marras (86) found that appropriate limits for shear forces were 1000 N for few (<100) cycles per day and 700 N for frequent shear loading based on in vitro measurements of shear strength with no regard to other factors. Compared to these limits, a risk of developing injuries due to shear loading is not present. However, as mentioned above the results from the present study should be interpreted with caution as they may be highly dependent on the definition of the orientation of the L5 coordinate system.

#### 7. CONCLUSION

In a study of muscle activity we found high levels of acute muscular activity and moderate activity over longer periods. No differences were found between the tasks regarding muscle activity. The stooped task was the most strenuous out of nine tasks measured with a static 2D model. In general the work in the baggage compartment put more load on the lumbar spine than work by the conveyer or in the baggage hall.

With a validated 3D dynamic model we elucidated the lumbar loading in two common baggage handling work tasks. We found that lifting a 10 kg suitcase in a stooped position would compress the L4/L5-joint with 5541 N. This level of compression exceeds both the NIOSH and Dortmund recommendations. Furthermore, it is close to the average vertebral compression tolerance from in vitro studies. Therefore, it is not unlikely that lifting heavy burdens in this type of positions could cause LPB.

The spine model in AMS has a unique level of detail and analysis of asymmetrical lifting tasks has not previously been carried out with a model of this level of detail. This level of detail allowed us to elucidate the lifting tasks even more realistically.

#### 8. PERSPECTIVES

Biomechanical data with this level of detail has not previously been used as exposure measures in epidemiological studies. This method has the potential of establishing a dose-response relationship between occupational heavy lifting and musculoskeletal injuries. The musculoskeletal models presented in Paper III are built, so they are generically usable. These models can be applied to elucidate the musculoskeletal loading in almost any lifting task. It only requires a set of kinematic data to drive the model. The ground reaction forces, that are part of the inverse dynamic analysis, can be predicted with the conditional contact model used in Paper II, so the use of and limitation by force platforms can be avoided. Therefore, data can be collected in the field during the actual work or activity. Furthermore, with this method optimization of lifting seeking to reduce spinal compression, extensor moment, muscle force etc. lifting can be performed. One drawback to this method is that the kinematics must be very accurate and with a low level of noise. Otherwise the simulated ground reaction forces will be inaccurate and the force input to the inverse dynamic analysis incorrect.

Another perspective could be to investigate the hypothesis of microfractures as a result of large spinal forces. This could be done with some of the same methods as in the present thesis. Lifting sequences recorded by a motion capture system, the kinematic data used to drive the AMS model and the ground reaction forces as input to the inverse dynamic analysis would be the initial data. Hereafter, the AMS model calculates estimates of muscle forces, joint moments and joint compressions at a certain spinal segment. These muscle and joint forces are then used as input to a Finite Element (FE) model. The FE model can be used to estimate stress level and stress distribution in the individual components (bone, discs, ligaments, etc.), and the interaction between the components (e.g. force and joint moment transfer) in the lumbar spine. The hypothesis about the development of micro fractures in the endplates of the vertebrae (60;61;120) and loosening of periost from the compact bone because of high loading can be investigated by applying specific finite element methods that can simulate the crack growth in the vertebrae. Moreover, the finite element models can also be used to simulate tissue damage. This can be done by loading the finite element model with very large muscle forces both intermittent and continuously.

## 9. SUMMARY

LBP constitutes a major economic problem in many countries. The causes of LBP are still largely unknown and several risk factors have been suggested including heavy lifting, which causes high compression forces of the tissues in the low back. Micro-fractures in the endplates of the vertebrae caused by compression forces have been suggested as a source of unspecific pain. Although airport baggage handlers exhibit a high prevalence of musculoskeletal complaints the amount of biomechanical research within this and similar areas is limited. The aims of this thesis were to perform a general description of the lumbar loading in baggage handlers (Paper I), to develop a generically useful tool to examine specific lumbar compression in a valid manner (Paper II & III), and to investigate the spinal loading in common work tasks for bag-gage handlers. (Paper II).

We recorded electromyography during baggage handling in the baggage hall, by a conveyor, and inside the aircraft baggage compartment. Electromyography was analyzed using amplitude probability distribution functions (APDF) on both tasks and full day recordings and RMS values on tasks. Furthermore, we estimated L4/L5 compression and moment along with shoulder flexor moment with a Watbak model based on more specific subtasks. In addition, we built an inverse dynamics-based musculoskeletal computer model using the AnyBody Modeling System (AMS). Motion capture recorded the movements in 3D during a stooped and a kneeling lifting task simulating airport baggage handler work. Marker trajectories were used to drive the model. The AMS-models computed estimated compression forces, shear forces and the moments around the L4/L5 joint. The compression forces were used for comparison with the vertebral compression tolerances reported in the literature.

The RMS muscle activity was high in all tasks. The average peak RMS muscle activity was up to 120 % EMGmax in the erector spinae during the baggage hall task. There were no significant differences between the tasks in the APDF analyses. The L4/L5 compression and extensor moment from Watbak were significantly higher in the baggage compartment task than in both the conveyor and baggage hall tasks. The stooped lifting task produced 5541 N compression in the L4/L5 joint and a kneeling task produced 4197 N in the AMS models. These compression forces were close to the average compression tolerance and exceed the recommended limits for compression during lifting.

#### **10. REFERENCES**

- Bern SH, Brauer C, Moller KL, Koblauch H, Thygesen LC, Simonsen EB, et al. Baggage handler seniority and musculoskeletal symptoms: is heavy lifting in awkward positions associated with the risk of pain? BMJ Open 2013;3(11):e004055.
- Institute for Health Metrics and Evaluation (IHME). GBD Heatmap. 2013. Seattle, WA, IHME, University of Washington. 23-12-2014.
- Hoy D, March L, Brooks P, Woolf A, Blyth F, Vos T, et al. Measuring the global burden of low back pain. Best Pract Res Clin Rheumatol 2010 Apr;24(2):155-65.
- Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012 Dec 15;380(9859):2197-223.
- Hoy D, March L, Brooks P, Blyth F, Woolf A, Bain C, et al. The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis 2014 Jun;73(6):968-74.
- Commissaris DA, Toussaint HM. Load knowledge affects low-back loading and control of balance in lifting tasks. Ergonomics 1997 May;40(5):559-75.
- Frank JW, Kerr MS, Brooker AS, DeMaio SE, Maetzel A, Shannon HS, et al. Disability resulting from occupational low back pain. Part I: What do we know about primary prevention? A review of the scientific evidence on prevention before disability begins. Spine (Phila Pa 1976 ) 1996 Dec 15;21(24):2908-17.
- Lee P, Helewa A, Goldsmith CH, Smythe HA, Stitt LW. Low back pain: prevalence and risk factors in an industrial setting. J Rheumatol 2001 Feb;28(2):346-51.
- Waddell G. Low back pain: a twentieth century health care enigma. Spine (Phila Pa 1976) 1996 Dec 15;21(24):2820-5.
- Driscoll T, Jacklyn G, Orchard J, Passmore E, Vos T, Freedman G, et al. The global burden of occupationally related low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis 2014 Jun;73(6):975-81.

- 11. Gold MR, Stevenson D, Fryback DG. HALYS and QALYS and DALYS, Oh My: similarities and differences in summary measures of population Health. Annu Rev Public Health 2002;23:115-34.
- 12. Lidgren L. The bone and joint decade 2000-2010. Bull World Health Organ 2003;81(9):629.
- Punnett L, Pruss-Utun A, Nelson DI, Fingerhut MA, Leigh J, Tak S, et al. Estimating the global burden of low back pain attributable to combined occupational exposures. Am J Ind Med 2005 Dec;48(6):459-69.
- Burdorf A. Exposure assessment of risk factors for disorders of the back in occupational epidemiology. Scand J Work Environ Health 1992 Feb;18(1):1-9.
- Goldsheyder D, Nordin M, Weiner SS, Hiebert R. Musculoskeletal symptom survey among mason tenders. Am J Ind Med 2002 Nov;42(5):384-96.
- 16. Granhed H, Morelli B. Low back pain among retired wrestlers and heavyweight lifters. Am J Sports Med 1988 Sep;16(5):530-3.
- Krause N, Rugulies R, Ragland DR, Syme SL. Physical workload, ergonomic problems, and incidence of low back injury: a 7.5-year prospective study of San Francisco transit operators. Am J Ind Med 2004 Dec;46(6):570-85.
- Kwon BK, Roffey DM, Bishop PB, Dagenais S, Wai EK. Systematic review: occupational physical activity and low back pain. Occup Med (Lond) 2011 Dec;61(8):541-8.
- 19. Latza U, Karmaus W, Sturmer T, Steiner M, Neth A, Rehder U. Cohort study of occupational risk factors of low back pain in construction workers. Occup Environ Med 2000 Jan;57(1):28-34.
- Riley D. Manual Handling in the Rail Sector in South Wales. HSL ERG/04/10.; 2004 Jan 1. Report No.: HSL/2006/53.
- Widanarko B, Legg S, Stevenson M, Devereux J, Jones G. Prevalence of low back symptoms and its consequences in relation to occupational group. Am J Ind Med 2013 May;56(5):576-89.
- Holmstrom EB, Lindell J, Moritz U. Low back and neck/shoulder pain in construction workers: occupational workload and psychosocial risk factors. Part 1: Relationship to low back pain. Spine (Phila Pa 1976) 1992 Jun;17(6):663-71.
- 23. Dell G. Airline baggage handler back injuries: A survey of baggage handler opinion on causes and prevention. Safety Science Monitor 1998;2(2):1-12.
- Stalhammar HR, Leskinen TP, Kuorinka IA, Gautreau MH, Troup JD. Postural, epidemiological and biomechanical analysis of luggage handling in an aircraft luggage compartment. Appl Ergon 1986 Sep;17(3):177-83.
- 25. Brauer C, Bern SH, Alkjær T, Bonde JP, Helweg-Larsen K, Koblauch H, et al. Ergonomic exposure assessed by production statistics. 2013.
- 26. 737 Airplane Characteristics for Airport Planning. Boeing Commercial Airplanes; 2013 Sep.
- Splittstoesser RE, Yang G, Knapik GG, Trippany DR, Hoyle JA, Lahoti P, et al. Spinal loading during manual materials handling in a kneeling posture. J Electromyogr Kinesiol 2007 Feb;17(1):25-34.
- 28. Riley D. Reducing the risks associated with the manual handling of air passenger baggage for narrow bodied aircraft. Literature review update. Health and Safety Executive; 2009.

- 29. Tapley S, Riley D. Baggage handling in narrow-bodied aircraft: Identification and assessment of musculoskeletal injury risk factors. Health and Safety Executive; 2005 Jan 1.
- Deyo RA, Weinstein JN. Low back pain. N Engl J Med 2001 Feb 1;344(5):363-70.
- 31. Shemshaki H, Nourian SM, Fereidan-Esfahani M, Mokhtari M, Etemadifar MR. What is the source of low back pain? J Craniovertebr Junction Spine 2013 Jan;4(1):21-4.
- Hoogendoorn WE, Bongers PM, de Vet HC, Houtman IL, Ariens GA, van MW, et al. Psychosocial work characteristics and psychological strain in relation to low-back pain. Scand J Work Environ Health 2001 Aug;27(4):258-67.
- Ferreira PH, Beckenkamp P, Maher CG, Hopper JL, Ferreira ML. Nature or nurture in low back pain? Results of a systematic review of studies based on twin samples. Eur J Pain 2013 Aug;17(7):957-71.
- Hestbaek L, Leboeuf-Yde C, Kyvik KO. Is comorbidity in adolescence a predictor for adult low back pain? A prospective study of a young population. BMC Musculoskelet Disord 2006;7:29.
- Bakker EW, Verhagen AP, van TE, Lucas C, Koes BW. Spinal mechanical load as a risk factor for low back pain: a systematic review of prospective cohort studies. Spine (Phila Pa 1976) 2009 Apr 15;34(8):E281-E293.
- Waters TR, Putz-Anderson V, Garg A, Fine LJ. Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics 1993;36(7):749-76.
- Andersen JH, Haahr JP, Frost P. Risk factors for more severe regional musculoskeletal symptoms: a two-year prospective study of a general working population. Arthritis Rheum 2007 Apr;56(4):1355-64.
- Burdorf A, Sorock G. Positive and negative evidence of risk factors for back disorders. Scand J Work Environ Health 1997 Aug;23(4):243-56.
- 39. Gerr F, Mani L. Work-related low back pain. Prim Care 2000 Dec;27(4):865-76.
- Leino-Arjas P, Kaila-Kangas L, Kauppinen T, Notkola V, Keskimaki I, Mutanen P. Occupational exposures and inpatient hospital care for lumbar intervertebral disc disorders among Finns. Am J Ind Med 2004 Nov;46(5):513-20.
- Seidler A, Bolm-Audorff U, Siol T, Henkel N, Fuchs C, Schug H, et al. Occupational risk factors for symptomatic lumbar disc herniation; a case-control study. Occup Environ Med 2003 Nov;60(11):821-30.
- Seidler A, Bergmann A, Jager M, Ellegast R, Ditchen D, Elsner G, et al. Cumulative occupational lumbar load and lumbar disc disease--results of a German multi-center case-control study (EPILIFT). BMC Musculoskelet Disord 2009;10:48.
- 43. Videman T, Battie MC. The influence of occupation on lumbar degeneration. Spine (Phila Pa 1976 ) 1999 Jun 1;24(11):1164-8.
- Wai EK, Roffey DM, Bishop P, Kwon BK, Dagenais S. Causal assessment of occupational lifting and low back pain: results of a systematic review. Spine J 2010 Jun;10(6):554-66.
- Wai EK, Roffey DM, Bishop P, Kwon BK, Dagenais S. Causal assessment of occupational bending or twisting and low back pain: results of a systematic review. Spine J 2010 Jan;10(1):76-88.

- 46. Coenen P, Gouttebarge V, van der Burght AS, van Dieen JH, Frings-Dresen MH, van der Beek AJ, et al. The effect of lifting during work on low back pain: a health impact assessment based on a meta-analysis. Occup Environ Med 2014 Dec;71(12):871-7.
- Hoogendoorn WE, van Poppel MN, Bongers PM, Koes BW, Bouter LM. Physical load during work and leisure time as risk factors for back pain. Scand J Work Environ Health 1999 Oct;25(5):387-403.
- 48. Picavet HS, Schouten JS. Physical load in daily life and low back problems in the general population-The MOR-GEN study. Prev Med 2000 Nov;31(5):506-12.
- Coenen P, Kingma I, Boot CR, Twisk JW, Bongers PM, van Dieen JH. Cumulative low back load at work as a risk factor of low back pain: a prospective cohort study. J Occup Rehabil 2013 Mar;23(1):11-8.
- Coenen P, Kingma I, Boot CR, Bongers PM, van Dieen JH. Cumulative mechanical low-back load at work is a determinant of low-back pain. Occup Environ Med 2014 May;71(5):332-7.
- 51. Wickstrom GJ, Pentti J. Occupational factors affecting sick leave attributed to low-back pain. Scand J Work Environ Health 1998 Apr;24(2):145-52.
- 52. Waters TR, Yeung S, Genaidy A, Callaghan JP, Barriera-Virtuet H, Deddens J. Cumulative spinal loading exposure methods for manual material handling tasks. Part 1: is cumulative spinal loading associated with lower back disorders? Theoretical Issues in Ergonomics Science 2014;7(2):113-30.
- Seidler A, Bergmann A, Jager M, Ellegast R, Ditchen D, Elsner G, et al. Cumulative occupational lumbar load and lumbar disc disease--results of a German multi-center case-control study (EPILIFT). BMC Musculoskelet Disord 2009;10:48.
- 54. Marras WS, Ferguson SA, Burr D, Davis KG, Gupta P. Spine loading in patients with low back pain during asymmetric lifting exertions. Spine J 2004 Jan;4(1):64-75.
- Waters TR, Putz-Anderson V, Garg A. Applications Manual for the Revised NIOSH Lifting Equations. Cincinatti, Ohio: National Institute of Occupational Safety and Health; 1994 Jan 1. Report No.: 94-110.
- de Zee M, Hansen L, Wong C, Rasmussen J, Simonsen EB. A generic detailed rigid-body lumbar spine model. J Biomech 2007;40(6):1219-27.
- Gallagher S, Hamrick CA, Love AC, Marras WS. Dynamic biomechanical modelling of symmetric and asymmetric lifting tasks in restricted postures. Ergonomics 1994 Aug;37(8):1289-310.
- Schibye B, Hansen AF, Hye-Knudsen CT, Essendrop M, Bocher M, Skotte J. Biomechanical analysis of the effect of changing patient-handling technique. Appl Ergon 2003 Mar;34(2):115-23.
- 59. Skotte JH, Essendrop M, Hansen AF, Schibye B. A dynamic 3D biomechanical evaluation of the load on the low back during different patient-handling tasks. J Biomech 2002 Oct;35(10):1357-66.
- 60. van Dieen JH, Toussaint HM. Evaluation of the probability of spinal damage caused by sustained cyclic compression loading. Hum Factors 1997 Sep;39(3):469-80.
- 61. van Dieen JH, Weinans H, Toussaint HM. Fractures of the lumbar vertebral endplate in the etiology of low back pain: a hypothesis on the causative role of spinal

compression in aspecific low back pain. Med Hypotheses 1999 Sep;53(3):246-52.

