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ABSTRACT 
Likely, maintained organ and notably cerebral perfusion, se-

cures rapid recovery following anesthesia. To secure cerebral 
blood flow (CBF) at least mean arterial pressure (MAP) and the 
arterial carbon dioxide tension (PaCO2) need to be considered. 
CBF is “autoregulated”, i.e. stays more or less stable within a MAP 
of 50 – 150 mmHg, but the lower limit appears to depend on the 
central blood volume and/or cardiac output, illustrated by a 
decrease in CBF at a MAP of 80 mmHg with a compromised cen-
tral blood volume, while CBF remains constant with a MAP <40 
mmHg, if the central blood volume is maintained. During anes-
thesia, MAP is often around 50 mmHg meaning that it remains 
unknown whether CBF is maintained, why an evaluation of CBF, 
e.g. by near-infrared spectroscopy (NIRS) seems desirable. NIRS is 
sensitive to changes in PaCO2, detects hypoxemia, identifies 
cerebral autoregulation as well as regional distribution of CBF. As 
summarized, especially elderly patients and patients undergoing 
complex surgery and notably heart and liver surgery, seem to
benefit from a strategy focusing on maintaining NIRS-determined 
cerebral oxygenation during anesthesia. Similarly, NIRS may be 
applied to guide the ventilatory strategy during anesthesia when 
there are large deviations in metabolism, seen when clamping of
the aorta and with reperfusion of the lower body during open 
aortic surgery, as with hepatectomy and following reperfusion of
the donated liver during liver transplantation surgery. Finally it is 
illustrated how NIRS can be applied to select sympathomimetic
agents, used to correct anesthesia-induced hypotension in order
to preserve CBF and skin oxygenation.

INTRODUCTION 
In contrast to skeletal muscles, the brain has no store of oxygen 
and depends on tight control of cerebral blood flow (CBF). Elabo-
rated mechanisms maintain CBF to ensure a favorable balance 
between oxygen supply and demand and also, in contrast to 
skeletal muscles, cerebral “activation” is associated with surplus 
flow [1]. Consequently, regional cerebral oxygenation increases 
upon activation of the brain as detected by the blood-oxygen-
level dependent (BOLD) signal by magnetic resonance imaging or 
by near infrared spectroscopy (NIRS) [2,3]. Such adaptation of CBF 
takes place through vasomotor, neurogenic, metabolic and chem-
ical mechanisms and likely because of the multiple influences 
involved, coupling between increase in (regional) CBF and activity 
is not understood [4]. What is established is that CBF is 
“autoregulated”, i.e. stays more or less stable within wide varia-
tions in blood pressure as described for humans by Lassen [5]. 
Also, the arterial carbon dioxide tension (PaCO2) has a marked 
influence on CBF with a “reactivity” of about 3% mmHg
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In humans, assessment of CBF was introduced by Kety & Schmidt 
(1945) with the determination of the brain’s uptake of nitrous 
oxide over time and for the regional distribution of flow, clear-
ance of 

133
Xenon was often used [7,8]. Today positron emission 

tomography [9] and magnetic resonance imaging [10] dominate 
in evaluating CBF.  As a consequence of the large apparatus 
needed for such evaluation, there is an apparent need for ambu-
latory evaluation of CBF. Aaslid et al. [11] introduced transcranial 
Doppler determination of flow velocity in basal cerebral arteries. 
Duplex ultrasound was introduced, making it possible to measure 
flow in the internal and vertebral arteries and thereby CBF even 
during intense exercise (e.g. Sato et al.[12]). Both methods have 
the advantage that the evaluation is on a beat to beat basis, e.g. 
allowing for determination of so-called “dynamic” cerebral 
autoregulation [13]. Another and more readily available option is 
to record, e.g. frontal lobe oxygenation (ScO2) with NIRS that 
seems to reflect both cerebral autoregulation and the brain’s CO2 
reactivity [14], while also allowing  evaluation of the regional 
distribution of flow [15].  

This review addresses how NIRS has been applied to monitor 
cerebral oxygenation during anesthesia and reflects on which 
patients would benefit from such monitoring. Furthermore, it 
addresses the influence from the oxygenation of the scalp and 
possibly the scull, to the NIRS signal. Finally, it is considered 
whether it is possible to obtain a NIRS signal that is not “contami-
nated” by scalp and scull oxygenation. Monitoring cerebral oxy-
genation by NIRS during neurocritical care [16], resuscitation after 
cardiac arrest [17], interventional radiology [18], orthopedic 
surgery [19,20] and for infants [21] is not addressed here, but 
such patients may, as it seems, benefit from such an intervention.   

APPLICATION OF NIRS TO ANESTHESIA  
In the operating room, the brain has to be considered somewhat 
a black box as there is little possibility of monitoring CBF. Largely, 
CBF is taken to be adequate when mean arterial pressure (MAP) 
is above what is considered the lower limit for cerebral 
autoregulation, i.e. about 50 mmHg as reviewed by Paulson et al. 
[22]. Yet, in clinical practice, a MAP around 50 mmHg is frequent-
ly seen, e.g. during propofol based anesthesia. Lower values may 
manifest, especially while inducing anesthesia [23] and during so-
called hypotensive anesthesia, established in order to reduce 
bleeding during some surgical procedures [24]. In other words, it 
could be suspected that sufficient CBF is left in jeopardy during at 
least some anesthetic procedures and it has to be accepted that 
not all patients find themselves mentally alert after anesthesia as 
supported by psychological tests [25].  

Obviously, it is an exception rather than the rule that patients 
experience mental problems after anesthesia.  An explanation 
might be that the so-called lower limit of cerebral autoregulation 
seems to vary between patients and or related to events taking 
place, when the central blood volume and in turn cardiac output 
(CO) is reduced [26]. Experimental identification of the lower level 
of cerebral autoregulation typically involves a procedure that 
reduces the central blood volume [27], e.g. exposing people to 
lower body negative pressure [28] or head-up tilt and often with a 
decrease in the estimated  CBF including ScO2 at a MAP of 80 
mmHg [29]. In contrast, Nissen et al. [30] report no decrease in 
ScO2 when MAP is reduced to 40 mmHg when the central blood 
volume is controlled strictly and the cerebral metabolic rate for 
oxygen is independent of blood pressure when CO is controlled 
rigorously [31]. On the contrary, patients with apparent lack of 
cerebral autoregulation, experience a decrease in cerebral oxy-

genation in response to a low blood pressure [30]. In summary, a 
blood pressure of 60 mmHg or lower may be acceptable if it 
represents a response to anesthesia with preserved CO and or 
central blood volume,  but will affect CBF if the pressure repre-
sents a reduction in CO, e.g. by hemorrhage or head-up tilt (e.g. 
for upper abdominal minimal invasive procedures or the beach 
chair position as for shoulder surgery with eventual catastrophic 
neurological injury in otherwise healthy patients despite a MAP of 
60-80 mmHg [32,33]). 

Such considerations and observations seem to explain why a 
strategy that focuses on maintaining CO during surgery, e.g. by 
so-called individualized goal-directed fluid therapy enhances 
outcome [34]. Similarly, it seems an advantage to monitor cere-
bral oxygenation, e.g. by NIRS to allow for early detection of a 
scenario where the brain is subjected to otherwise covert ische-
mia and thereby at least potentially improve outcome. It is con-
sidered that a growing elderly population is presented to surgery 
and that, these patients, due to their limited physiological re-
serve, inherent with the aging process will need comprehensive 
monitoring. Thus, several cardiovascular and brain diseases [22] 
as inhalation anesthesia [35] impair or abolish CBF autoregulation 
but whether cerebral autoregulation is intact remains unknown 
without some monitor of CBF.  

Cardiac Surgery 
Evaluation of NIRS during anesthesia has been carried out mainly 
during cardiac surgery to avoid postoperative cognitive dysfunc-
tion [36], stroke [37], or delirium [38]. Since open heart surgery 
was introduced (1953), improvement in perfusion technology, 
surgery and anesthesia has taken place [39], but the devastating 
neurological complication remains a concern, especially for elder-
ly patients [40], may be related to decrements in ScO2 although 
results are not consistent [41,42].  

For example, monitoring ScO2 is attractive during hypothermic 
aortic arch surgery with circulatory arrest during which the brain 
is perfused selectively [43]. A significant interrupted circle of 
Willis appears in approximately 40% of cardiac patients [44] and 
therefore monitoring of ScO2 supports the decision to switch 
from unilateral to bilateral brain perfusion [45].  Also, ScO2 identi-
fies aortic cannula malposition [46] and allows for early detection 
of air embolism [47,48] or aortic dissection [49]. Furthermore, a 
low ScO2 predicts neurological events (confusion, seizures, pupil 
or motor deficit) [50], stroke [51-53] and major organ dysfunction 
[54-57]. Similarly, a link between reduced cognitive function 
(assessed by, e.g. minimal mental state examination; MMSE) and 
a low ScO2 is described [58-62], but again not without exceptions 
[63-65]. It has to be acknowledged that multiple factors impact 
neurological function after cardiac surgery, but a low pre- and 
perioperative ScO2 is independently associated with delirium, 
time to extubation and even mortality [66-68]. 

Liver transplantation 
As for heart surgery the use of NIRS has been addressed on other 
patient groups. Patients undergoing liver transplantation (LTx) are 
of interest due to potential significant reduction of the central 
blood volume due to bleeding during the dissection phase of the 
operation, by limited or clamped inferior caval flow in the 
anhepatic phase and blood pressure may become low during 
reperfusion of the grafted liver [69]. Even before patients are 
presented for surgery, liver disease may impair cerebral 
autoregulation and the blood brain barrier and thereby dispose to 
ischemic or hyperemic brain injury [70], eventually leading to 
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death [71]. Besides the neurotoxic effect of ammonia, CBF and 
intracranial pressure may double, allegedly due to concomitant 
activation of cyclooxygenase [72,73], but not nitric oxide synthase 
[74]. Remarkably, such cerebral hyperperfusion is eliminated 
immediately by hepatectomy [75] or by plasmapheresis [76].  

In the anhepatic phase of LTx, inadequate venous return to the 
heart with clamping of the inferior caval vein reduces CO by as 
much as 50% and can result in compromised perfusion to vital 
organs including the brain [77]. To facilitate hemodynamic stabil-
ity and to optimize organ perfusion, a veno-venous bypass may 
be established [78]. Alternatively, venous return to the heart is 
assisted by only partially clamping the inferior caval vein (so-
called piggyback technique). However, even with the piggyback 
technique, ScO2 is likely to decrease by about 15% [79]. Moreo-
ver, unintended hyperventilation affects ScO2 as the metabolic 
rate is about 30% reduced by hepatectomy. Thus, in order to 
preserve CBF as expressed by ScO2, ventilation needs to be low-
ered [80] and thereby, hopefully, reduce the risk of cerebral 
ischemia and an increase in postoperative biomarkers of brain 
tissue damage, including neuron-specific enolase and S-100β that 
may increase threefold when cerebral deoxygenation manifests 
[81].  

Conversely, with reperfusion of the grafted liver, metabolism is 
restored and despite a low blood pressure, the brain may be 
subjected to hyperperfusion as expressed by ScO2 because CO2 is 
released from the grafted liver and the lower extremities. Cere-
bral hyperperfusion could lead to brain edema, but may be atten-
uated if ventilation is increased to eliminate CO2 [82].  