- Rohlmann A, Dreischarf M, Zander T, Graichen F, Bergmann G. Loads on a vertebral body replacement during locomotion measured in vivo. Gait Posture 2014 Feb;39(2):750-5.
- Rohlmann A, Zander T, Graichen F, Bergmann G. Effect of an orthosis on the loads acting on a vertebral body replacement. Clin Biomech (Bristol, Avon) 2013 Jun;28(5):490-4.
- 64. Rohlmann A, Bergmann G, Graichen F. Loads on an internal spinal fixation device during walking. J Biomech 1997 Jan;30(1):41-7.
- Rohlmann A, Graichen F, Kayser R, Bender A, Bergmann G. Loads on a telemeterized vertebral body replacement measured in two patients. Spine (Phila Pa 1976 ) 2008 May 15;33(11):1170-9.
- Rohlmann A, Graichen F, Bender A, Kayser R, Bergmann G. Loads on a telemeterized vertebral body replacement measured in three patients within the first postoperative month. Clin Biomech (Bristol , Avon ) 2008 Feb;23(2):147-58.
- 67. Rohlmann A, Petersen R, Schwachmeyer V, Graichen F, Bergmann G. Spinal loads during position changes. Clin Biomech (Bristol, Avon) 2012 Oct;27(8):754-8.
- Ledet EH, Tymeson MP, DiRisio DJ, Cohen B, Uhl RL. Direct real-time measurement of in vivo forces in the lumbar spine. Spine J 2005 Jan;5(1):85-94.
- Lisi AJ, O'Neill CW, Lindsey DP, Cooperstein R, Cooperstein E, Zucherman JF. Measurement of in vivo lumbar intervertebral disc pressure during spinal manipulation: a feasibility study. J Appl Biomech 2006 Aug;22(3):234-9.
- 70. Nachemson A, Morris JM. In vivo measurements of intradiscal pressure. Discometry, a method for the determination of pressure in the lower lumbar discs. J Bone Joint Surg Am 1964 Jul;46:1077-92.
- Nachemson A. The load on lumbar disks in different positions of the body. Clin Orthop Relat Res 1966 Mar;45:107-22.
- 72. Ranu HS. Measurement of pressures in the nucleus and within the annulus of the human spinal disc: due to extreme loading. Proc Inst Mech Eng H 1990;204(3):141-6.
- Sato K, Kikuchi S, Yonezawa T. In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine (Phila Pa 1976) 1999 Dec 1;24(23):2468-74.
- 74. Wilke H, Neef P, Hinz B, Seidel H, Claes L. Intradiscal pressure together with anthropometric data--a data set for the validation of models. Clin Biomech (Bristol , Avon ) 2001;16 Suppl 1:S111-S126.
- Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976) 1999 Apr 15;24(8):755-62.
- 76. Polga DJ, Beaubien BP, Kallemeier PM, Schellhas KP, Lew WD, Buttermann GR, et al. Measurement of in vivo intradiscal pressure in healthy thoracic intervertebral discs. Spine (Phila Pa 1976) 2004 Jun 15;29(12):1320-4.
- 77. Wang S, Park WM, Kim YH, Cha T, Wood K, Li G. In vivo loads in the lumbar L3-4 disc during a weight lifting extension. Clin Biomech (Bristol , Avon ) 2014 Feb;29(2):155-60.

- Brinckmann P, Biggemann M, Hilweg D. Fatigue fracture of human lumbar vertebrae. Clin Biomech (Bristol, Avon) 1988;3 Suppl 1:i-S23.
- 79. Granhed H, Jonson R, Hansson T. Mineral content and strength of lumbar vertebrae. A cadaver study. Acta Orthop Scand 1989 Feb;60(1):105-9.
- Hansson T, Roos B. The amount of bone mineral and Schmorl's nodes in lumbar vertebrae. Spine (Phila Pa 1976) 1983 Apr;8(3):266-71.
- Hansson TH, Keller TS, Panjabi MM. A study of the compressive properties of lumbar vertebral trabeculae: effects of tissue characteristics. Spine (Phila Pa 1976) 1987 Jan;12(1):56-62.
- Hansson TH, Keller TS, Spengler DM. Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading. J Orthop Res 1987;5(4):479-87.
- 83. Jäger M, Luttmann A, Göllner R. Analysis of lumbar ultimate compressive strength for deriving recommended lumbar-load limits. Zürich 2001.
- Jäger M, Luttmann A, Göllner R. Belastbarkeit der Lendenwirbelsäule bei manueller Lastenhandhabung - Ableitung der "Dortmunder Richtwerte auf Basis der lumbalen kompressionsfestigkeit. Zbl Abeitsmed 2001;51:354-72.
- 85. WEA-Guideline 3.1, Lift, Pull & Push. 2005. 16-1-2015.
- Gallagher S, Marras WS. Tolerance of the lumbar spine to shear: a review and recommended exposure limits. Clin Biomech (Bristol, Avon) 2012 Dec;27(10):973-8.
- Genaidy AM, Waly SM, Khalil TM, Hidalgo J. Spinal compression tolerance limits for the design of manual material handling operations in the workplace. Ergonomics 1993 Apr;36(4):415-34.
- Shoaf C, Genaidy A, Karwowski W, Waters T, Christensen D. Comprehensive manual handling limits for lowering, pushing, pulling and carrying activities. Ergonomics 1997 Nov;40(11):1183-200.
- Waters TR, Lu ML, Piacitelli LA, Werren D, Deddens JA. Efficacy of the revised NIOSH lifting equation to predict risk of low back pain due to manual lifting: expanded cross-sectional analysis. J Occup Environ Med 2011 Sep;53(9):1061-7.
- 90. Koblauch H, Andersen MS, de Zee M, Rasmussen J, Brauer C, Mikkelsen S, et al. The validation of a musculoskeletal model of the lumbar spine. Journal of Biomechanics. In press 2015.
- 91. McGill SM, Norman RW. Partitioning of the L4-L5 dynamic moment into disc, ligamentous, and muscular components during lifting. Spine (Phila Pa 1976) 1986 Sep;11(7):666-78.
- 92. Damsgaard M, Rasmussen J, Christensen ST, Surma E, de Zee M. Analysis of musculoskeletal systems in the AnyBody Modeling System. Simulation Modelling Practice and Theory 2006 Nov;14(8):1100-11.
- Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 2007 Nov;54(11):1940-50.
- Wilson DC, Niosi CA, Zhu QA, Oxland TR, Wilson DR. Accuracy and repeatability of a new method for measuring facet loads in the lumbar spine. J Biomech 2006;39(2):348-53.

- Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ. Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine (Phila Pa 1976) 2001 Dec 15;26(24):E557-E561.
- 96. Zander T, Rohlmann A, Calisse J, Bergmann G. Estimation of muscle forces in the lumbar spine during upperbody inclination. Clin Biomech (Bristol , Avon ) 2001;16 Suppl 1:S73-S80.
- Ayturk UM, Gadomski B, Schuldt D, Patel V, Puttlitz CM. Modeling degenerative disk disease in the lumbar spine: a combined experimental, constitutive, and computational approach. J Biomech Eng 2012 Oct;134(10):101003.
- Lund ME, de ZM, Andersen MS, Rasmussen J. On validation of multibody musculoskeletal models. Proc Inst Mech Eng H 2012 Feb;226(2):82-94.
- Potvin JR, Norman RW, McGill SM. Mechanically corrected EMG for the continuous estimation of erector spinae muscle loading during repetitive lifting. Eur J Appl Physiol Occup Physiol 1996;74(1-2):119-32.
- 100. Jonsson B. Quantitative electromyographic evaluation of muscular load during work. Scand J Rehabil Med Suppl 1978;6:69-74.
- 101. Jensen BR, Schibye B, Sogaard K, Simonsen EB, Sjogaard G. Shoulder muscle load and muscle fatigue among industrial sewing-machine operators. Eur J Appl Physiol Occup Physiol 1993;67(5):467-75.
- 102. Winter DA. Biomechanics and Motor Control of Human Movement. 3rd ed. ed. Hoboken, New Jersey: John Wiley & Sons; 2005.
- 103. Rasmussen J, Toerholm S, de ZM. Computational analysis of the influence of seat pan inclination and friction on muscle activity and spinal joint forces. International Journal of Industrial Ergonomics 2009 Jan;39(1):52-7.
- 104. Dreischarf M, Rohlmann A, Zhu R, Schmidt H, Zander T.
  Is it possible to estimate the compressive force in the lumbar spine from intradiscal pressure measurements? A finite element evaluation. Med Eng Phys 2013 Sep;35(9):1385-90.
- 105. Andersen MS, Damsgaard M, MacWilliams B, Rasmussen J. A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems. Comput Methods Biomech Biomed Engin 2010;13(2):171-83.
- 106. Fluit R, Andersen MS, Kolk S, Verdonschot N, Koopman HF. Prediction of ground reaction forces and moments during various activities of daily living. J Biomech 2014 Jul 18;47(10):2321-9.
- 107. Shirazi-Adl A, Drouin G. Nonlinear gross response analysis of a lumbar motion segment in combined sagittal loadings. J Biomech Eng 1988 Aug;110(3):216-22.
- 108. Meyland J, Heilskov-Hansen T, Alkjaer T, Koblauch H, Mikkelsen S, Svendsen SW, et al. Sex differences in muscular load among house painters performing identical work tasks. Eur J Appl Physiol 2014 Sep;114(9):1901-11.
- Finsen L, Christensen H. A biomechanical study of occupational loads in the shoulder and elbow in dentistry. Clin Biomech (Bristol , Avon ) 1998 Jun;13(4-5):272-9.
- 110. Granhed H, Jonson R, Hansson T. The loads on the lumbar spine during extreme weight lifting. Spine (Phila Pa 1976) 1987 Mar;12(2):146-9.

- 111. Rajaee MA, Armand N, Shirazi-Adl A, Plamondon A, Schmidt H. Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities. Applied Ergonomics 2015 May;48:22-32.
- 112. Ruckert A, Rohmert W, Pressel G. Ergonomic research study on aircraft luggage handling. Ergonomics 1992 Sep;35(9):997-1012.
- 113. Dolan P, Earley M, Adams MA. Bending and compressive stresses acting on the lumbar spine during lifting activities. J Biomech 1994 Oct;27(10):1237-48.
- 114. Faber GS, Kingma I, van Dieen JH. Bottom-up estimation of joint moments during manual lifting using orientation sensors instead of position sensors. J Biomech 2010 May 7;43(7):1432-6.
- 115. Kingma I, Bosch T, Bruins L, van Dieen JH. Foot positioning instruction, initial vertical load position and lifting technique: effects on low back loading. Ergonomics 2004 Oct 22;47(13):1365-85.
- 116. Hilton RC, Ball J, Benn RT. Vertebral end-plate lesions (Schmorl's nodes) in the dorsolumbar spine. Ann Rheum Dis 1976 Apr;35(2):127-32.
- 117. Andersen JH, Kaergaard A, Mikkelsen S, Jensen UF, Frost P, Bonde JP, et al. Risk factors in the onset of neck/shoulder pain in a prospective study of workers in industrial and service companies. Occup Environ Med 2003 Sep;60(9):649-54.
- 118. Daggfeldt K, Thorstensson A. The role of intra-abdominal pressure in spinal unloading. J Biomech 1997 Nov;30(11-12):1149-55.
- 119. Essendrop M, Andersen TB, Schibye B. Increase in spinal stability obtained at levels of intra-abdominal pressure and back muscle activity realistic to work situations. Appl Ergon 2002 Sep;33(5):471-6.
- 120. van der Veen AJ, Mullender MG, Kingma I, van Dieen JH, Smit TH. Contribution of vertebral [corrected] bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments. J Biomech 2008;41(6):1260-8.

# 11. APPENDIX I

Overview of work tasks described in the Appendix

|                       | The Ramp                                      |  |  |  |  |  |
|-----------------------|-----------------------------------------------|--|--|--|--|--|
|                       | [Heading]                                     |  |  |  |  |  |
| Outside the baggage   | compartment                                   |  |  |  |  |  |
|                       | · •                                           |  |  |  |  |  |
| 1                     | Loading without conveyer                      |  |  |  |  |  |
| 2                     | Loading with conveyer/ Unloading with con-    |  |  |  |  |  |
|                       | veyer/ Loading baggage-carts without lifting  |  |  |  |  |  |
|                       | hook/ Unloading baggage-carts without lifting |  |  |  |  |  |
|                       | hook                                          |  |  |  |  |  |
| 3                     | Unloading without conveyer                    |  |  |  |  |  |
| Inside the baggage co | mpartment                                     |  |  |  |  |  |
| Loading/Unloading w   | ith conveyor in                               |  |  |  |  |  |
| 4                     | Standing                                      |  |  |  |  |  |
| 5                     | Sitting                                       |  |  |  |  |  |
| 6                     | Kneeling                                      |  |  |  |  |  |
| 7                     | Squatting                                     |  |  |  |  |  |
| 8                     | Stooped                                       |  |  |  |  |  |
| Loading/Unloading w   | ith extendible conveyer in                    |  |  |  |  |  |
| 9                     | Standing                                      |  |  |  |  |  |
| 10                    | Kneeling                                      |  |  |  |  |  |
| 11                    | Squatting                                     |  |  |  |  |  |
| 12                    | Stooped                                       |  |  |  |  |  |
| The baggage hall      |                                               |  |  |  |  |  |
| 13                    | Loading baggage containers                    |  |  |  |  |  |
| 14                    | Unloading baggage containers                  |  |  |  |  |  |
|                       |                                               |  |  |  |  |  |

## Legend explanation:

Compression: joint compression force (N)

Abduction R/L: Shoulder abductor moment Right/Left (Nm)

Supraspinatus R/L: Supraspinatus force Right/Left (N)

Ta90 R/L: Percentage of time with shoulder above horizontal (%)

Shear: Anterior/Posterior shear (N)

Ext mom: L4/L5 extensor moment (Nm

)

Rot mom: Rotator moment, counter-clock-wise positive (Nm)

Patella R/L: Patella-tendon force Right/Left (N)