CBF and PaCO2 demonstrate an only moderately s-shaped re-
lationship between 2 and 10 kPa [83] while a PaCO2 above 10 kPa 
mitigates the CO2-reactivity because of near-maximal cerebral 
vasodilatation, but PaCO2 seldom exceeds such a value during 
LTx. During reperfusion of the graft, however, the increase in CBF 
seems beyond what can be explained by the increase in PaCO2 
and, therefore attributable to some yet unknown vasodilating 
substance(s) [84]. Thus, with reperfusion of the grafted liver, 
patients demonstrate more than doubled CO2-reactivity [85]. 

Such considerations are important since ScO2 relates to neuro-
logical deficit [86] and during LTx cerebral de- or 
hyperoxygenation manifest with an incidence of about 35% and 
15%, respectively (Table 1; [87]). Thus, ScO2 may guide 
ventilatory control not only in the anhepatic phase of LTx, but 
also upon reperfusion of the grafted liver, i.e. by increasing venti-
lation to attenuate an increase in (end-tidal) CO2 (Table 2;[80]. 

Table 1. Incidence of cerebral deoxygenation (↓ScO2), 
hyperoxygenation (↑ScO2) and impaired cerebral autoregulation (%CA) 
during major abdominal surgery and liver transplantation [87]. 

n ↓ScO2 ↑ScO2 %CA 

Open abdominal surgery 240 24% 0% - 

Laparoscopy surgery (supine) 328 0% 0% - 

Laparoscopy surgery (reverse-
Trendelenburg’s position) 

142 31% 0% - 

Liver transplantation 191 36% 14% 25% 

Open abdominal aneurysm repair  
The implication of monitoring NIRS during vascular surgery has 
been reviewed [88]. Somewhat similar to patients undergoing 
LTx, patients undergoing open abdominal aortic aneurysm repair 
are also exposed to significant changes in the circulation. There is 
a likely reduction in CO during cross-clamping of the aorta below 
the renal vessels and end-tidal CO2 decreases if ventilation is not 
lowered to compensate for attenuated need of CO2 elimination.   

Figure 1. Near-infrared spectroscopy determined frontal lobe oxygenation (ScO2) 
and end-tidal CO2 tension (EtCO2) (% changes from baseline; ± SEM). (Modified from 
[80,85]) 

Accordingly, ScO2 may become affected [89]. Conversely, with 
reperfusion of the lower body, vasodilatory substances including 
CO2 are released into the circulation and provoke cerebral 
hyperperfusion as illustrated by a ~ 50% increase in CBF despite 
an often marked decrease in MAP [89,90]. Yet, by adjusting venti-
lation according to end-tidal CO2 during aortic aneurysm repair, 
ScO2 can be kept within acceptable limits, reflecting, that in 
contrast to LTx patients ([80]; Table 2), patients undergoing aortic 
surgery appear to demonstrate a normal CO2 reactivity, both 
when expressed by transcranial Doppler [89] and by ScO2 (Fig. 1) 
[85]. 
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Table 2. Changes in end-tidal CO2 (EtCO2), frontal lobe oxygenation 
(ScO2) and ventilation (VE) during liver transplantation and abdominal 
aortic aneurysm repair. Patients demonstrating a normal ScO2 (nScO2) 
are shown [80,85].  

Liver transplantation EtCO2 ScO2 VE nScO2 

Clamping -8% -8% -5% 78% 

Reperfusion +18% +12% +10% 71% 

Abdominal aortic aneurysm     
Clamping +3% -3% -13% 93% 

Reperfusion +11% +3% +31% 98% 

Major abdominal surgery 
Patients undergoing major abdominal surgery may also benefit 
from monitoring ScO2 since the incidence of cerebral 
deoxygenation as determined by ScO2 is reported as high as 
about 50%. This is typically seen in elderly patients and is related 
to the hospital stay, maybe as a consequence of an affected 
MMSE score [91-93]. As indicated, ScO2 is reduced, especially in 
patients exposed to manipulation of body position, but with 
impeded venous drainage from the brain during surgery in 
Trendelenburg’s position, there is reported no cerebral 
deoxygenation [87]. To monitor ScO2, during laparoscopic surgery 
in either supine or Trendelenburg’s positions, is currently consid-
ered only when surgery is expected to last for more than 7 hours 
[94,95], since prolonged steep Trendelenburg’s position gradually 
impairs cerebral autoregulation [96].  

Conversely, the orthostatic stress provoked by reverse 
Trendelenburg’s positioning and increased intra-abdominal pres-
sure due to CO2 insufflation, bear the potential to compromise 
CO and provoke cerebral deoxygenation as manifested in about 
one third of the patients (Table 1). The influence of orthostatic 
stress on ScO2 is illustrated in the beach chair position (90°) in 
which ScO2 is reported to decrease in 80% of patients.  In support 
of central hypovolemia, symptoms, as postoperative nausea and 
vomiting, are common manifestations [97]. In a more or less 
upright position, sympathetic activity increases to maintain CO 
[98] and yet CBF and ScO2 decrease somewhat [99]. In anesthe-
tized patients, however, the autonomic nervous system is attenu-
ated and CBF may become pressure passive [100] and therefore, 
to preserve patient well-being, e.g. NIRS guided intervention 
seems in need [101]. Thus, patients undergoing surgery in a beach 
chair, during regional anesthesia, are reported to demonstrate no 
cerebral deoxygenation as opposed to the fact, that 
deoxygenation manifests in about 60% of patients who are anes-
thetized [102]. 

 It remains a problem that NIRS-derived thresholds for inter-
vention are not defined. ScO2 range from 60% to 90%, while 
grave hypoxia (arterial saturation <55%) is associated with a ScO2 
of ~40% [103]. There is, however, no consensus on how much 
ScO2 should decrease before intervention is relevant. Further, it 
is not established whether a significant increase in ScO2 should 
lead to intervention but this is of interest since even brief epi-
sodes of hyperperfusion affects Starling forces within cerebral 
capillaries and results in endothelial damage. Thus, a >15% (rela-
tive) increase in ScO2 seems to predict cerebral hyperperfusion 
[104]. In regard to what decrease in ScO2 should lead to interven-
tion, a decrease by 13%  (absolute) has been suggested during 
clamping of the internal carotid artery for endarterectomy, with a 
high sensitivity (100%) and specificity (93%) for cerebral ischemia 
along with a relation to cerebral function [105]. Such a threshold 
is supported by a decrease in transcranial Doppler determined 
cerebral blood flow velocity, slowing of the electroencephalo-
gram and changes in somatosensory evoked potentials [106-108]. 

Furthermore, healthy humans develop presyncopal symptoms 
with a 10%-15% reduction in ScO2 (for review see [99]). A low 
ScO2 before and during surgery also seems to indicate poor cog-
nitive function and delirium [66,109,110]. For cardiac patients, an 
algorithm is presented, to guide intervention using both relative 
(20%) and absolute (<50%) changes [55,111]. The algorithm takes 
the following into account: MAP, CO, arterial oxygen tension, 
hemoglobin (Hb), body temperature, and depth of anesthesia. 
Yet, it remains unknown for how long ScO2 should be below or 
above defined thresholds to induce cerebral damage. However, 
estimates have been given and an extensive cerebral 
deoxygenation more than doubles the risk of poor cognitive 
outcome and a prolonged hospital stay [60].  

In summary, for especially elderly patients, patients who go 
through complex surgery or who are exposed to various types of 
head-up tilts, it seems an advantage to secure that ScO2 is within 
about 15% of the resting value to maintain patient wellbeing 
[87,112]. Yet, it remains a concern whether NIRS in fact monitors 
CBF or whether it is to be considered an advanced monitor of skin 
and eventual scalp oxygenation, and the NIRS technique is there-
fore addressed briefly.   

NEAR INFRARED SPECTROSCOPY 
The light absorption spectra for hemoglobin (Hb) was identified 
by the German physiologist Immanuel EF Hoppe-Seyler [113] and 
the Irish physicist George G Strokes [114]. Both observed oxygen-
ated blood to be more reddish than deoxygenated blood. This 
was confirmed by the German physiologist Karl von Vierordt, who 
described the transmission of red light through a finger [115].  
These observations formed the background for development of 
an oximeter by the German physician Karl Matthes and the phar-
macologist Franz Gross [116]. The oximeter was introduced to 
anesthesia at the Mayo Clinic [117]. Dentists, surgeons and anes-
thetists alike had until then observed skin color and chest move-
ment to asses oxygen supply to the patient, but it seems that 
cyanosis was an expected rather than a feared manifestation (for 
review see [118]) accepting that skin color does not necessarily 
reflect arterial oxygen saturation [119]. Yet, it was realized that if 
a patient turned blue, recovery would be prolonged and with 
introduction of neuromuscular blockade by Griffith & Johnson 
[120], to relax the musculature during tracheal intubation and 
surgery, it became critical to ensure adequate ventilation. This 
concern became apparent when Beecher & Todd [121] argued 
that anesthesia, at that time, killed 1/6 of the 600.000 anesthe-
tized patients in the US, or as many patients as there were victims 
of poliomyelitis. This implied the need for better handling of 
ventilation and likely also for monitoring whether the chosen 
ventilation strategy was adequate. 

The need of monitoring whether ventilation was adequate be-
came apparent during the polio epidemic in Denmark (1952-
1953) and the Radiometer Company developed an apparatus to 
determine pH in blood and gradually also arterial tension for 
oxygen and carbon dioxide. By 1973 this became what is now 
called the ABL apparatus (automatic blood laboratory) [122]. Yet, 
such evaluation of ventilation requires blood sampling, later 
continuous non-invasive monitoring of arterial oxygen saturation 
became available when the Japanese engineer Aoyagi developed 
pulse oximetry [123]. Although it has not been “proven” that 
pulse oximetry improves patient outcome [124], few patients 
probably go through anesthesia without continuous registration 
of a pulse oximetry estimate of arterial oxygen saturation. Inter-
estingly, a more than tenfold reduction in mortality attributed to 
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anesthesia coincided with the combined use of pulse oximetry 
and monitoring the end-tidal carbon dioxide by capnography 
[125]. 

Accordingly, complications to anesthesia may no longer mani-
fest in mortality, but as mentioned, it has to be accepted that not 
all patients feel well after surgery. Besides pain, postoperative 
nausea and vomiting and surgical complications, mental capacity 
may be affected [25,126]. Monitoring whether cerebral oxygena-
tion is maintained became a possibility when Jöbsis [127] intro-
duced NIRS to detect cerebral oxygenation in cats. NIRS uses the 
same principle as pulse oximetry, but NIRS does not take the 
pulsatile flow into account and therefore monitors a balance 
between arterial, capillary, and venous blood. 

Technology 
According to the Beer-Lambert law, light absorbance depends on 
the concentration of a light attenuating object in a material sam-
ple [128-130]. For NIRS, the emitted light is captured by one or 
several detectors placed some distance from where light is emit-
ted, meaning that NIRS measures the intensity of the returning 
photons. Photons are lost due to absorption by chromophores 
and scattering and ideally, i.e. in an experimental model, the 
absorption of light can solve the Beer-Lambert equation. In vivo 
light has to pass the scalp and the scull before it reaches the brain 
and none of these structures are homogenous. It remains un-
known what length the light has travelled before it returns to be 
sampled and, therefore, the requirement of the Beer-Lambert 
equation to provide absolute values for Hb, cannot be fulfilled.  