## Shoulder

| Task | Region   | Measure         | peak | Median | P10 | P25  | P75  | P90  | Weight |
|------|----------|-----------------|------|--------|-----|------|------|------|--------|
| 1    | shoulder | compression R   | 3044 | 1231   | 205 | 428  | 2754 | 2917 | 20     |
| 1    | shoulder | compression L   | 171  | 84     | 67  | 74   | 104  | 129  | 20     |
| 1    | shoulder | abduction R     | 41   | 10     | 2   | 5    | 20   | 34   | 20     |
| 1    | shoulder | abduction L     | 5    | 2      | 0   | 1    | 3    | 3    | 20     |
| 1    | shoulder | supraspinatus R | 398  | 61     | 0   | 10   | 175  | 252  | 20     |
| 1    | shoulder | supraspinatus L | 14   | 2      | 0   | 0    | 5    | 9    | 20     |
| 1    | shoulder | ta90 R          | 0    |        |     |      |      |      | 20     |
| 1    | shoulder | ta90 L          | 0    |        |     |      |      |      | 20     |
| 1    | shoulder | compression R   | 3471 | 1463   | 623 | 943  | 1927 | 2367 | 15     |
| 1    | shoulder | compression L   | 230  | 81     | 45  | 55   | 117  | 150  | 15     |
| 1    | shoulder | abduction R     | 69   | 18     | 2   | 7    | 28   | 35   | 15     |
| 1    | shoulder | abduction L     | 4    | 2      | 1   | 1    | 2    | 3    | 15     |
| 1    | shoulder | supraspinatus R | 280  | 98     | 0   | 47   | 115  | 163  | 15     |
| 1    | shoulder | supraspinatus L | 19   | 0      | 0   | 0    | 1    | 8    | 15     |
| 1    | shoulder | ta90 R          | 0    |        |     |      |      |      | 15     |
| 1    | shoulder | ta90 L          | 0    |        |     |      |      |      | 15     |
| 1    | shoulder | compression R   | 3405 | 1887   | 998 | 1255 | 2319 | 2659 | 10     |
| 1    | shoulder | compression L   | 303  | 161    | 91  | 110  | 210  | 252  | 10     |
| 1    | shoulder | abduction R     | 60   | 23     | 5   | 7    | 38   | 53   | 10     |
| 1    | shoulder | abduction L     | 4    | 1      | 0   | 0    | 2    | 3    | 10     |
| 1    | shoulder | supraspinatus R | 405  | 125    | 66  | 84   | 185  | 244  | 10     |
| 1    | shoulder | supraspinatus L | 21   | 7      | 3   | 4    | 10   | 18   | 10     |
| 1    | shoulder | ta90 R          | 0    |        |     |      |      |      | 10     |
| 1    | shoulder | ta90 L          | 0    |        |     |      |      |      | 10     |
| 2    | shoulder | compression R   | 2438 | 759    | 189 | 365  | 1419 | 1853 | 20     |
| 2    | shoulder | compression L   | 313  | 148    | 82  | 102  | 210  | 290  | 20     |
| 2    | shoulder | abduction R     | 93   | 34     | 12  | 26   | 77   | 87   | 20     |
| 2    | shoulder | abduction L     | 4    | 1      | 0   | 1    | 2    | 2    | 20     |
| 2    | shoulder | supraspinatus R | 151  | 42     | 1   | 22   | 75   | 85   | 20     |
| 2    | shoulder | supraspinatus L | 16   | 6      | 3   | 4    | 9    | 14   | 20     |
| 2    | shoulder | ta90 R          | 0    |        |     |      |      |      | 20     |
| 2    | shoulder | ta90 L          | 0    |        |     |      |      |      | 20     |
| 2    | shoulder | compression R   | 4733 | 1006   | 501 | 653  | 1387 | 2996 | 15     |
| 2    | shoulder | compression L   | 415  | 208    | 133 | 158  | 285  | 353  | 15     |
| 2    | shoulder | abduction R     | 75   | 21     | 10  | 15   | 32   | 62   | 15     |
| 2    | shoulder | abduction L     | 3    | 1      | 0   | 0    | 2    | 3    | 15     |
| 2    | shoulder | supraspinatus R | 363  | 70     | 0   | 20   | 135  | 281  | 15     |
| 2    | shoulder | supraspinatus L | 19   | 11     | 6   | 6    | 15   | 16   | 15     |
| 2    | shoulder | ta90 R          | 0    |        |     |      |      |      | 15     |
| 2    | shoulder | ta90 L          | 0    |        |     |      |      |      | 15     |
| 2    | shoulder | compression R   | 3452 | 2226   | 783 | 901  | 2867 | 3242 | 10     |
| 2    | shoulder | compression L   | 427  | 197    | 124 | 157  | 340  | 406  | 10     |
| 2    | shoulder | abduction R     | 58   | 35     | 14  | 22   | 47   | 52   | 10     |
| 2    | shoulder | abduction L     | 3    | 2      | 1   | 1    | 3    | 3    | 10     |
| 2    | shoulder | supraspinatus R | 316  | 212    | 59  | 73   | 263  | 306  | 10     |
| 2    | shoulder | supraspinatus L | 20   | 14     | 10  | 12   | 17   | 19   | 10     |
| 2    | shoulder | ta90 R          | 0    |        |     |      |      |      | 10     |
| 2    | shoulder | ta90 L          | 0    |        |     |      |      |      | 10     |
| 3    | shoulder | compression R   | 6183 | 3504   | 752 | 1236 | 3268 | 5103 | 20     |
| 3    | shoulder | compression L   | 1492 | 993    | 390 | 438  | 1220 | 1299 | 20     |
| 3    | shoulder | abduction R     | 2    | 1      | 0   | 0    | 2    | 2    | 20     |
| 3    | shoulder | abduction I     | 152  | 92     | 22  | 53   | 116  | 138  | 20     |
| 3    | shoulder | supraspinatus R | 156  | 106    | 4   | 57   | 120  | 143  | 20     |
| 3    | shoulder | supraspinatus I | 175  | 65     | 6   | 14   | 85   | 147  | 20     |
| 3    | shoulder | ta90 R          | 0    |        | Ť   |      |      |      | 20     |
| 3    | shoulder | ta90 L          | 0    |        |     |      |      |      | 20     |

| Task | Region   | Measure         | peak | Median | P10  | P25     | P75      | P90  | Weight |
|------|----------|-----------------|------|--------|------|---------|----------|------|--------|
| 3    | shoulder | compression R   | 6176 | 2423   | 1684 | 2065    | 3159     | 4259 | 15     |
| 3    | shoulder | compression L   | 1100 | 421    | 232  | 289     | 528      | 689  | 15     |
| 3    | shoulder | abduction R     | 31   | 13     | 1    | 5       | 24       | 27   | 15     |
| 3    | shoulder | abduction L     | 7    | 4      | 3    | 3       | 6        | 7    | 15     |
| 3    | shoulder | supraspinatus R | 1165 | 169    | 55   | 91      | 377      | 603  | 15     |
| 3    | shoulder | supraspinatus L | 109  | 31     | 18   | 20      | 48       | 77   | 15     |
| 3    | shoulder | ta90 R          | 0    |        |      |         |          |      | 15     |
| 3    | shoulder | ta90 L          | 0    |        |      |         |          |      | 15     |
| 3    | shoulder | compression R   | 2472 | 430    | 273  | 305     | 1560     | 2118 | 10     |
| 3    | shoulder | compression L   | 3722 | 1736   | 978  | 1459    | 2074     | 3256 | 10     |
| 3    | shoulder | abduction R     | 17   | 5      | 2    | 3       | 10       | 13   | 10     |
| 3    | shoulder | abduction L     | 49   | 11     | 5    | 6       | 26       | 41   | 10     |
| 3    | shoulder | supraspinatus R | 549  | 35     | 21   | 25      | 235      | 426  | 10     |
| 3    | shoulder | supraspinatus L | 382  | 103    | 67   | 87      | 152      | 332  | 10     |
| 3    | shoulder | ta90 R          | 0    |        |      |         |          |      | 10     |
| 3    | shoulder | ta90 L          | 0    |        |      |         |          |      | 10     |
| 4    | shoulder | compression R   | 3348 | 1986   | 755  | 1137    | 2881     | 3118 | 20     |
| 4    | shoulder | compression L   | 266  | 82     | 58   | 75      | 97       | 166  | 20     |
| 4    | shoulder | abduction R     | 47   | 16     | 2    | 6       | 24       | 31   | 20     |
| 4    | shoulder | abduction L     | 4    | 2      | 0    | 1       | 2        | 3    | 20     |
| 4    | shoulder | supraspinatus R | 243  | 104    | 22   | 69      | 129      | 159  | 20     |
| 4    | shoulder | supraspinatus L | 20   | 3      | 0    | 1       | 5        | 12   | 20     |
| 4    | shoulder | ta90 R          | 0    | -      | -    |         |          |      | 20     |
| 4    | shoulder | ta90 L          | 0    |        |      |         |          |      | 20     |
| 4    | shoulder | compression R   | 3444 | 1524   | 905  | 1135    | 1825     | 2322 | 15     |
| 4    | shoulder | compression L   | 620  | 129    | 69   | 109     | 211      | 442  | 15     |
| 4    | shoulder | abduction R     | 42   | 6      | 1    | 3       | 20       | 28   | 15     |
| 4    | shoulder | abduction L     | 7    | 2      | 0    | 1       | 2        | 4    | 15     |
| 4    | shoulder | supraspinatus R | 252  | 64     | 15   | 42      | 95       | 177  | 15     |
| 4    | shoulder | supraspinatus I | 45   | 4      | 0    | 0       | 8        | 29   | 15     |
| 4    | shoulder | ta90 R          | 0    |        | Ŭ    | Ū       |          |      | 15     |
| 4    | shoulder | ta901           | 0    |        |      |         |          |      | 15     |
| 4    | shoulder | compression R   | 2679 | 1526   | 787  | 964     | 2060     | 2462 | 10     |
| 4    | shoulder | compression I   | 275  | 142    | 98   | 123     | 191      | 215  | 10     |
| 4    | shoulder | abduction R     | 44   | 11     | 1    | 4       | 17       | 30   | 10     |
| 4    | shoulder | abduction I     | 4    | 1      | 0    | 1       | 2        | 3    | 10     |
| 4    | shoulder | supraspinatus R | 164  | 92     | 44   | 52      | 118      | 136  | 10     |
| 4    | shoulder | supraspinatus I | 26   | 6      | 3    | 4       | 10       | 19   | 10     |
| 4    | shoulder | ta90 R          | 0    | 0      | 3    | •       | 10       | 15   | 10     |
| 4    | shoulder | ta901           | 0    |        |      |         |          |      | 10     |
| 5    | shoulder | compression R   | 4713 | 2021   | 760  | 1435    | 3126     | 3641 | 20     |
| 5    | shoulder | compression R   | 5690 | 1367   | 393  | 1075    | 2184     | 4368 | 20     |
| 5    | shoulder | abduction R     | 46   | 22     | 15   | 20      | 33       | 4300 | 20     |
| 5    | shoulder | abduction I     | 33   | 12     | 2    | 9       | 15       | 16   | 20     |
| 5    | shoulder |                 | 71   | 12     | 11   | 27      | 54       | 62   | 20     |
| 5    | shoulder | supraspinatus k | /1   | 45     | 0    | 32      | 21       | 24   | 20     |
| 5    | shoulder |                 | 41   | 1      | 0    | 0       | 21       | 54   | 20     |
| 5    | shoulder | ta90 K          | 0    |        |      |         |          |      | 20     |
| 5    | shoulder |                 | 2726 | 1700   | 1200 | 1292    | 2274     | 2660 | 15     |
| 5    | shoulder | compression l   | 2150 | 1000   | 1092 | 1202    | 2374     | 2000 | 15     |
| 5    | shoulder | abduction P     | 315/ | 1909   | 1003 | 1238    | 2230     | 2513 | 15     |
| 5    | shoulder |                 | 4/   | 12     | 12   | 14      | 33<br>16 | 44   | 15     |
| 5    | shoulder |                 | 39   | 70     | 9    | 10      | 112      | 20   | 15     |
| 5    | shoulder | supraspinatus K | 140  | /9     | 44   | 55<br>0 | 22       | 131  | 15     |
| 5    | snoulder | supraspinatus L | 00   | U      | U    | U       | 22       | 43   | 15     |
| 5    | snoulder | 1890 K          | 0    |        |      |         |          |      | 15     |
| 5    | snoulder | ta90 L          | U    |        |      |         | l        |      | 15     |

| Task | Region   | Measure         | peak | Median   | P10      | P25  | P75  | P90      | Weight |
|------|----------|-----------------|------|----------|----------|------|------|----------|--------|
| 5    | shoulder | compression R   | 4263 | 2043     | 389      | 1327 | 2955 | 3730     | 10     |
| 5    | shoulder | compression L   | 4556 | 1661     | 489      | 1139 | 2396 | 3100     | 10     |
| 5    | shoulder | abduction R     | 47   | 18       | 4        | 11   | 25   | 39       | 10     |
| 5    | shoulder | abduction L     | 62   | 8        | 3        | 5    | 34   | 44       | 10     |
| 5    | shoulder | supraspinatus R | 30   | 0        | 0        | 0    | 1    | 3        | 10     |
| 5    | shoulder | supraspinatus L | 20   | 0        | 0        | 0    | 2    | 13       | 10     |
| 5    | shoulder | ta90 R          | 0    |          |          |      |      |          | 10     |
| 5    | shoulder | ta90 L          | 0    |          |          |      |      |          | 10     |
| 6    | shoulder | compression R   | 5280 | 1050     | 231      | 808  | 1195 | 1647     | 20     |
| 6    | shoulder | compression L   | 3315 | 523      | 151      | 351  | 716  | 1081     | 20     |
| 6    | shoulder | abduction R     | 95   | 11       | 2        | 5    | 22   | 37       | 20     |
| 6    | shoulder | abduction L     | 22   | 2        | 0        | 1    | 5    | 8        | 20     |
| 6    | shoulder | supraspinatus R | 203  | 24       | 0        | 4    | 3/   | 57       | 20     |
| 6    | shoulder | supraspinatus L | 69   | 0        | 0        | 0    | 10   | 32       | 20     |
| 6    | shoulder | 1890 R          | 0    |          |          |      |      |          | 20     |
| 6    | shoulder | comprossion P   | 2844 | 1272     | 692      | 05.9 | 1622 | 1025     | 15     |
| 6    | shoulder | compression I   | 1/02 | 002      | 200      | 129  | 1032 | 1200     | 15     |
| 6    | shoulder | abduction R     | 25   | 993<br>8 | 330      | 438  | 1220 | 21       | 15     |
| 6    | shoulder | abduction I     | 27   | 3        | 0        | 1    | 4    | 11       | 15     |
| 6    | shoulder | supraspinatus R | 55   | 0        | 0        | 0    | 2    | 7        | 15     |
| 6    | shoulder | supraspinatus I | 4    | 0        | 0        | 0    | 0    | 0        | 15     |
| 6    | shoulder | ta90 R          | 0    | •        | 0        | 0    |      |          | 15     |
| 6    | shoulder | ta90 L          | 0    |          |          |      |      |          | 15     |
| 6    | shoulder | compression R   | 1769 | 1271     | 725      | 924  | 1586 | 1695     | 10     |
| 6    | shoulder | compression L   | 1504 | 905      | 337      | 581  | 1164 | 1440     | 10     |
| 6    | shoulder | abduction R     | 69   | 29       | 2        | 4    | 57   | 64       | 10     |
| 6    | shoulder | abduction L     | 47   | 15       | 3        | 5    | 43   | 45       | 10     |
| 6    | shoulder | supraspinatus R | 181  | 1        | 0        | 0    | 9    | 54       | 10     |
| 6    | shoulder | supraspinatus L | 82   | 1        | 0        | 0    | 11   | 76       | 10     |
| 6    | shoulder | ta90 R          | 0    |          |          |      |      |          | 10     |
| 6    | shoulder | ta90 L          | 0    |          |          |      |      |          | 10     |
| 7    | shoulder | compression R   | 4686 | 2353     | 1399     | 1790 | 3049 | 4008     | 20     |
| 7    | shoulder | compression L   | 2449 | 1370     | 557      | 731  | 1797 | 1931     | 20     |
| 7    | shoulder | abduction R     | 95   | 34       | 8        | 14   | 61   | 86       | 20     |
| 7    | shoulder | abduction L     | 109  | 16       | 7        | 10   | 18   | 75       | 20     |
| 7    | shoulder | supraspinatus R | 116  | 0        | 0        | 0    | 12   | 60       | 20     |
| 7    | shoulder | supraspinatus L | 76   | 4        | 0        | 0    | 18   | 40       | 20     |
| 7    | shoulder | ta90 R          | 0    | -        |          |      |      |          | 20     |
| 7    | shoulder | ta90 L          | 0    | 25.45    | 4427     | 4540 | 2450 | 4420     | 20     |
| 7    | shoulder | compression R   | 5950 | 2545     | 1127     | 1519 | 3450 | 4428     | 15     |
| 7    | shoulder | compression L   | 2/12 | 1241     | 496      | 872  | 1967 | 2237     | 15     |
| 7    | shoulder | abduction I     | 33   | 24<br>17 | <u>۲</u> | 9    | 20   | 22<br>28 | 15     |
| 7    | shoulder |                 | 456  | 34       | 0        |      | 126  | 20       | 15     |
| 7    | shoulder | supraspinatus I | 273  | 26       | 0        | 2    | 44   | 65       | 15     |
| 7    | shoulder | ta90 R          | 0    |          | Ť        | -    |      |          | 15     |
| 7    | shoulder | ta90 L          | 0    |          |          |      |      |          | 15     |
| 7    | shoulder | compression R   | 9006 | 1853     | 381      | 606  | 5685 | 7709     | 10     |
| 7    | shoulder | compression L   | 2155 | 556      | 223      | 318  | 1235 | 1471     | 10     |
| 7    | shoulder | abduction R     | 30   | 6        | 2        | 4    | 9    | 13       | 10     |
| 7    | shoulder | abduction L     | 19   | 3        | 1        | 2    | 6    | 11       | 10     |
| 7    | shoulder | supraspinatus R | 561  | 52       | 0        | 0    | 315  | 481      | 10     |
| 7    | shoulder | supraspinatus L | 43   | 4        | 0        | 0    | 10   | 18       | 10     |
| 7    | shoulder | ta90 R          | 0    |          |          |      |      |          | 10     |
| 7    | shoulder | ta90 L          | 0    |          |          |      |      |          | 10     |
| 8    | shoulder | compression R   | 8093 | 684      | 278      | 371  | 1582 | 2210     | 20     |
| 8    | shoulder | compression L   | 4478 | 1339     | 1131     | 1190 | 2216 | 3747     | 20     |
| 8    | shoulder | abduction R     | 81   | 12       | 0        | 3    | 35   | 58       | 20     |
| 8    | shoulder | abduction L     | 53   | 6        | 1        | 3    | 9    | 13       | 20     |
| 8    | shoulder | supraspinatus R | 819  | 9        | 0        | 2    | 90   | 166      | 20     |
| 8    | shoulder | supraspinatus L | 389  | 91       | 51       | 74   | 121  | 301      | 20     |
| 8    | shoulder | ta90 R          | 0    |          |          |      |      |          | 20     |
| 8    | shoulder | ta90 L          | 37   |          |          |      |      |          | 20     |