To compensate for that limitation, a modified Beer-Lambert 
equation is applied that assumes scattering and optical path 
length to be constant and, therefore, light attenuation to be by 
absorption that allows for trend monitoring of Hb [131]. More 
advanced NIRS technology is introduced, e.g. spatially resolved 
NIRS (SR-NIRS), phase modulation and time resolved spectrosco-
py quantify tissue optical properties, i.e. scattering, absorption 
and optical path length from which an estimate of chromophore 
concentration is derived or an oxygenation index (HbO2/Hb or 
HbO2/(Hb+ HbO2)) is calculated [132-134]. 

Of these technologies SR-NIRS is the most frequently applied, 
in both clinical practice and in human research. By use of multiple 
detectors, light intensity is determined as a function of the emit-
ter-detector distance and in combination with an often undis-
closed algorithm it is, at least in principle, possible to retrieve 
absolute values [135]. Yet, the algorithms applied to estimate 
tissue oxygenation varies between different apparatus and is 
known only for the NIRO apparatus [135]. In fact, different algo-
rithms yield divergent chromophore concentrations with applica-
tion of the same optical data [136], which complicates determina-
tion of the “true” ScO2 [137,138].  

As technology develops, an attempt is to provide direct as-
sessment of CBF by so-called ultrasound-tagged NIRS, where 
ultrasound is used to modulate light via the acousto-optic effect 
and thereby estimate flow as validated against single photon 
emission computer tomography determined CBF as approved for 
perioperative monitoring of CBF [139-143]. In support for this 
report of CBF, ultrasound-tagged NIRS reflects both cerebral 
autoregulation and CO2 reactivity identical to a laser Doppler 
signal from brain parenchyma of a pig [144]. Yet, when applied to 
the forehead of humans, the ability of ultrasound-tagged CBF to 
show CO2-reactivity is apparently lost [145], likely because the 
signal becomes dominated by skin blood flow or due to interfer-
ence with the transcranial Doppler signal.  

Figure 2. A: Number of subjects (%) for whom the difference between Invos-
determined frontal lobe oxygenation (ScO2) and the arterial fraction of the calculat-
ed reference saturation is zero. Solid line represents the distribution. B: Bland-
Altman plot of ScO2 and a calibration ratio of 50% arterial and jugular bulb oxygena-
tion [149] with permission from Frontiers in Physiology. 

Calibration 
Determination of ScO2 by NIRS, most often assumes a fixed ratio 
of 70:30 or 75:25 for the venous and arterial blood volume, based 
on anatomical evidence, not taking the capillary blood volume 
(approximately 5%) into account. In support, no negligible mis-
match between ScO2 values and the calibration ratio is observed 
with the use of five different NIRS devices in healthy subjects 
exposed to isocapnic hypoxemia [146], but using a fixed ratio 
between venous and arterial blood volume for calibration of the 
NIRS signal is not robust. Hypercapnia and isocapnic hypoxemia 
induce cerebral vasodilation and alters the cerebral blood vol-
ume, mainly by an increase in the arterial fraction [147]. Thus, it is 
likely that the illuminated area of the brain then encompasses 
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more arterial blood and explains the aggravated mismatch be-
tween ScO2 and the calibration ratio during hypoxia [146].  

Alternatively, ScO2 is compared to a balance ratio of 50% jugu-
lar bulb and 50% arterial oxygen saturation as the estimate of 
cerebral capillary oxygenation as this ratio seems more accurate 
[148-150] (Fig. 2). However, the arterial to venous balance within 
the brain may differ between individuals and explain part of the 
inter-individual variation in absolute ScO2 readings [146]. Hetero-
geneity of blood vessels in the illuminated area of the brain 
seems to affect light absorption because photons are “lost” in 
major blood vessel, e.g. the sagittal sinuses [151]. Other factors 
affecting light absorption and thereby the ScO2 readings include 
variation in skull thickness and amount of cerebrospinal fluid 
[152], skin pigmentation [146] and degradation products of heme  
because of its competitive absorption of light [153]. An alterna-
tive approach is to base the evaluation of ScO2 on more than one 
optode and thereby obtain a more stable value [154]. 

Optode configuration 
To determine the balance between two chromophores 
(HbO2/Hb) two wavelengths are required. Many devices employ 
more wavelengths to improve accuracy and to include an account 
for cytochrome C oxidase [136] (Table 3), e.g. to demonstrate a 
small decrease when pre-syncopal symptoms develop during 
head-up tilt [155].  

An optode often includes one or two emitters and two to four 
detectors and the penetration depth of light is taken to be ap-
proximately 1/3 to 1/2 of the emitter-detector distance [156]. 
Thus, the longer the emitter-detector distance is, the deeper 
tissue can be interrogated, but then at the expense of the signal 
to noise ratio [157]. With an emitter-detector distance between 
15 and 30 mm, “cerebral” O2Hb is influenced by skin oxygenation 
as the evaluation is equally reduced by scalp ischemia [158], but it 
has to be noted that the evaluation did not include procedures 
that would be expected to affect CBF.   

In an attempt to minimize influence of skin and scalp oxygena-
tion to the NIRS signal, some devices, e.g. Invos, use a subtrac-
tion-based algorithm with the assumption that light returning to 
the proximal detector (e.g. 30 mm from the emitter) has passed 
mainly through superficial tissues, while light captured by the 
distal detector (e.g. 40 mm) is more representative for “deep” 
tissue, i.e. for the brain. Alternatively, the distance from the 
emitter to the distal detector may be 43 and 50 mm (Niro and 
Foresight, respectively) (Table 3) and it is argued that a distance 
of at least 48 mm is preferred [157]. Whether such an optode 
distance allows for a “selective” report of cerebral oxygenation is 
questioned. When Davie and Grocott [159] applied a cuff around 
the head to eliminate skin blood flow, all apparatus (Invos, Fore-
sight, Equanox), even with a emitter-detector distance of 50 mm 
(Foresight), demonstrated a decrease in ScO2, suggesting that 
scalp oxygenation cannot be ignored. This is also evident during 
heating of the skin [160,161] or carotid cross-clamping [162].  

It appears that the present NIRS technology requires an indi-
vidual correction factor derived by creating scalp and scull ische-
mia, e.g. by applying pressure to the temporal artery for unbiased 
estimate of cerebral O2Hb during interventions [158]. 

CO2-reactivity and hypoxia 
When accepting that there is a significant influence of skin and 
scalp oxygenation to the NIRS signal, it remains fundamental 
whether NIRS responds to changes in the arterial CO2 tension  

 

Table 3. Characteristics for five NIRS devices  

 WL  
(nm) 

E;D  
(n) 

E-D  
(mm) 

CO2  
(% kPa-1) 

Measurements 

Invos-5100 
(SR) 

730, 808 1;2 30, 40 1.7 ScO2 

Foresight 
(SR) 

690, 780, 
808, 850 

1;2 15, 50 1.6 ScO2 

Niro-200 
(SR) 

735, 810, 
850 

1;2 37, 43 2.1 ScO2, THI, 
O2Hb, Hb 

Equanox 
7600 (SR) 

Unknown 2;2 20, 40 Unknown ScO2 

CerOx (UT) Unknown 1;2 12 0.4 ScO2, CFI 

CO2: CO2 reactivity. CFI: cerebral flow index. D: detector. E: emitter. Hb: 
hemoglobin. ScO2: cerebral oxygenation index.  SR: spatially resolved. 
THI: total hemoglobin index. UT: ultrasound tagged. WL: wavelength  

 

 
Figure 3. Data from healthy subjects (solid line indicates median) A: CO2-reactvity for 
each device during hyperventilation [145, 149, 202]. B: Frontal lobe oxygenation 
determined by Invos and Niro during hypoxia (FiO2=0.12). SaO2: arterial oxygena-
tion. SjugO2: internal jugular bulb oxygenation [169]. 
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because extra-cerebral blood flow is only vaguely affected by CO2 
[163]. When PaCO2 is manipulated by inhaling, e.g. 5% CO2 vs. 
hyperventilation induced reduction in PaCO2, NIRS does demon-
strate an adequate response independent of extra cranial blood 
flow [150,164,165]. The exception is the previously mentioned 
ultrasound-tagged NIRS [145] (Table 3). In healthy humans the 
CO2-reactivity is about 2 % kPa

-1
 (Fig. 3) similar to that in patients 

undergoing open abdominal aneurysm repair (1.8% kPa
-1

), but in 
patients undergoing LTx the CO2-reactivity is more than doubled 
(7.3% kPa

-1
) (Fig. 1). The inter-device difference for the determi-

nation of CO2-reactivity may both reflect disparate optode con-
figuration and algorithm applied [136]. 

In regard to the ability of NIRS to detect hypoxia, systemic hy-
poxemia below 7 kPa PaO2 induces cerebral vasodilation that 
gradually doubles CBF until CBF is counterbalanced by hypocapnia 
secondary to hypoxia, NIRS detects changes in cerebral O2Hb and 
cytocrome C oxidase that correlates to jugular bulb oxygenation 
[103,166]  Also, evaluation of NIRS by isocapnic hypoxia reveals a 
relation to jugular bulb oxygenation but, unfortunately, does not 
allow for separate evaluation of influence from the brain, respec-
tively, the scalp [146,167,168]. Furthermore, compared to the 
Invos apparatus, Niro-200NX seems to demonstrate a limited 
sensitivity to hypoxia, while CBF CO2-reactivity is presented (Fig. 
3). 

Problems with the recording of cerebral oxygenation do not 
only relate to the apparatus used, but also depend on the optode 
applied. We have been confronted with two (Niro) optodes of 
which one did report a decrease in cerebral oxygenation in re-
sponse to hyperventilation, but was unaffected by hypoxia while 
the second optode demonstrated the opposite [169].  

Exercise 
Besides being able to report responses to hypoxia and demon-

strate the brain’s CO2 reactivity, NIRS should be able to report the 
increase in cerebral oxygenation associated with activation of the 
brain, as established in “neurological orientated” studies, e.g. by 
exposure to cognitive, visual tests or exercise [3,15]. The CBF 
response to whole-body exercise is, however, complex with an 
increase during light to moderate work intensities and a decrease 
in flow at high workloads, as the exponential increase in ventila-
tion lowers PaCO2 [170]. In support of NIRS’ ability to report a 
value relevant to CBF, ScO2 increases at work intensities up to 
60%–80% of the subject’s capacity after which it plateaus or 
decreases towards or below resting values, attributed to 
hypocapnia secondary to hyperventilation [171]. Thus, with in-
creasing exercise intensity, ScO2 follows changes in CBF as de-
termined by jugular bulb oxygenation [172]. In regard to NIRS’ 
ability to report CBF rather than scalp and skull blood flow, it is 
important that the decrease in ScO2 at high workloads takes 
place despite an increase in skin blood flow due to heat exchange 
[169].  

When evaluating which decreases in ScO2 that are clinically 
relevant, i.e. lead to intervention, it is of interest that the de-
crease in ScO2 at high workloads, is so marked that a low ScO2 
has been suggested to limit work capacity, so-called central fa-
tigue [150,173]. Although this hypothesis is attractive, the argu-
ment is not easy. By clamping CO2 and thereby maintaining CBF 
and ScO2, performance is not enhanced in neither normoxia nor 
mild to severe hypoxia [174-177]. On the other hand, it has to be 
accepted that CO2 also influences muscle metabolism and that an 
eventual positive effect on the brain of supplementing CO2 and 

thereby CBF, could be offset by “peripheral” fatigue by acidosis 
[178] and sympathetic activation [179]. 