| Task | Region   | Measure         | peak      | Median | P10   | P25  | P75       | P90      | Weight |
|------|----------|-----------------|-----------|--------|-------|------|-----------|----------|--------|
| 8    | shoulder | compression R   | 2234      | 1063   | 520   | 688  | 1296      | 1677     | 15     |
| 8    | shoulder | compression L   | 3696      | 836    | 450   | 558  | 1645      | 2188     | 15     |
| 8    | shoulder | abduction R     | 39        | 10     | 2     | 5    | 15        | 31       | 15     |
| 8    | shoulder | abduction L     | 33        | 6      | 1     | 3    | 12        | 25       | 15     |
| 8    | shoulder | supraspinatus R | 156       | 106    | 4     | 73   | 123       | 131      | 15     |
| 8    | shoulder | supraspinatus L | 294       | 61     | 1     | 23   | 115       | 187      | 15     |
| 8    | shoulder | ta90 R          | 0         |        |       |      |           |          | 15     |
| 8    | shoulder | ta90 L          | 37        |        |       |      |           |          | 15     |
| 8    | shoulder | compression R   | 2031      | 668    | 307   | 412  | 1255      | 1812     | 10     |
| 8    | shoulder | compression L   | 2951      | 1641   | 612   | 1112 | 1996      | 2446     | 10     |
| 8    | shoulder | abduction R     | 46        | 8      | 1     | 4    | 30        | 40       | 10     |
| 8    | shoulder | abduction L     | 27        | 5      | 1     | 2    | 10        | 18       | 10     |
| 8    | shoulder | supraspinatus R | 244       | 5      | 0     | 1    | 34<br>162 | 5/       | 10     |
| 0    | shoulder | toO P           | 244       | 95     | 4     | 33   | 103       | 227      | 10     |
| 0    | shoulder | ta90 K          | 27        |        |       |      |           |          | 10     |
| 0    | shoulder | comprossion P   | 2067      | 2454   | 1776  | 2062 | 2627      | 2000     | 20     |
| 9    | shoulder | compression I   | 1927      | 1502   | 1208  | 1245 | 1724      | 1910     | 20     |
| 9    | shoulder | abduction R     | 56        | 1303   | 5     | 1245 | 3/        | 50       | 20     |
| 9    | shoulder | abduction I     | 41        | 18     | 3     | 8    | 36        | 41       | 20     |
| 9    | shoulder | supraspinatus R | 114       | 40     | 0     | 9    | 81        | 103      | 20     |
| 9    | shoulder | supraspinatus I | 0         | 0      | 0     | 0    | 0         | 0        | 20     |
| 9    | shoulder | ta90 R          | 0         | 0      | 0     | Ũ    | 0         | Ū        | 20     |
| 9    | shoulder | ta90 L          | 4         |        |       |      |           |          | 20     |
| 9    | shoulder | compression R   | 1663      | 954    | 413   | 667  | 1181      | 1345     | 15     |
| 9    | shoulder | compression L   | 1938      | 1242   | 825   | 1043 | 1519      | 1779     | 15     |
| 9    | shoulder | abduction R     | 24        | 4      | 1     | 2    | 7         | 16       | 15     |
| 9    | shoulder | abduction L     | 9         | 4      | 1     | 2    | 7         | 8        | 15     |
| 9    | shoulder | supraspinatus R | 57        | 9      | 0     | 2    | 28        | 49       | 15     |
| 9    | shoulder | supraspinatus L | 1         | 0      | 0     | 0    | 0         | 0        | 15     |
| 9    | shoulder | ta90 R          | 0         |        |       |      |           |          | 15     |
| 9    | shoulder | ta90 L          | 4         |        |       |      |           |          | 15     |
| 9    | shoulder | compression R   | 4828      | 3837   | 2669  | 3233 | 4328      | 4653     | 10     |
| 9    | shoulder | compression L   | 3424      | 2472   | 302   | 1875 | 2942      | 3133     | 10     |
| 9    | shoulder | abduction R     | 45        | 37     | 12    | 31   | 41        | 43       | 10     |
| 9    | shoulder | abduction L     | 20        | 10     | 0     | 2    | 17        | 19       | 10     |
| 9    | shoulder | supraspinatus R | 517       | 321    | 134   | 262  | 386       | 461      | 10     |
| 9    | shoulder | supraspinatus L | 306       | 261    | 23    | 210  | 282       | 296      | 10     |
| 9    | shoulder | ta90 R          | 0         | -      |       |      |           |          | 10     |
| 9    | shoulder | ta90 L          | 4         | 1050   | 4.450 | 4566 | 2222      | 2466     | 10     |
| 10   | shoulder | compression R   | 2900      | 1856   | 1459  | 1566 | 2228      | 2466     | 20     |
| 10   | shoulder | compression L   | 2493      | 1875   | 1469  | 1572 | 2098      | 2372     | 20     |
| 10   | shoulder | abduction R     | 8/        | 16     | 2     | 6    | 33        | 53       | 20     |
| 10   | shoulder |                 | 34<br>100 | 10     | 5     | 0    | 20        | 55<br>71 | 20     |
| 10   | shoulder | supraspinatus K | 190       | 10     | 0     | 0    | 0         | 0        | 20     |
| 10   | shoulder | ta90 R          | 0         | 0      | 0     | 0    | 0         | 0        | 20     |
| 10   | shoulder | ta901           | 0         |        |       |      |           |          | 20     |
| 10   | shoulder | compression R   | 2145      | 893    | 367   | 857  | 1578      | 1861     | 15     |
| 10   | shoulder | compression I   | 1247      | 750    | 209   | 489  | 1220      | 1233     | 15     |
| 10   | shoulder | abduction R     | 58        | 15     | 5     | 7    | 23        | 42       | 15     |
| 10   | shoulder | abduction       | 45        | 11     | 2     | . 5  | 18        | 35       | 15     |
| 10   | shoulder | supraspinatus R | 125       | 25     | 1     | 4    | 37        | 57       | 15     |
| 10   | shoulder | supraspinatus L | 3         | 0      | 0     | 0    | 0         | 1        | 15     |
| 10   | shoulder | ta90 R          | 0         |        |       |      |           |          | 15     |
| 10   | shoulder | ta90 L          | 0         | 1      |       |      |           | 1        | 15     |
| 10   | shoulder | compression R   | 2116      | 1411   | 934   | 1029 | 1782      | 2042     | 10     |
| 10   | shoulder | compression L   | 2413      | 1321   | 591   | 821  | 2064      | 2326     | 10     |
| 10   | shoulder | abduction R     | 23        | 11     | 2     | 5    | 16        | 19       | 10     |
| 10   | shoulder | abduction L     | 12        | 4      | 1     | 2    | 8         | 10       | 10     |
| 10   | shoulder | supraspinatus R | 128       | 18     | 1     | 5    | 68        | 115      | 10     |
| 10   | shoulder | supraspinatus L | 0         | 0      | 0     | 0    | 0         | 0        | 10     |
| 10   | shoulder | ta90 R          | 0         |        |       |      |           |          | 10     |
| 10   | shoulder | ta90 L          | 0         |        |       |      |           |          | 10     |

| Task | Region   | Measure         | peak      | Median | P10     | P25        | P75        | P90         | Weight |
|------|----------|-----------------|-----------|--------|---------|------------|------------|-------------|--------|
| 11   | shoulder | compression R   | 8718      | 3144   | 1687    | 2575       | 4717       | 6016        | 20     |
| 11   | shoulder | compression L   | 7086      | 2882   | 2185    | 2463       | 4046       | 5579        | 20     |
| 11   | shoulder | abduction R     | 152       | 66     | 40      | 47         | 84         | 119         | 20     |
| 11   | shoulder | abduction L     | 117       | 56     | 39      | 47         | 85         | 105         | 20     |
| 11   | shoulder | supraspinatus R | 55        | 33     | 24      | 27         | 42         | 48          | 20     |
| 11   | shoulder | supraspinatus L | 403       | 111    | 39      | 57         | 156        | 301         | 20     |
| 11   | shoulder | ta90 R          | 0         |        |         |            |            |             | 20     |
| 11   | shoulder | ta90 L          | 0         |        |         |            |            |             | 20     |
| 11   | shoulder | compression R   | 2979      | 1172   | 737     | 960        | 1774       | 2674        | 15     |
| 11   | shoulder | compression L   | 2097      | 673    | 238     | 330        | 1508       | 1617        | 15     |
| 11   | shoulder | abduction R     | 63        | 17     | 5       | 11         | 38         | 59          | 15     |
| 11   | shoulder | abduction L     | 47        | 10     | 4       | 6          | 38         | 40          | 15     |
| 11   | shoulder | supraspinatus R | 113       | 5      | 0       | 0          | 42         | 52          | 15     |
| 11   | shoulder | supraspinatus L | 71        | 18     | 1       | 3          | 58         | 64          | 15     |
| 11   | shoulder | ta90 R          | 0         |        |         |            |            |             | 15     |
| 11   | shoulder | ta90 L          | 0         |        |         |            |            |             | 15     |
| 11   | shoulder | compression R   | 5626      | 2588   | 1976    | 2167       | 3062       | 4341        | 10     |
| 11   | shoulder | compression L   | 2903      | 1724   | 1251    | 1442       | 2098       | 2374        | 10     |
| 11   | shoulder | abduction R     | 113       | 68     | 48      | 52         | 77         | 90          | 10     |
| 11   | shoulder | abduction L     | 66        | 40     | 30      | 32         | 51         | 58          | 10     |
| 11   | shoulder | supraspinatus R | 152       | 33     | 15      | 21         | 50         | 103         | 10     |
| 11   | shoulder | supraspinatus L | 41        | 23     | 13      | 19         | 27         | 38          | 10     |
| 11   | shoulder | ta90 R          | 0         | -      | -       | _          |            |             | 10     |
| 11   | shoulder | ta90 L          | 0         |        |         |            |            |             | 10     |
| 12   | shoulder | compression R   | 5081      | 2516   | 1743    | 1908       | 3280       | 3987        | 20     |
| 12   | shoulder | compression L   | 3004      | 2435   | 2078    | 2180       | 2803       | 2914        | 20     |
| 12   | shoulder | abduction R     | 77        | 49     | 12      | 33         | 58         | 67          | 20     |
| 12   | shoulder | abduction I     | 69        | 17     | 2       | 7          | 52         | 59          | 20     |
| 12   | shoulder | supraspinatus R | 290       | 8      | 0       | ,          | 137        | 254         | 20     |
| 12   | shoulder | supraspinatus I | 0         | 0      | 0       | 0          | 0          | 0           | 20     |
| 12   | shoulder | ta90 R          | 0         | 0      | 0       | 0          | 0          | 0           | 20     |
| 12   | shoulder | ta901           | 0         |        |         |            |            |             | 20     |
| 12   | shoulder |                 | 1518      | 596    | 37/     | 112        | 1114       | 1395        | 15     |
| 12   | shoulder | compression I   | 1/25      | 602    | 101     | 442        | 820        | 072         | 15     |
| 12   | shoulder | abduction P     | 1433      | 002    | 1.51    | 2          | 19         | 373         | 15     |
| 12   | shoulder | abduction I     | 28        | 0      | 1       | 3          | 10         | 15          | 15     |
| 12   | shoulder |                 | 110       | 4      | 1       | 2          |            | 106         | 15     |
| 12   | shoulder | supraspinatus k | 09        | 23     | 2       | 19         | 52         | 67          | 15     |
| 12   | shoulder |                 | 98        | 27     | 3       | 10         | 55         | 07          | 15     |
| 12   | shoulder | ta90 K          | 0         |        |         |            |            |             | 15     |
| 12   | shoulder | comprossion P   | 2055      | 1007   | 1200    | 1400       | 2771       | 2055        | 10     |
| 12   | shoulder |                 | 3033      | 1907   | 1560    | 1400       | 2771       | 2935        | 10     |
| 12   | shoulder | abduction P     | 20        | 5434   | 2382    | 2000       | 5549<br>14 | 24          | 10     |
| 12   | shoulder | abduction       | 27        | 12     | 5       | 2          | 29         | 24          | 10     |
| 12   | shoulder |                 | 260       | 106    | 122     | 0          | 20         | 24          | 10     |
| 12   | shoulder | supraspinatus K | 1205      | 70E    | 200     | 149<br>226 | 511<br>727 | 547<br>1172 | 10     |
| 12   | shoulder | to D B          | 1222      | 505    | 200     | 220        | 151        | 11/3        | 10     |
| 12   | shoulder | 1090 K          | 0         |        |         |            |            |             | 10     |
| 12   | shoulder | Id9U L          | U<br>7725 | 1070   | 1050    | 1659       | 2776       | E774        | 20     |
| 13   | shoulder |                 | 1025      | 10/3   | 1022    | 102        | 2//0       | 207         | 20     |
| 13   | shoulder | abduction P     | 1823      | 190    | 603     | 103        | 204<br>41  | 397<br>70   | 20     |
| 13   | shoulder |                 | 0/        | 20     | 0       | 12         | 41         | 2           | 20     |
| 13   | shoulder |                 | 11        | 160    | 0       | 121        | 2          | 2           | 20     |
| 13   | shoulder | supraspinatus R | 949       | 160    | b5<br>2 | 121        | 245        | 528         | 20     |
| 13   | shoulder | supraspinatus L | 152       | 12     | 2       | 3          | 22         | 5/          | 20     |
| 13   | shoulder | ta90 K          | 0         |        |         |            |            |             | 20     |
| 13   | snoulder | tayu L          | 0         | 1050   | F 74    | 1000       | 1022       | 2202        | 20     |
| 13   | shoulder | compression R   | 2976      | 1356   | 5/1     | 1060       | 1823       | 2308        | 15     |
| 13   | shoulder | compression L   | 857       | 197    | 80      | 119        | 282        | 324         | 15     |
| 13   | shoulder | abduction R     | 50        | 12     | 1       | 3          | 29         | 43          | 15     |
| 13   | shoulder | abduction L     | 12        | 2      | 0       | 1          | 2          | 5           | 15     |
| 13   | shoulder | supraspinatus R | 268       | 74     | 5       | 28         | 155        | 205         | 15     |
| 13   | shoulder | supraspinatus L | 54        | 14     | 4       | 9          | 18         | 29          | 15     |
| 13   | shoulder | ta90 R          | 0         |        |         |            |            |             | 15     |
| 13   | shoulder | ta90 L          | 0         |        |         |            |            |             | 15     |

| Task | Region   | Measure         | peak | Median | P10  | P25  | P75  | P90  | Weight |
|------|----------|-----------------|------|--------|------|------|------|------|--------|
| 13   | shoulder | compression R   | 4227 | 1340   | 719  | 944  | 2721 | 3917 | 10     |
| 13   | shoulder | compression L   | 392  | 198    | 124  | 144  | 235  | 311  | 10     |
| 13   | shoulder | abduction R     | 54   | 16     | 3    | 4    | 42   | 49   | 10     |
| 13   | shoulder | abduction L     | 6    | 2      | 1    | 1    | 3    | 4    | 10     |
| 13   | shoulder | supraspinatus R | 338  | 96     | 25   | 40   | 227  | 310  | 10     |
| 13   | shoulder | supraspinatus L | 35   | 16     | 4    | 10   | 20   | 27   | 10     |
| 13   | shoulder | ta90 R          | 0    |        |      |      |      |      | 10     |
| 13   | shoulder | ta90 L          | 0    |        |      |      |      |      | 10     |
| 14   | shoulder | compression R   | 6137 | 1235   | 712  | 910  | 1903 | 2475 | 20     |
| 14   | shoulder | compression L   | 2602 | 1387   | 589  | 678  | 1856 | 2218 | 20     |
| 14   | shoulder | abduction R     | 18   | 8      | 1    | 3    | 12   | 15   | 20     |
| 14   | shoulder | abduction L     | 48   | 22     | 2    | 12   | 30   | 37   | 20     |
| 14   | shoulder | supraspinatus R | 1184 | 90     | 23   | 54   | 160  | 364  | 20     |
| 14   | shoulder | supraspinatus L | 370  | 184    | 71   | 81   | 275  | 323  | 20     |
| 14   | shoulder | ta90 R          | 0    |        |      |      |      |      | 20     |
| 14   | shoulder | ta90 L          | 0    |        |      |      |      |      | 20     |
| 14   | shoulder | compression R   | 2377 | 1013   | 726  | 809  | 1272 | 1357 | 15     |
| 14   | shoulder | compression L   | 403  | 260    | 142  | 188  | 287  | 353  | 15     |
| 14   | shoulder | abduction R     | 26   | 17     | 2    | 6    | 19   | 23   | 15     |
| 14   | shoulder | abduction L     | 3    | 2      | 2    | 2    | 3    | 3    | 15     |
| 14   | shoulder | supraspinatus R | 319  | 51     | 6    | 14   | 85   | 147  | 15     |
| 14   | shoulder | supraspinatus L | 23   | 17     | 8    | 15   | 19   | 21   | 15     |
| 14   | shoulder | ta90 R          | 0    |        |      |      |      |      | 15     |
| 14   | shoulder | ta90 L          | 0    |        |      |      |      |      | 15     |
| 14   | shoulder | compression R   | 3284 | 2789   | 2516 | 2736 | 3018 | 3272 | 10     |
| 14   | shoulder | compression L   | 1700 | 1660   | 1268 | 1509 | 1694 | 1700 | 10     |
| 14   | shoulder | abduction R     | 30   | 27     | 23   | 25   | 29   | 29   | 10     |
| 14   | shoulder | abduction L     | 25   | 23     | 19   | 20   | 24   | 24   | 10     |
| 14   | shoulder | supraspinatus R | 126  | 112    | 95   | 105  | 118  | 125  | 10     |
| 14   | shoulder | supraspinatus L | 180  | 169    | 124  | 151  | 171  | 178  | 10     |
| 14   | shoulder | ta90 R          | 0    |        |      |      |      |      | 10     |
| 14   | shoulder | ta90 L          | 0    |        |      |      |      |      | 10     |

## L4/L5

|      |        |              |      | _          |           |             |      |      |        |
|------|--------|--------------|------|------------|-----------|-------------|------|------|--------|
| Task | Region | Measure      | peak | Median     | P10       | P25         | P75  | P90  | Weight |
| 1    | L4/L5  | compression  | 3363 | 2252       | 1361      | 1685        | 2890 | 3116 | 20     |
| 1    | L4/L5  | shear        | 173  | 103        | 74        | 89          | 118  | 147  | 20     |
| 1    | L4/L5  | ext mom      | 159  | 83         | 35        | 54          | 127  | 146  | 20     |
| 1    | L4/L5  | rot mom      | 16   | 2          | -14       | -3          | 12   | 14   | 20     |
| 1    | L4/L5  | compression  | 2740 | 1908       | 1449      | 1506        | 2488 | 2665 | 15     |
| 1    | L4/L5  | shear        | 109  | 78         | 57        | 67          | 94   | 103  | 15     |
| 1    | L4/L5  | ext mom      | 173  | 98         | 70        | 83          | 137  | 160  | 15     |
| 1    | L4/L5  | rot mom      | 34   | 7          | -19       | -3          | 11   | 19   | 15     |
| 1    | L4/L5  | compression  | 3120 | 2058       | 1264      | 1512        | 2699 | 3016 | 10     |
| 1    | L4/L5  | shear        | 131  | 99         | 51        | 79          | 120  | 128  | 10     |
| 1    | L4/L5  | ext mom      | 131  | 38         | 10        | 19          | 84   | 116  | 10     |
| 1    | L4/L5  | rot mom      | 21   | -5         | -38       | -22         | 5    | 20   | 10     |
| 2    | L4/L5  | compression  | 3410 | 2031       | 1355      | 1620        | 2854 | 3262 | 20     |
| 2    | L4/L5  | shear        | 157  | 83         | 41        | 46          | 136  | 152  | 20     |
| 2    | L4/L5  | ext mom      | 108  | 42         | 19        | 25          | 80   | 96   | 20     |
| 2    | L4/L5  | rot mom      | 37   | 8          | -11       | -3          | 23   | 35   | 20     |
| 2    | L4/L5  | compression  | 3234 | 2023       | 848       | 1490        | 2167 | 2587 | 15     |
| 2    | L4/L5  | shear        | 79   | 38         | 9         | 27          | 62   | 68   | 15     |
| 2    | L4/L5  | ext mom      | 143  | 53         | 30        | 33          | 86   | 122  | 15     |
| 2    | L4/L5  | rot mom      | 65   | 26         | -1        | 10          | 44   | 56   | 15     |
| 2    | L4/L5  | compression  | 4243 | 3344       | 1250      | 1723        | 3676 | 4079 | 10     |
| 2    | L4/L5  | shear        | 153  | 87         | 13        | 29          | 129  | 146  | 10     |
| 2    | L4/L5  | ext mom      | 132  | 14         | -8        | 0           | 93   | 126  | 10     |
| 2    | L4/L5  | rot mom      | 26   | -23        | -47       | -32         | 23   | 26   | 10     |
| 3    | L4/L5  | compression  | 5110 | 3671       | 1379      | 2926        | 4304 | 4854 | 20     |
| 3    | L4/L5  | shear        | 597  | 414        | 216       | 293         | 509  | 545  | 20     |
| 3    | L4/L5  | ext mom      | 150  | 66         | -63       | 17          | 113  | 134  | 20     |
| 3    | L4/L5  | rot mom      | 69   | 11         | -15       | -12         | 31   | 54   | 20     |
| 3    | L4/L5  | compression  | 2907 | 2162       | 1685      | 1763        | 2454 | 2644 | 15     |
| 3    | L4/L5  | shear        | 165  | 87         | 42        | 65          | 111  | 122  | 15     |
| 3    | L4/L5  | ext mom      | 167  | 107        | 70        | 83          | 136  | 144  | 15     |
| 3    | L4/L5  | rot mom      | 43   | -9         | -41       | -26         | 5    | 20   | 15     |
| 3    | L4/L5  | compression  | 3966 | 2969       | 1481      | 2334        | 3239 | 3502 | 10     |
| 3    | L4/L5  | shear        | 190  | 112        | 91        | 98          | 141  | 170  | 10     |
| 3    | L4/L5  | ext mom      | 100  | 7          | -136      | -55         | 53   | 78   | 10     |
| 3    | L4/L5  | rot mom      | 52   | 30         | -22       | -13         | 49   | 50   | 10     |
| 4    | L4/L5  | compression  | 4239 | 2964       | 1859      | 2207        | 3659 | 4109 | 20     |
| 4    | L4/L5  | snear        | 193  | 133        | 72        | 112         | 176  | 188  | 20     |
| 4    | L4/L5  | ext mom      | 205  | 127        | 72        | 98          | 180  | 197  | 20     |
| 4    | L4/L5  | rot mom      | 10   | -13        | -24       | -18         | -4   | 4    | 20     |
| 4    | L4/L5  | compression  | 4869 | 3398       | 2568      | 3215        | 3625 | 3/9/ | 15     |
| 4    |        | ovt mom      | 101  | 101        | 12/       | 166         | 200  | 220  | 15     |
| 4    | 14/15  | rot mom      | 166  | 191        | 104<br>60 | 100         | 209  | 114  | 15     |
| 4    | 14/15  | compression  | 3360 | -4<br>2261 | 1022      | -45<br>2057 | 2642 | 3200 | 10     |
| 4    | 14/15  | shear        | 157  | 92         | 67        | 84          | 112  | 148  | 10     |
| 4    | 14/15  | evt mom      | 157  | 92         | 79        | 89<br>89    | 118  | 15/  | 10     |
| 4    |        | rot mom      | 24   | 5          | -28       | _22         | 17   | 21   | 10     |
| 4    |        | roumorossion | 4962 | 3          | -20       | -22         | 17   | 4207 | 20     |
| 5    | L4/L5  | compression  | 4802 | 3597       | 3123      | 3319        | 4045 | 4297 | 20     |
| 5    | L4/L5  | snear        | 389  | 281        | 156       | 233         | 332  | 364  | 20     |
| 5    | L4/L5  | ext mom      | 40   | 3          | -4/       | -25         | 52   | 41   | 20     |
| 5    | L4/L5  | rot mom      | 111  | -61        | -96       | -82         | 5    | /1   | 20     |
| 5    | L4/L5  | compression  | 6641 | 3797       | 2095      | 2273        | 5338 | 6274 | 15     |
| 5    | L4/L5  | shear        | 407  | 190        | 109       | 135         | 294  | 369  | 15     |
| 5    | L4/L5  | ext mom      | 90   | 60         | 47        | 54          | 71   | 82   | 15     |
| 5    | L4/L5  | rot mom      | 154  | 35         | -102      | -10         | 118  | 139  | 15     |
| 5    | L4/L5  | compression  | 2819 | 2354       | 2053      | 2199        | 2448 | 2703 | 10     |
| 5    | L4/L5  | shear        | 293  | 210        | 131       | 174         | 235  | 279  | 10     |
| 5    | L4/L5  | ext mom      | -5   | -21        | -35       | -26         | -15  | -10  | 10     |
| 5    | L4/L5  | rot mom      | 64   | -36        | -41       | -38         | -26  | 23   | 10     |