EFFECT OF SYMPATHOMIMETIC AGENTS ON SCO2  

Awake subjects 
Besides applying a cuff around the head [159] or pressure over 
the temporal artery [158], skin blood flow may be influenced by 
administration of sympathomimetic agents used to correct anes-
thesia-induced hypotension. α-adrenergic activation increases 
total peripheral resistance and thereby MAP with phenylephrine 
(e.g. by 35%) and norepinephrine (e.g. by 30%), while ephedrine 
increases CO, leaving peripheral resistance unaffected.  A small 
dose of epinephrine has little effect on MAP but CO increases 
[180].  

Norepinephrine  

In a pioneering evaluation of sympathomimetic agents’ influence 
on CBF (by 

133
Xenon clearance), norepinephrine had no effect on 

CBF [181]. This observation has be challenged by recording 
transcranial Doppler determined middle cerebral artery mean 
flow velocity (MCA Vmean), ScO2 or jugular bulb oxygenation for 
continuous evaluation of CBF. For example, MCA Vmean is re-
ported to decrease with increasing MAP following administration 
of norepinephrine together with a decrease in ScO2 and jugular 
bulb oxygenation and therefore points to a reduced CBF [182].  

In animals, stimulation of the superior cervical ganglion [183], 
activation of the central sympathetic pathway from locus 
coeruleus [184] and administration of norepinephrine reduces 
CBF (for review; [185]) and is therefore attributed to the stimula-
tion of α-adrenergic receptors [186]. Yet, the role of sympathetic 
activity for regulation of CBF in humans remains debated [187-
190]. When arterial administration of norepinephrine does not 
influence CBF [181] it has been attributed to norepinephrines’ 
poor ability passing the blood brain barrier [191,192]. 

Norepinephrine may also exert an indirect cerebral vasocon-
striction through the so-called Bayliss effect (1902) (vasocon-
striction in response to an increase in blood pressure). Likewise, 
sympathetic activity increases even with transient hypertension 
as measured in the superior cervical ganglion in lambs [194]. In 
chronic hypertension, the lower as well as the upper limit of the 
autoregulation, shifts to the right probably due to hypertrophy of 
the arteries, but as demonstrated both in humans and rats, the 
limits of the cerebral autoregulation is normalized with admin-
istration of renin-angiotensin system inhibitors, allegedly due to 
endothelium dependent relaxation [195-198].  

As addressed by Olesen [181], is should be considered, that 
norepinephrine increases ventilation and thereby reduces MCA 
Vmean, ScO2 and jugular bulb oxygenation in response to a lower 
PaCO2. In support, when CO2 is clamped during administration of 
norepinephrine, jugular bulb oxygenation remains stable alt-
hough MCA Vmean increases, suggesting constriction of the 
artery [160].  In conclusion, unchanged jugular bulb oxygenation 
points to a stable CBF, but ScO2 together with skin blood flow, 
remains low following norepinephrine with CO2-clamping. Con-
sequently, the reduction in ScO2 in response to administration of 
norepinephrine is likely explained by scalp and maybe also scull 
oxygenation, rather than by cerebral vasoconstriction, acknowl-
edging that the diameter of MCA has not been evaluated with the 
administration of norepinephrine. 
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Phenylephrine 

In contrast to norepinephrine, phenylephrine does not affect 
ventilation. Lucas et al. [199] used the increase in MCA Vmean 
with blood pressure in response to administration of phe-
nylephrine, to calculate a slope for the otherwise often reported 
horizontal part of the autoregulation curve, i.e. from approxi-
mately 50 to 150 mmHg, as confirmed in figure 4.  

Figure 4. Changes in middle cerebral artery mean flow velocity (MCA Vmean) and 
internal carotid artery (ICA) blood flow during phenylephrine infusion. Mean ± SEM 
with number of data points indicated. Modified from [145,200-202].  

A small slope on this part of the autoregulatory curve is attractive 
since no regulatory mechanism has an infinite gain and it has to 
be accepted, that when the graph describing the autoregulation is 
reported as horizontal, it can be considered as much a statistical 
as a biological phenomenon. For example, one way to calculate 
the lower level of cerebral autoregulation is to identify a line 
between an index of CBF (e.g. ScO2 [203] or jugular bulb oxygena-
tion [197]) and MAP at low blood pressures.  Then finding the 
point at which that line crosses a horizontal line established by 

taking changes in an index of CBF at high blood pressures into 
consideration, i.e. the lower level of cerebral autoregulation is 
identified by iteration to a horizontal line.  

That said, it has to be accepted that MCA Vmean expresses 
flow velocity and not flow and MCA Vmean may be influenced by 
vasoconstriction of the artery in response to the administration of 
phenylephrine, leading to an increase in MCA Vmean for any 
given CBF. When recording flow in the internal carotid arteries, 
CBF is stable between 70 and 130 mmHg (Fig. 4B), but with focus 
on the response before and after phenylephrine, a marginal 
increase in CBF appears (Fig. 5), suggesting that the “plateau” is 
not quite horizontal. Conversely, as blood flow in the external 
carotid artery is reduced by 30% with administration of phe-
nylephrine, blood flow to the forehead is likely to explain the 
decrease in ScO2 [201,202]. 

Figure 5. Blood flow in the external (ICA) and internal carotid (ICA) artery in rest and 
following phenylephrine administration. Mean ± SEM, n=29. Modified from 
[200,201,202,145]. 