| Task | Region | Measure     | peak       | Median | P10  | P25      | P75  | P90  | Weight |
|------|--------|-------------|------------|--------|------|----------|------|------|--------|
| 6    | L4/L5  | compression | 4197       | 2977   | 1476 | 2167     | 3140 | 3950 | 20     |
| 6    | L4/L5  | shear       | 237        | 148    | 111  | 125      | 210  | 226  | 20     |
| 6    | L4/L5  | ext mom     | 164        | 113    | 52   | 72       | 129  | 148  | 20     |
| 6    | L4/L5  | rot mom     | 69         | 9      | -51  | 1        | 49   | 59   | 20     |
| 6    | L4/L5  | compression | 3821       | 2701   | 1464 | 1623     | 2941 | 3387 | 15     |
| 6    | L4/L5  | shear       | 160        | 105    | 14   | 76       | 132  | 151  | 15     |
| 6    | L4/L5  | ext mom     | 175        | 132    | -65  | 74       | 146  | 161  | 15     |
| 6    | L4/L5  | rot mom     | 66         | 36     | -14  | -2       | 57   | 129  | 15     |
| 6    | L4/L5  | compression | 3317       | 2009   | 1569 | 1646     | 2087 | 2163 | 10     |
| 6    | L4/L5  | shear       | 147        | 101    | 95   | 99       | 123  | 144  | 10     |
| 6    | L4/L5  | ext mom     | 115        | 59     | 47   | 54       | 88   | 113  | 10     |
| 6    | L4/L5  | rot mom     | 47         | 35     | -14  | 9        | 39   | 47   | 10     |
| 7    | L4/L5  | compression | 3901       | 3367   | 3136 | 3284     | 3510 | 3745 | 20     |
| 7    | L4/L5  | shear       | 63         | 33     | 6    | 15       | 47   | 53   | 20     |
| 7    | L4/L5  | ext mom     | 171        | 163    | 142  | 156      | 166  | 169  | 20     |
| 7    | L4/L5  | rot mom     | 75         | 43     | 3    | 8        | 70   | 72   | 20     |
| 7    | L4/L5  | compression | 5045       | 2825   | 1428 | 1718     | 3986 | 4609 | 15     |
| 7    | L4/L5  | shear       | 430        | 70     | 23   | 46       | 174  | 338  | 15     |
| 7    | L4/L5  | ext mom     | 205        | 162    | 59   | 65       | 180  | 198  | 15     |
| 7    | L4/L5  | rot mom     | 102        | 55     | -50  | -6       | 83   | 93   | 15     |
| 7    | L4/L5  | compression | 3446       | 3088   | 2464 | 2874     | 3244 | 3367 | 10     |
| 7    | L4/L5  | shear       | 94         | 36     | 2    | 13       | 68   | 79   | 10     |
| 7    | L4/L5  | ext mom     | 152        | 131    | 119  | 124      | 139  | 148  | 10     |
| 7    | L4/L5  | rot mom     | -12        | -31    | -44  | -41      | -21  | -18  | 10     |
| 8    | L4/L5  | compression | 4692       | 2997   | 3021 | 3231     | 4205 | 4495 | 20     |
| 8    | L4/L5  | shear       | 237        | 148    | 144  | 156      | 255  | 332  | 20     |
| 8    | L4/L5  | ext mom     | 175        | 139    | 123  | 125      | 155  | 161  | 20     |
| 8    | L4/L5  | rot mom     | 165        | 94     | 94   | 98       | 125  | 160  | 20     |
| 8    | L4/L5  | compression | 4801       | 3030   | 2606 | 2889     | 3406 | 4299 | 15     |
| 8    | L4/L5  | shear       | 488        | 68     | 19   | 47       | 105  | 342  | 15     |
| 8    | L4/L5  | ext mom     | 190        | 103    | 174  | 182      | 190  | 196  | 15     |
| 8    | L4/L5  | rot mom     | 152        | 82     | -12  | 14       | 90   | 154  | 15     |
| 8    | L4/L5  | compression | 5541       | 2740   | 2258 | 2937     | 5015 | 5449 | 10     |
| 8    | L4/L5  | shear       | 346        | 111    | 19   | 43       | 277  | 328  | 10     |
| 8    | L4/L5  | ext mom     | 144        | 70     | 48   | 54       | 136  | 143  | 10     |
| 8    | L4/L5  | rot mom     | 174        | 81     | 31   | 76       | 152  | 167  | 10     |
| 9    | L4/L5  | compression | 6288       | 4932   | 3346 | 4175     | 5674 | 6196 | 20     |
| 9    | L4/L5  | shear       | 206        | 176    | 148  | 156      | 189  | 200  | 20     |
| 9    | L4/L5  | ext mom     | 174        | 141    | 111  | 121      | 148  | 155  | 20     |
| 9    | L4/L5  | rot mom     | 84         | 68     | 39   | 51       | 79   | 81   | 20     |
| 9    | L4/L5  | compression | 4836       | 3567   | 2721 | 3223     | 4195 | 4464 | 15     |
| 9    | L4/L5  | shear       | 235        | 145    | 108  | 125      | 183  | 218  | 15     |
| 9    | L4/L5  | ext mom     | 266        | 189    | 152  | 172      | 228  | 246  | 15     |
| 9    | L4/L5  | rot mom     | 62         | 25     | -17  | -5       | 45   | 54   | 15     |
| 9    | L4/L5  | compression | 3055       | 2601   | 1396 | 1911     | 2958 | 3007 | 10     |
| 9    | L4/L5  | shear       | 136        | 103    | 67   | 87       | 109  | 120  | 10     |
| 9    | L4/L5  | ext mom     | 165        | 141    | 69   | 102      | 159  | 161  | 10     |
| 9    | L4/L5  | rot mom     | 43         | 23     | -3   | 11       | 35   | 39   | 10     |
| 10   | L4/L5  | compression | 4283       | 3383   | 2952 | 3089     | 3831 | 4109 | 20     |
| 10   | L4/L5  | shear       | 275        | 187    | 108  | 148      | 239  | 257  | 20     |
| 10   | L4/L5  | ext mom     | 152        | 81     | 9    | 24       | 125  | 142  | 20     |
| 10   | L4/L5  | rot mom     | 62         | -3     | -49  | -19      | 51   | 59   | 20     |
| 10   | L4/L5  | compression | 4239       | 2964   | 1859 | 2207     | 3659 | 3949 | 15     |
| 10   | L4/L5  | shear       | 193        | 133    | 72   | 112      | 176  | 185  | 15     |
| 10   | L4/L5  | ext mom     | 205        | 127    | 72   | 98       | 180  | 192  | 15     |
| 10   | L4/L5  | rot mom     | 10         | -13    | -24  | -18      | -4   | 3    | 15     |
| 10   | 14/15  | compression | 4650       | 2798   | 1886 | 2446     | 3983 | 4566 | 10     |
| 10   | 14/15  | compression | 246        | 116    | 71   | 70       | 2003 | 221  | 10     |
| 10   | 14/15  | siledi      | 540<br>107 | 110    | 26   | 70<br>20 | 200  | 104  | 10     |
| 10   | L4/L5  | ext mom     | 10/        | 42     | -30  | -28      | 92   | 104  | 10     |
| 10   | L4/L5  | rot mom     | 28         | -19    | -30  | -27      | 22   | 25   | 10     |
| 11   | L4/L5  | compression | 4523       | 3834   | 3257 | 3633     | 4260 | 4432 | 20     |
| 11   | L4/L5  | shear       | 52         | 31     | 10   | 23       | 44   | 48   | 20     |
| 11   | L4/L5  | ext mom     | 208        | 178    | 133  | 159      | 190  | 193  | 20     |
| 11   | L4/L5  | rot mom     | 63         | -8     | -42  | -33      | 57   | 61   | 20     |

| Task | Region | Measure     | peak | Median | P10  | P25  | P75  | P90  | Weight |
|------|--------|-------------|------|--------|------|------|------|------|--------|
| 11   | L4/L5  | compression | 4523 | 1878   | 1215 | 1464 | 3596 | 4159 | 15     |
| 11   | L4/L5  | shear       | 372  | 54     | 22   | 31   | 133  | 267  | 15     |
| 11   | L4/L5  | ext mom     | 180  | 59     | 25   | 41   | 144  | 177  | 15     |
| 11   | L4/L5  | rot mom     | 133  | 37     | -46  | 2    | 65   | 100  | 15     |
| 11   | L4/L5  | compression | 3775 | 3298   | 2564 | 2900 | 3593 | 3726 | 10     |
| 11   | L4/L5  | shear       | 120  | 75     | 18   | 27   | 97   | 113  | 10     |
| 11   | L4/L5  | ext mom     | 142  | 127    | 97   | 121  | 136  | 140  | 10     |
| 11   | L4/L5  | rot mom     | -16  | -41    | -60  | -47  | -33  | -27  | 10     |
| 12   | L4/L5  | compression | 6158 | 4420   | 2669 | 3640 | 5283 | 5758 | 20     |
| 12   | L4/L5  | shear       | 198  | 36     | 5    | 17   | 71   | 114  | 20     |
| 12   | L4/L5  | ext mom     | 199  | 129    | 50   | 91   | 172  | 182  | 20     |
| 12   | L4/L5  | rot mom     | 186  | 121    | 51   | 70   | 162  | 178  | 20     |
| 12   | L4/L5  | compression | 3665 | 2824   | 1028 | 1526 | 2964 | 3413 | 15     |
| 12   | L4/L5  | shear       | 110  | 58     | 11   | 27   | 88   | 100  | 15     |
| 12   | L4/L5  | ext mom     | 213  | 180    | -6   | 54   | 199  | 206  | 15     |
| 12   | L4/L5  | rot mom     | 97   | 36     | -1   | 12   | 59   | 80   | 15     |
| 12   | L4/L5  | compression | 4138 | 3835   | 2311 | 3654 | 3951 | 4049 | 10     |
| 12   | L4/L5  | shear       | 83   | 53     | 11   | 30   | 72   | 77   | 10     |
| 12   | L4/L5  | ext mom     | 192  | 59     | 16   | 30   | 147  | 183  | 10     |
| 12   | L4/L5  | rot mom     | 105  | 82     | 28   | 46   | 92   | 100  | 10     |
| 13   | L4/L5  | compression | 3037 | 2400   | 1836 | 2087 | 2578 | 2731 | 20     |
| 13   | L4/L5  | shear       | 139  | 108    | 64   | 89   | 121  | 134  | 20     |
| 13   | L4/L5  | ext mom     | 128  | 71     | 46   | 56   | 99   | 114  | 20     |
| 13   | L4/L5  | rot mom     | 25   | -16    | -32  | -23  | -7   | 12   | 20     |
| 13   | L4/L5  | compression | 3117 | 2057   | 1049 | 1875 | 2415 | 2568 | 15     |
| 13   | L4/L5  | shear       | 170  | 56     | 13   | 37   | 85   | 93   | 15     |
| 13   | L4/L5  | ext mom     | 154  | 90     | 53   | 69   | 141  | 152  | 15     |
| 13   | L4/L5  | rot mom     | 105  | 4      | -23  | -17  | 25   | 43   | 15     |
| 13   | L4/L5  | compression | 2916 | 1764   | 941  | 1431 | 2276 | 2585 | 10     |
| 13   | L4/L5  | shear       | 93   | 63     | 32   | 43   | 72   | 81   | 10     |
| 13   | L4/L5  | ext mom     | 123  | 63     | 5    | 21   | 88   | 112  | 10     |
| 13   | L4/L5  | rot mom     | 17   | -8     | -36  | -24  | 0    | 5    | 10     |
| 14   | L4/L5  | compression | 2769 | 1959   | 1332 | 1479 | 2332 | 2641 | 20     |
| 14   | L4/L5  | shear       | 146  | 71     | 42   | 63   | 97   | 131  | 20     |
| 14   | L4/L5  | ext mom     | 130  | 73     | 45   | 59   | 100  | 125  | 20     |
| 14   | L4/L5  | rot mom     | -4   | -20    | -53  | -35  | -10  | -8   | 20     |
| 14   | L4/L5  | compression | 2785 | 2140   | 1798 | 1900 | 2436 | 2604 | 15     |
| 14   | L4/L5  | shear       | 99   | 52     | 38   | 44   | 64   | 81   | 15     |
| 14   | L4/L5  | ext mom     | 179  | 130    | 90   | 114  | 141  | 155  | 15     |
| 14   | L4/L5  | rot mom     | 31   | -8     | -19  | -14  | 3    | 13   | 15     |
| 14   | L4/L5  | compression | 3463 | 3307   | 3086 | 3115 | 3425 | 3460 | 10     |
| 14   | L4/L5  | shear       | 70   | 16     | 6    | 8    | 36   | 61   | 10     |
| 14   | L4/L5  | ext mom     | -134 | -145   | -152 | -151 | -136 | -135 | 10     |
| 14   | L4/L5  | rot mom     | -5   | -13    | -26  | -20  | -9   | -6   | 10     |

## Knee

|      | a .    |               |             | <b></b> | 54.0      |      |            | 200         |        |
|------|--------|---------------|-------------|---------|-----------|------|------------|-------------|--------|
| lask | Region | Measure       | реак        | Median  | P10       | P25  | Ρ/5        | P90         | Weight |
| 1    | knee   | compression R | 3053        | 2101    | 520       | 781  | 2777       | 2984        | 20     |
| 1    | knee   | compression L | 1926        | 579     | 138       | 214  | 1292       | 1714        | 20     |
| 1    | knee   | shear R       | 783         | 430     | 131       | 174  | 660        | 686         | 20     |
| 1    | knee   | shear L       | 619         | 247     | 33        | 67   | 354        | 498         | 20     |
| 1    | knee   | patella R     | 295         | 0       | 0         | 0    | 133        | 230         | 20     |
| 1    | knee   | patella L     | 727         | 159     | 10        | 55   | 348        | 464         | 20     |
| 1    | knee   | compression R | 2288        | 1057    | 271       | 472  | 1816       | 2055        | 15     |
| 1    | knee   | compression L | 810         | 617     | 81        | 157  | 702        | 720         | 15     |
| 1    | knee   | shear R       | 452         | 216     | 92        | 165  | 319        | 407         | 15     |
| 1    | knee   | shear L       | 239         | 93      | 11        | 21   | 163        | 212         | 15     |
| 1    | knee   | patella R     | 177         | 28      | 0         | 1    | 82         | 129         | 15     |
| 1    | knee   | patella L     | 0           | 0       | 0         | 0    | 0          | 0           | 15     |
| 1    | knee   | compression R | 1729        | 615     | 247       | 323  | 1519       | 1609        | 10     |
| 1    | knee   | compression L | 4246        | 2128    | 221       | 678  | 3700       | 3970        | 10     |
| 1    | knee   | shear R       | 616         | 209     | 86        | 108  | 491        | 524         | 10     |
| 1    | knee   | shear L       | 873         | 354     | 34        | 105  | 732        | 848         | 10     |
| 1    | knee   | patella R     | 622         | 32      | 0         | 0    | 379        | 589         | 10     |
| 1    | knee   | patella L     | 280         | 0       | 0         | 0    | 97         | 203         | 10     |
| 2    | knee   | compression R | 2157        | 1518    | 410       | 572  | 1832       | 2132        | 20     |
| 2    | knee   | compression L | 4287        | 1331    | 315       | 402  | 2970       | 4024        | 20     |
| 2    | knee   | shear k       | 533         | 299     | 117       | 153  | 423        | 526         | 20     |
| 2    | knee   | snear L       | 912         | 2/3     | 3/        | 83   | 629<br>176 | 803         | 20     |
| 2    | knee   | patella k     | 227         | 10      | 0         | 0    | 2          | 204         | 20     |
| 2    | knee   |               | 00<br>1977  | 1/12    | 229       | 210  | Z<br>1760  | 22<br>1792  | 20     |
| 2    | knee   | compression I | 1024<br>920 | 565     | 250<br>16 | 60   | 762        | 1705<br>820 | 15     |
| 2    | knee   | shear B       | 540         | 102     | 40        | 123  | 523        | 535         | 15     |
| 2    | knee   | shear I       | 224         | 82      | 6         | 125  | 212        | 218         | 15     |
| 2    | knee   | natella R     | 615         | 271     | 0         | 27   | 479        | 596         | 15     |
| 2    | knee   | natella I     | 0           | 0       | 0         | 0    | 0          | 0           | 15     |
| 2    | knee   | compression R | 1681        | 1173    | 214       | 419  | 1351       | 1641        | 10     |
| 2    | knee   | compression L | 5971        | 1819    | 3         | 18   | 5558       | 5930        | 10     |
| 2    | knee   | shear R       | 437         | 234     | 74        | 108  | 299        | 401         | 10     |
| 2    | knee   | shear L       | 1001        | 51      | 4         | 5    | 896        | 977         | 10     |
| 2    | knee   | patella R     | 403         | 119     | 0         | 0    | 265        | 360         | 10     |
| 2    | knee   | patella L     | 116         | 1       | 0         | 0    | 24         | 29          | 10     |
| 3    | knee   | compression R | 3837        | 2263    | 1479      | 1277 | 2756       | 3296        | 20     |
| 3    | knee   | compression L | 3176        | 691     | 1501      | 179  | 1680       | 2428        | 20     |
| 3    | knee   | shear R       | 739         | 392     | 383       | 192  | 575        | 657         | 20     |
| 3    | knee   | shear L       | 1132        | 241     | 719       | 29   | 747        | 940         | 20     |
| 3    | knee   | patella R     | 183         | 0       | 11        | 0    | 11         | 97          | 20     |
| 3    | knee   | patella L     | 1647        | 280     | 948       | 0    | 948        | 1298        | 20     |
| 3    | knee   | compression R | 4007        | 2489    | 1046      | 1494 | 3759       | 3915        | 15     |
| 3    | knee   | compression L | 719         | 477     | 27        | 97   | 616        | 654         | 15     |
| 3    | knee   | shear R       | 933         | 435     | 192       | 253  | 794        | 909         | 15     |
| 3    | knee   | shear L       | 148         | 28      | 2         | 6    | 117        | 139         | 15     |
| 3    | knee   | patella R     | 108         | 0       | 0         | 0    | 2          | 42          | 15     |
| 3    | knee   | patella L     | 0           | 0       | 0         | 0    | 0          | 0           | 15     |
| 3    | knee   | compression R | 2835        | 1877    | 268       | 1216 | 2318       | 2626        | 10     |
| 3    | knee   | compression L | 2568        | 483     | 78        | 218  | 1667       | 2010        | 10     |
| 3    | knee   | shear R       | 641         | 384     | 46        | 187  | 447        | 585         | 10     |
| 3    | knee   | shear L       | 900         | 151     | 16        | 43   | 715        | 776         | 10     |
| 3    | knee   | patella R     | 161         | 21      | 0         | 0    | 81         | 141         | 10     |
| 3    | knee   | patella L     | 1456        | 224     | 0         | 0    | 675        | 1237        | 10     |
| 4    | knee   | compression R | 3519        | 2881    | 1144      | 1407 | 3192       | 3454        | 20     |
| 4    | knee   | compression L | 2070        | 725     | 117       | 160  | 1570       | 1993        | 20     |
| 4    | knee   | shear R       | 2603        | 1625    | 767       | 997  | 2378       | 2506        | 20     |
| 4    | knee   | shear L       | 1248        | 332     | 32        | 73   | 620        | 1071        | 20     |
| 4    | knee   | patella R     | 2295        | 1407    | 739       | 835  | 2027       | 2191        | 20     |
| 4    | knee   | patella L     | 1326        | 185     | 6         | 34   | 658        | 1145        | 20     |

| Task | Region | Measure       | peak   | Median | P10         | P25  | P75  | P90  | Weight |
|------|--------|---------------|--------|--------|-------------|------|------|------|--------|
| 4    | knee   | compression R | 2881   | 1746   | 532         | 1114 | 2122 | 2650 | 15     |
| 4    | knee   | compression L | 526    | 325    | 141         | 221  | 451  | 508  | 15     |
| 4    | knee   | shear R       | 2596   | 1845   | 373         | 1236 | 2520 | 2554 | 15     |
| 4    | knee   | shear L       | 439    | 259    | 138         | 183  | 365  | 394  | 15     |
| 4    | knee   | patella R     | 2323   | 1672   | 116         | 966  | 2216 | 2247 | 15     |
| 4    | knee   | patella L     | 0      | 0      | 0           | 0    | 0    | 0    | 15     |
| 4    | knee   | compression R | 2698   | 1279   | 477         | 589  | 1661 | 2315 | 10     |
| 4    | knee   | compression L | 2795   | 1259   | 332         | 623  | 1883 | 2672 | 10     |
| 4    | knee   | shear R       | 2326   | 914    | 167         | 186  | 1837 | 2284 | 10     |
| 4    | knee   | shear L       | 443    | 193    | 118         | 154  | 269  | 387  | 10     |
| 4    | knee   | patella R     | 2180   | 644    | 0           | 0    | 1737 | 2114 | 10     |
| 4    | knee   | patella L     | 120    | 30     | 0           | 0    | 92   | 105  | 10     |
| 5    | knee   | compression R | 1463   | 203    | 32          | 50   | 509  | 1126 | 20     |
| 5    | knee   | compression L | 1554   | 1250   | 270         | 321  | 1421 | 1457 | 20     |
| 5    | knee   | shear R       | 175    | 21     | 3           | 7    | 100  | 144  | 20     |
| 5    | knee   | shear L       | 175    | 93     | 27          | 49   | 123  | 141  | 20     |
| 5    | knee   | patella R     | 248    | 50     | 7           | 27   | 171  | 208  | 20     |
| 5    | knee   | patella L     | 116    | 0      | 0           | 0    | 55   | 89   | 20     |
| 5    | knee   | compression R | 360    | 143    | 88          | 115  | 198  | 283  | 15     |
| 5    | knee   | compression L | 26     | 17     | 5           | 9    | 21   | 25   | 15     |
| 5    | knee   | shear R       | 70     | 13     | 2           | 6    | 18   | 49   | 15     |
| 5    | knee   | shear L       | 39     | 21     | 8           | 14   | 30   | 36   | 15     |
| 5    | knee   | patella R     | 79     | 2      | 0           | 0    | 19   | 51   | 15     |
| 5    | knee   | patella L     | 0      | 0      | 0           | 0    | 0    | 0    | 15     |
| 5    | knee   | compression R | 294    | 102    | 29          | 44   | 173  | 186  | 10     |
| 5    | knee   | compression L | 792    | 569    | 316         | 382  | 644  | 737  | 10     |
| 5    | knee   | shear R       | 59     | 7      | 2           | 4    | 13   | 21   | 10     |
| 5    | knee   | shear L       | 71     | 20     | 6           | 12   | 38   | 60   | 10     |
| 5    | knee   | patella R     | 97     | 20     | 1           | 10   | 27   | 33   | 10     |
| 5    | knee   | patella L     | 0      | 0      | 0           | 0    | 0    | 0    | 10     |
| 6    | knee   | compression R | 2730   | 1400   | 163         | 261  | 2120 | 2599 | 20     |
| 6    | knee   | compression L | 1738   | 221    | 21          | 119  | 346  | 1167 | 20     |
| 6    | knee   | shear R       | 318    | 1      | -104        | -94  | 164  | 2/1  | 20     |
| 6    | knee   | shear L       | -17    | -109   | -146        | -132 | -84  | -65  | 20     |
| 6    | knee   | patella R     | -116   | -381   | -609        | -472 | -281 | -236 | 20     |
| 6    | knee   | patella L     | 1      | -1     | -/14        | -104 | 0    | 0    | 20     |
| 6    | knee   | compression R | 2635   | 912    | 66          | 121  | 1453 | 2058 | 15     |
| 6    | knee   | compression L | 1247   | 95     | 102         | 30   | 203  | 25   | 15     |
| 6    | knee   | shear l       | 29     | -01    | -103        | -80  | -44  | -25  | 15     |
| 6    | knee   | Sfiedf L      | 0/     | -1/1   | -315        | -235 | -111 | -73  | 15     |
| 6    | knee   | patella k     | -94    | -038   | -805        | -011 | -215 | -109 | 15     |
| 6    | knee   |               | 1 2702 | 1225   | -491<br>925 | -451 | -4   | -1   | 10     |
| 6    | knee   | compression I | 2703   | 97     | 26          | 31   | 167  | 2005 | 10     |
| 6    | knee   | shear R       | 103    | 24     | -129        | -47  | 62   | 93   | 10     |
| 6    | knee   | shear I       | -98    | -134   | -120        | -47  | -114 | -101 | 10     |
| 6    | knee   | natella R     | -467   | -578   | -720        | -651 | -492 | -473 | 10     |
| 6    | knee   | natella I     | 7      | 0      | -119        | -54  | 0    | 1    | 10     |
| 7    | knee   |               | 1740   | 120    | 120         | 221  | 807  | 1201 | 20     |
| 7    | knee   | compression I | 1/49   | 240    | 24          | 109  | 1042 | 1231 | 20     |
| 7    | knee   |               | 1424   | 349    | 54          | 108  | 1042 | 1310 | 20     |
| /    | knee   | snear R       | 1240   | /10    | 511         | 622  | 1001 | 1214 | 20     |
| /    | knee   | shear L       | 2850   | 1316   | 796         | 864  | 2311 | 2751 | 20     |
| 7    | knee   | patella R     | 2712   | 973    | 696         | 755  | 2017 | 2652 | 20     |
| 7    | knee   | patella L     | 2788   | 1673   | 836         | 895  | 2165 | 2581 | 20     |
| 7    | knee   | compression R | 661    | 430    | 156         | 241  | 532  | 597  | 15     |
| 7    | knee   | compression L | 168    | 130    | 68          | 96   | 149  | 160  | 15     |
| 7    | knee   | shear R       | 572    | 387    | 182         | 238  | 464  | 501  | 15     |
| 7    | knee   | shear L       | 677    | 592    | 453         | 536  | 621  | 645  | 15     |
| 7    | knee   | patella R     | 1141   | 561    | 249         | 400  | 743  | 950  | 15     |
| 7    | knee   | patella L     | 0      | 0      | 0           | 0    | 0    | 0    | 15     |
|      |        |               |        |        |             |      |      |      |        |

| Task | Region | Measure       | peak | Median | P10  | P25        | P75  | P90  | Weight |
|------|--------|---------------|------|--------|------|------------|------|------|--------|
| 7    | knee   | compression R | 709  | 568    | 318  | 422        | 610  | 627  | 10     |
| 7    | knee   | compression L | 577  | 130    | 10   | 64         | 256  | 331  | 10     |
| 7    | knee   | shear R       | 460  | 307    | 165  | 208        | 324  | 354  | 10     |
| 7    | knee   | shear L       | 1590 | 1415   | 1340 | 1370       | 1450 | 1506 | 10     |
| 7    | knee   | patella R     | 867  | 561    | 317  | 430        | 580  | 691  | 10     |
| 7    | knee   | patella L     | 2234 | 1667   | 1489 | 1507       | 1941 | 2060 | 10     |
| 8    | knee   | compression R | 674  | 354    | 242  | 278        | 493  | 663  | 20     |
| 8    | knee   | compression L | 3549 | 2876   | 2445 | 2532       | 3231 | 3457 | 20     |
| 8    | knee   | shear R       | 1609 | 563    | 36   | 170        | 931  | 1489 | 20     |
| 8    | knee   | shear L       | 2119 | 1909   | 1545 | 1626       | 2032 | 2104 | 20     |
| 8    | knee   | patella R     | 1388 | 499    | 19   | 170        | 794  | 1282 | 20     |
| 8    | knee   | patella L     | 1654 | 1476   | 993  | 1212       | 1607 | 1635 | 20     |
| 8    | knee   | compression R | 2098 | 398    | 156  | 194        | 1281 | 1752 | 15     |
| 8    | knee   | compression L | 3389 | 1972   | 1122 | 1339       | 2989 | 3082 | 15     |
| 8    | knee   | shear R       | 2234 | 936    | 265  | 410        | 1640 | 1974 | 15     |
| 8    | knee   | shear L       | 1354 | 1120   | 1003 | 1052       | 1234 | 1313 | 15     |
| 8    | knee   | patella R     | 1880 | 786    | 216  | 357        | 1367 | 1656 | 15     |
| 8    | knee   | patella L     | 1010 | 868    | 702  | 784        | 945  | 973  | 15     |
| 8    | knee   | compression R | 1388 | 137    | 79   | 93         | 402  | 927  | 10     |
| 8    | knee   | compression L | 3766 | 2787   | 1674 | 2224       | 3473 | 3709 | 10     |
| 8    | knee   | shear R       | 1502 | 162    | 68   | 81         | 624  | 985  | 10     |
| 8    | knee   | shear L       | 1498 | 1094   | 911  | 989        | 1417 | 1466 | 10     |
| 8    | knee   | patella R     | 1236 | 116    | 40   | 75         | 503  | 801  | 10     |
| 8    | knee   | patella L     | 1341 | 755    | 528  | 626        | 1256 | 1310 | 10     |
| 9    | knee   | compression R | 4095 | 1375   | 343  | 391        | 2978 | 3758 | 20     |
| 9    | knee   | compression L | 3988 | 2631   | 1124 | 1820       | 3119 | 3754 | 20     |
| 9    | knee   | shear R       | 2520 | 1095   | 71   | 98         | 2257 | 2479 | 20     |
| 9    | knee   | shear L       | 2203 | 1209   | 442  | 695        | 1830 | 2101 | 20     |
| 9    | knee   | patella R     | 1967 | 792    | 0    | 0          | 1766 | 1936 | 20     |
| 9    | knee   | patella L     | 2    | 0      | 0    | 0          | 0    | 0    | 20     |
| 9    | knee   | compression R | 3953 | 3345   | 1436 | 2377       | 3630 | 3933 | 15     |
| 9    | knee   | compression L | 787  | 39     | 5    | 13         | 124  | 446  | 15     |
| 9    | knee   | shear R       | 2591 | 2167   | 1851 | 2025       | 2291 | 2527 | 15     |
| 9    | knee   | shear L       | 236  | 23     | 8    | 17         | 33   | 126  | 15     |
| 9    | knee   | patella R     | 21/3 | 1938   | 1755 | 1860       | 2046 | 2123 | 15     |
| 9    | knee   | patella L     | 0    | 0      | 0    | 0          | 0    | 0    | 15     |
| 9    | knee   | compression R | 3506 | 2909   | 1585 | 2052       | 3300 | 3490 | 10     |
| 9    | knee   | compression L | 1087 | 397    | 257  | 313        | 481  | 532  | 10     |
| 9    | knee   | shear l       | 1987 | 1005   | 1120 | 1310       | 1794 | 1979 | 10     |
| 9    | knee   | Sriedi L      | 160  | 128    | 40   | 00<br>1004 | 140  | 1427 | 10     |
| 9    | knee   |               | 1306 | 1550   | 1187 | 1264       | 107  | 1457 | 10     |
| 9    | knee   |               | 2201 | 0      | 41   | 62         | 661  | 152  | 20     |
| 10   | knee   | compression I | 2189 | 102    | 20   | 38         | 1625 | 2078 | 20     |
| 10   | knee   | shear R       | 68   | 30     | 17   | 22         | 43   | 60   | 20     |
| 10   | knee   | shear I       | 507  | 221    | 131  | 150        | 359  | 463  | 20     |
| 10   | knee   | natella R     | 766  | 15/    | 82   | 96         | 111  | 689  | 20     |
| 10   | knee   | natella I     | 768  | 134    | 1    | 240        | 634  | 736  | 20     |
| 10   | knee   |               | 674  | 254    | 742  | 240        | 402  | 662  | 15     |
| 10   | knee   | compression I | 2540 | 2076   | 242  | 278        | 2221 | 2457 | 15     |
| 10   | knee   |               | 3549 | 2870   | 2445 | 2532       | 3231 | 3457 | 15     |
| 10   | кпее   | snear K       | 1009 | 503    | 30   | 1/0        | 931  | 1489 | 15     |
| 10   | knee   | shear L       | 2119 | 1909   | 1545 | 1626       | 2032 | 2104 | 15     |
| 10   | knee   | patella R     | 742  | 373    | 109  | 231        | 493  | 549  | 15     |
| 10   | knee   | patella L     | 1274 | 198    | 10   | 61         | 680  | 1100 | 15     |
| 10   | knee   | compression R | 612  | 209    | 75   | 111        | 297  | 413  | 10     |
| 10   | knee   | compression L | 1205 | 708    | 230  | 480        | 971  | 1174 | 10     |
| 10   | knee   | shear R       | 386  | 120    | 38   | 52         | 198  | 279  | 10     |
| 10   | knee   | shear L       | 1096 | 340    | 32   | 80         | 812  | 1078 | 10     |
| 10   | knee   | patella R     | 810  | 297    | 125  | 158        | 481  | 669  | 10     |
| 10   | knee   | patella L     | 1405 | 694    | 482  | 528        | 1095 | 1380 | 10     |
|      |        |               |      |        |      |            |      |      |        |

| Task | Region | Measure       | peak        | Median     | P10       | P25  | P75  | P90        | Weight |
|------|--------|---------------|-------------|------------|-----------|------|------|------------|--------|
| 11   | knee   | compression R | 762         | 179        | 45        | 75   | 317  | 640        | 20     |
| 11   | knee   | compression L | 1544        | 623        | 272       | 532  | 927  | 1209       | 20     |
| 11   | knee   | shear R       | 964         | 790        | 204       | 514  | 914  | 949        | 20     |
| 11   | knee   | shear L       | 2304        | 1767       | 625       | 850  | 2153 | 2239       | 20     |
| 11   | knee   | patella R     | 1951        | 893        | 112       | 502  | 1575 | 1700       | 20     |
| 11   | knee   | patella L     | 2361        | 1863       | 756       | 1004 | 2057 | 2226       | 20     |
| 11   | knee   | compression R | 1076        | 426        | 127       | 169  | 667  | 949        | 15     |
| 11   | knee   | compression L | 147         | 71         | 5         | 26   | 113  | 142        | 15     |
| 11   | knee   | shear R       | 905         | 337        | 109       | 172  | 584  | 785        | 15     |
| 11   | knee   | shear L       | 765         | 676        | 358       | 515  | 742  | 757        | 15     |
| 11   | knee   | patella R     | 1814        | 573        | 33        | 114  | 1240 | 1657       | 15     |
| 11   | knee   | patella L     | 0           | 0          | 0         | 0    | 0    | 0          | 15     |
| 11   | knee   | compression R | 1149        | 468        | 309       | 415  | 615  | 1025       | 10     |
| 11   | knee   | compression L | 1065        | 244        | 61        | 116  | 594  | 947        | 10     |
| 11   | knee   | shear R       | 655         | 342        | 243       | 276  | 393  | 566        | 10     |
| 11   | knee   | shear L       | 1515        | 1252       | 1188      | 1202 | 1330 | 1497       | 10     |
| 11   | knee   | patella R     | 1619        | 517        | 347       | 408  | 652  | 1329       | 10     |
| 11   | knee   | patella L     | 2225        | 1699       | 1518      | 1633 | 2062 | 2158       | 10     |
| 12   | knee   | compression R | 2800        | 324        | 115       | 147  | 1209 | 2114       | 20     |
| 12   | knee   | compression L | 4080        | 2613       | 1237      | 1333 | 3672 | 3922       | 20     |
| 12   | knee   | shear R       | 1920        | 175        | 32        | 93   | 1026 | 1678       | 20     |
| 12   | knee   | shear L       | 1739        | 1077       | 741       | 917  | 1348 | 1678       | 20     |
| 12   | knee   | patella R     | 1637        | 131        | 7         | 59   | 856  | 1411       | 20     |
| 12   | knee   | patella L     | 1574        | 649        | 0         | 5    | 1045 | 1525       | 20     |
| 12   | knee   | compression R | 1554        | 457        | 111       | 166  | 809  | 1073       | 15     |
| 12   | knee   | compression L | 489         | 452        | 361       | 404  | 475  | 483        | 15     |
| 12   | knee   | shear R       | 2919        | 495        | 67        | 115  | 1640 | 2344       | 15     |
| 12   | knee   | shear L       | 664         | 585        | 329       | 484  | 631  | 651        | 15     |
| 12   | knee   | patella R     | 2523        | 414        | 2         | 28   | 1394 | 2014       | 15     |
| 12   | knee   | patella L     | 0           | 0          | 0         | 0    | 0    | 0          | 15     |
| 12   | knee   | compression R | 2320        | 214        | 140       | 165  | 933  | 1689       | 10     |
| 12   | knee   | compression L | 3830        | 1678       | 913       | 1261 | 2851 | 3805       | 10     |
| 12   | knee   | shear R       | 2560        | 677        | 175       | 219  | 1817 | 2187       | 10     |
| 12   | knee   | shear L       | 1948        | 1379       | 1175      | 1235 | 1504 | 1850       | 10     |
| 12   | knee   | patella R     | 2193        | 578        | 148       | 189  | 1555 | 1874       | 10     |
| 12   | knee   | patella L     | 1582        | 1007       | 598       | 805  | 1086 | 14/1       | 10     |
| 13   | knee   | compression R | 2239        | 1/6/       | 659       | 1114 | 1907 | 2162       | 20     |
| 13   | knee   | compression L | 2528        | 624        | 200       | 320  | 1987 | 23/1       | 20     |
| 13   | knee   | snear K       | 1095        | 579        | 328       | 388  | 816  | 912        | 20     |
| 13   | knee   | shear L       | 1697        | 186        | 15        | 60   | 1053 | 1483       | 20     |
| 13   | knee   | patella R     | /42         | 3/3        | 109       | 231  | 493  | 549        | 20     |
| 13   | knee   | patella L     | 1274        | 198        | 10        | 760  | 1599 | 2112       | 20     |
| 13   | knoo   |               | 2439<br>799 | 1342       | 4/3       | 222  | 1300 | 672        | 15     |
| 12   | knoo   | compression L | /00         | 414<br>522 | 75<br>291 | 206  | 795  | 075<br>977 | 15     |
| 13   | knee   | shear I       | 2954<br>205 | 63         | 5         | 16   | 105  | 160        | 15     |
| 13   | knee   | natella P     | 700         | 30/        | 1/12      | 221  | 567  | 618        | 15     |
| 12   | knoo   | patella l     | 0           | 0          | 0 140     | 0    | 0    | 010        | 15     |
| 12   | knee   | pateria L     | 1804        | 0          | 0         | 520  | 1222 | 1590       | 10     |
| 13   | knee   | compression R | 1804        | 1031       | 312       | 530  | 1333 | 1580       | 10     |
| 13   | кпее   | compression L | 3414        | 1037       | 393       | /58  | 2226 | 2397       | 10     |
| 13   | knee   | shear R       | 678         | 486        | 190       | 299  | 641  | 661        | 10     |
| 13   | knee   | shear L       | 650         | 232        | 65        | 139  | 503  | 586        | 10     |
| 13   | knee   | patella R     | 769         | 461        | 120       | 222  | 601  | 686        | 10     |
| 13   | knee   | patella L     | 568         | 145        | 0         | 0    | 323  | 492        | 10     |
| 14   | knee   | compression R | 825         | 371        | 135       | 301  | 641  | 756        | 20     |
| 14   | knee   | compression L | 3418        | 2486       | 2085      | 2261 | 2922 | 3212       | 20     |
| 14   | knee   | shear R       | 394         | 219        | 36        | 139  | 309  | 361        | 20     |
| 14   | knee   | shear L       | 1955        | 1120       | 766       | 807  | 1875 | 1908       | 20     |
| 14   | knee   | patella R     | 295         | 171        | 2         | 47   | 207  | 248        | 20     |
| 14   | knee   | patella L     | 2101        | 799        | 430       | 517  | 1959 | 1991       | 20     |
|      | I      | 1. *          |             |            |           |      |      |            |        |

| Task | Region | Measure       | peak | Median | P10  | P25  | P75  | P90  | Weight |
|------|--------|---------------|------|--------|------|------|------|------|--------|
| 14   | knee   | compression R | 2667 | 1767   | 1235 | 1444 | 1995 | 2469 | 15     |
| 14   | knee   | compression L | 661  | 327    | 75   | 99   | 489  | 618  | 15     |
| 14   | knee   | shear R       | 1363 | 1029   | 658  | 913  | 1219 | 1310 | 15     |
| 14   | knee   | shear L       | 143  | 87     | 2    | 17   | 123  | 135  | 15     |
| 14   | knee   | patella R     | 1709 | 1273   | 661  | 991  | 1413 | 1648 | 15     |
| 14   | knee   | patella L     | 0    | 0      | 0    | 0    | 0    | 0    | 15     |
| 14   | knee   | compression R | 1586 | 1290   | 1213 | 1231 | 1508 | 1584 | 10     |
| 14   | knee   | compression L | 1150 | 999    | 674  | 813  | 1074 | 1132 | 10     |
| 14   | knee   | shear R       | 655  | 464    | 366  | 377  | 611  | 652  | 10     |
| 14   | knee   | shear L       | 438  | 425    | 304  | 356  | 433  | 436  | 10     |
| 14   | knee   | patella R     | 973  | 697    | 421  | 495  | 917  | 973  | 10     |
| 14   | knee   | patella L     | 756  | 741    | 546  | 645  | 749  | 754  | 10     |

Нір

| Task | Region | Measure       | peak | Median | P10  | P25  | P75  | P90  | Weight |
|------|--------|---------------|------|--------|------|------|------|------|--------|
| 1    | hip    | compression R | 3423 | 2173   | 531  | 714  | 2534 | 3173 | 20     |
| 1    | hip    | compression L | 1759 | 736    | 442  | 555  | 1074 | 1636 | 20     |
| 1    | hip    | compression R | 2917 | 1181   | 244  | 378  | 2037 | 2674 | 15     |
| 1    | hip    | compression L | 729  | 607    | 73   | 174  | 631  | 691  | 15     |
| 1    | hip    | compression R | 1804 | 890    | 358  | 425  | 1427 | 1736 | 10     |
| 1    | hip    | compression L | 3002 | 1682   | 467  | 1011 | 2567 | 2879 | 10     |
| 2    | hip    | compression R | 2288 | 1462   | 736  | 916  | 1777 | 2173 | 20     |
| 2    | hip    | compression L | 3219 | 1065   | 356  | 550  | 2617 | 3050 | 20     |
| 2    | hip    | compression R | 2113 | 1011   | 105  | 291  | 1622 | 2047 | 15     |
| 2    | hip    | compression L | 962  | 664    | 19   | 234  | 791  | 915  | 15     |
| 2    | hip    | compression R | 2244 | 1205   | 731  | 938  | 1582 | 1897 | 10     |
| 2    | hip    | compression L | 4317 | 2462   | 269  | 413  | 3983 | 4243 | 10     |
| 3    | hip    | compression R | 3799 | 2416   | 1161 | 1687 | 2847 | 3323 | 20     |
| 3    | hip    | compression L | 4766 | 1290   | 2296 | 757  | 3053 | 3909 | 20     |
| 3    | hip    | compression R | 3422 | 2652   | 1178 | 1957 | 3052 | 3288 | 15     |
| 3    | hip    | compression L | 642  | 404    | 32   | 83   | 536  | 580  | 15     |
| 3    | hip    | compression R | 3460 | 2256   | 496  | 2001 | 2508 | 2832 | 10     |
| 3    | hip    | compression L | 2279 | 1388   | 448  | 670  | 1767 | 1981 | 10     |
| 4    | hip    | compression R | 4246 | 3407   | 908  | 1157 | 3719 | 4141 | 20     |
| 4    | hip    | compression L | 1875 | 839    | 629  | 684  | 1664 | 1783 | 20     |
| 4    | hip    | compression R | 3665 | 2582   | 868  | 1561 | 3286 | 3509 | 15     |
| 4    | hip    | compression L | 545  | 387    | 99   | 204  | 455  | 487  | 15     |
| 4    | hip    | compression R | 3027 | 1543   | 472  | 528  | 1778 | 2629 | 10     |
| 4    | hip    | compression L | 2699 | 1875   | 703  | 1476 | 2167 | 2563 | 10     |
| 5    | hip    | compression R | 3396 | 986    | 558  | 750  | 1592 | 2637 | 20     |
| 5    | hip    | compression L | 3031 | 2241   | 1964 | 2111 | 2558 | 2775 | 20     |
| 5    | hip    | compression R | 1794 | 737    | 484  | 556  | 937  | 1396 | 15     |
| 5    | hip    | compression L | 901  | 457    | 131  | 186  | 696  | 792  | 15     |
| 5    | hip    | compression R | 1536 | 692    | 563  | 602  | 884  | 1075 | 10     |
| 5    | hip    | compression L | 1837 | 1589   | 1131 | 1295 | 1739 | 1807 | 10     |
| 6    | hip    | compression R | 4943 | 3401   | 586  | 1649 | 4384 | 4845 | 20     |
| 6    | hip    | compression L | 3895 | 832    | 435  | 712  | 1972 | 3622 | 20     |
| 6    | hip    | compression R | 5420 | 2806   | 368  | 448  | 3865 | 4722 | 15     |
| 6    | hip    | compression L | 3561 | 1854   | 610  | 983  | 3085 | 3487 | 15     |
| 6    | hip    | compression R | 4973 | 2861   | 2525 | 2705 | 4266 | 4916 | 10     |
| 6    | hip    | compression L | 1372 | 889    | 564  | 676  | 927  | 1135 | 10     |

| Task | Region | Measure       | peak | Median | P10  | P25  | P75  | P90  | Weight |
|------|--------|---------------|------|--------|------|------|------|------|--------|
| 7    | hip    | compression R | 3673 | 1185   | 646  | 851  | 2997 | 3487 | 20     |
| 7    | hip    | compression L | 3738 | 2834   | 1959 | 2083 | 3479 | 3573 | 20     |
| 7    | hip    | compression R | 2399 | 1469   | 610  | 903  | 1541 | 1949 | 15     |
| 7    | hip    | compression L | 326  | 63     | 23   | 41   | 107  | 200  | 15     |
| 7    | hip    | compression R | 1105 | 792    | 442  | 585  | 1044 | 1095 | 10     |
| 7    | hip    | compression L | 3864 | 3161   | 2938 | 3025 | 3474 | 3787 | 10     |
| 8    | hip    | compression R | 1824 | 810    | 537  | 661  | 1158 | 1780 | 20     |
| 8    | hip    | compression L | 7077 | 6242   | 4296 | 5138 | 6756 | 7024 | 20     |
| 8    | hip    | compression R | 3391 | 689    | 210  | 291  | 2249 | 2921 | 15     |
| 8    | hip    | compression L | 6477 | 4517   | 3538 | 3876 | 5426 | 5988 | 15     |
| 8    | hip    | compression R | 2503 | 428    | 158  | 251  | 851  | 1761 | 10     |
| 8    | hip    | compression L | 7611 | 5568   | 4196 | 4348 | 7084 | 7480 | 10     |
| 9    | hip    | compression R | 4586 | 2133   | 871  | 972  | 3774 | 4340 | 20     |
| 9    | hip    | compression L | 5503 | 3383   | 1094 | 1871 | 4510 | 5275 | 20     |
| 9    | hip    | compression R | 4559 | 3806   | 2508 | 3401 | 4243 | 4457 | 15     |
| 9    | hip    | compression L | 998  | 260    | 94   | 173  | 317  | 563  | 15     |
| 9    | hip    | compression R | 3912 | 3315   | 1478 | 2291 | 3720 | 3835 | 10     |
| 9    | hip    | compression L | 720  | 419    | 322  | 339  | 536  | 605  | 10     |
| 10   | hip    | compression R | 5143 | 700    | 368  | 410  | 2194 | 3852 | 20     |
| 10   | hip    | compression L | 3980 | 3227   | 921  | 2140 | 3395 | 3938 | 20     |
| 10   | hip    | compression R | 1372 | 889    | 564  | 676  | 927  | 1135 | 15     |
| 10   | hip    | compression L | 1536 | 692    | 563  | 602  | 884  | 1075 | 15     |
| 10   | hip    | compression R | 852  | 425    | 362  | 380  | 551  | 815  | 10     |
| 10   | hip    | compression L | 3338 | 2452   | 2279 | 2365 | 2976 | 3243 | 10     |
| 11   | hip    | compression R | 3379 | 1947   | 580  | 653  | 3063 | 3231 | 20     |
| 11   | hip    | compression L | 4843 | 3032   | 1134 | 1775 | 4464 | 4771 | 20     |
| 11   | hip    | compression R | 3903 | 811    | 144  | 310  | 1982 | 2880 | 15     |
| 11   | hip    | compression L | 168  | 42     | 10   | 22   | 69   | 129  | 15     |
| 11   | hip    | compression R | 1264 | 921    | 573  | 683  | 1039 | 1178 | 10     |
| 11   | hip    | compression L | 3444 | 3044   | 2588 | 2811 | 3230 | 3370 | 10     |
| 12   | hip    | compression R | 3863 | 726    | 437  | 502  | 2078 | 3232 | 20     |
| 12   | hip    | compression L | 8404 | 5438   | 3979 | 4878 | 6680 | 7946 | 20     |
| 12   | hip    | compression R | 3037 | 647    | 260  | 361  | 1456 | 2209 | 15     |
| 12   | hip    | compression L | 476  | 437    | 315  | 389  | 451  | 464  | 15     |
| 12   | hip    | compression R | 3680 | 804    | 387  | 523  | 1830 | 2926 | 10     |
| 12   | hip    | compression L | 6478 | 5114   | 2818 | 4870 | 5909 | 6414 | 10     |
| 13   | hip    | compression R | 2885 | 1689   | 594  | 983  | 1936 | 2469 | 20     |
| 13   | hip    | compression L | 2464 | 1406   | 773  | 911  | 1999 | 2333 | 20     |
| 13   | hip    | compression R | 2241 | 1451   | 819  | 999  | 1529 | 1803 | 15     |
| 13   | hip    | compression L | 1332 | 453    | 33   | 217  | 566  | 740  | 15     |
| 13   | hip    | compression R | 2457 | 1285   | 564  | 949  | 1434 | 1720 | 10     |
| 13   | hip    | compression L | 2508 | 1147   | 713  | 919  | 2218 | 2383 | 10     |
| 14   | hip    | compression R | 839  | 488    | 246  | 338  | 608  | 661  | 20     |
| 14   | hip    | compression L | 3994 | 2973   | 2163 | 2411 | 3394 | 3757 | 20     |
| 14   | hip    | compression R | 4171 | 2254   | 1267 | 1911 | 3135 | 3973 | 15     |
| 14   | hip    | compression L | 592  | 249    | 5    | 26   | 415  | 547  | 15     |
| 14   | hip    | compression R | 2740 | 2415   | 2123 | 2165 | 2684 | 2726 | 10     |
| 14   | hip    | compression L | 1757 | 1480   | 1121 | 1326 | 1590 | 1726 | 10     |