Ephedrine 

Ephedrine acts mainly as a β1-adrenergic agonist but has an 
indirect α-adrenergic effect by release of norepinephrine and 
thereby increases ventilation with a slight decrease in MCA 
Vmean.  Yet internal carotid artery flow and ScO2 are maintained 
[202]. Ephedrine increases CO by about 50% and thereby possibly 
explains the preservation of skin oxygenation, skin blood flow and 
ScO2 [202].  

Epinephrine 

Small doses of epinephrine increase cerebral O2Hb along with 
brain glucose and oxygen uptake [180,204]. A β2-receptor stimu-
lation seems involved because combined β1/β2–blockade by 
propranolol in rats [205] and humans [206,207] eliminates these 
responses, while they are preserved during selective β1-blockade 
by metoprolol [208]. Thus, two modalities for measuring CBF 
(NIRS; jugular bulb oxygenation) point to cerebral vasodilatation 
following administration of epinephrine likely by β-adrenergic 
activation as supported by findings in piglets [209], but an evalua-
tion of the effect of epinephrine on CBF and cerebral oxygenation 
by magnetic resonance imaging is lacking [2]. 
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Anesthetized patients  

Norepinephrine 

In anesthetized patients the ScO2 response to norepinephrine is 
more ambiguous than for awake subjects (Fig. 6). Diabetes exer-
cises an influence impairing the dynamic cerebral autoregulation 
[210], yet it remains unknown why diabetic patients demonstrate 
a more pronounced reduction in ScO2 than non-diabetic patients 
when undergoing cardiac surgery and when exposed to norepi-
nephrine [211]. Impaired relaxation of the cerebral vessels, alleg-
edly due to endothelial dysfunction and or hyper-responsiveness 
to norepinephrine, may contribute [212-214], as PaCO2, MAP and 
CO are stable [211].  

One reason why the ScO2 response to norepinephrine varies 
more in anesthetized patients than in awake subject may be that 
its effect on CO appears to be preload dependent [215], i.e. nore-
pinephrine decreases CO if the patient is “normovolemic” [216] 
but increases CO when the central blood volume is reduced due 
to norepinephrines’ ability to “mobilize” blood to the central 
circulation [217]. Thus, ScO2 decreases when CO is reduced in 
response to administration of norepinephrine, but other factors 
influence ScO2 too. Even with maintained CO, norepinephrine 
decreases ScO2 [211]. In septic shock [218], norepinephrine keeps 
ScO2 stable, perhaps because skin vasculature is dilated, making 
skin blood flow insensitive to α-adrenergic activation [219]. Gov-
erned by α-receptor stimulation, norepinephrine may reduce 
blood flow in the cerebral capillaries to an extent that cannot be 
detected by ScO2, MCA Vmean or jugular bulb oxygenation, yet 
findings in anesthetized pigs do not supports that argument [209]. 

 
Figure 6: Responses in NIRS determined cerebral oxygenation (ScO2) upon admin-
istration of calcium chloride, epinephrine, ephedrine, norepinephrine, phe-
nylephrine, or vasopressin to healthy subjects and anesthetized patients. (n), num-
ber of subjects investigated.  

Phenylephrine 

During anesthesia phenylephrine reduces ScO2 coinciding with a 
reduction in CO [23,220], yet, not all patients demonstrate a 
reduction in ScO2 upon administration of phenylephrine (Fig. 6) 
[221-228]. A low CO appears to influence CBF [26] and phe-
nylephrine, like norepinephrine has a different impact on CO 
depending on its influence on preload to the heart, i.e. phe-
nylephrine increases stroke volume [229] and left ventricular end-

diastolic volume [230] when the heart is working on the ascend-
ing part, compared to the plateau on the Frank-Starling curve, as 
phenylephrine may recruit blood from, e.g. the splanchnic circula-
tion [231]. In this context, phenylephrine has a more pronounced 
effect compared to norepinephrine [217]. Thus, with the reduc-
tion of the central blood volume in an upright position phe-
nylephrine might increase CO [232], but despite an increase in 
cardiac filling, CO decreases due to bradycardia. This is illustrated 
by administration of atropine parallel to phenylephrine [229]. In 
an upright position, phenylephrine increases MCA Vmean, in 
contrast to a 10% reduction in the control group (saline infusion). 
The reduction in ScO2 is pronounced with phenylephrine (23%) 
compared to saline (14%) despite a MAP of 90 mmHg and a stable 
cardiac index [230].  

As mentioned, NIRS identifies the limits of cerebral 
autoregulation, by correlation analysis to arterial pressure [203].  
During cardiopulmonary bypass, individual assessment of the 
autoregulatory curve, reveals that about 30% of patients has a 
paradoxical reduced ScO2 following administration of phe-
nylephrine, while 35% of the patients shows a pressure passive 
ScO2 [233]. Since CO is controlled during pulmonary bypass, these 
findings represent either individual adaptations to phenylephrine 
or that CO2-tension and administration of sevoflurane were 
higher in the pressure passive group [233]. Thus, insight in cere-
bral autoregulation and oxygenation is needed to ensure a stable 
CBF.  

Although direct comparison of responses to phenylephrine be-
tween awake and anesthetized patients is difficult, the findings by 
Meng et al. [234] illustrate, that despite influence from the skin, 
NIRS reflects changes in CBF by altered CO2 during administration 
of phenylephrine. It could be argued, that CO plays a minor role 
for keeping CBF stable, as ScO2 is reduced to the same extent by 
phenylephrine, despite a decrease or controlled CO while MAP 
was well above the limit of the cerebral autoregulation [220,233]. 
However, a link between ScO2 and CO cannot be excluded since 
we bear in mind that the brain is probably the last organ to suffer 
from a reduced CO at the expense the peripheral circulation 
[235].  

Ephedrine 

Ephedrine does not affect ScO2, maybe because of little external 
carotid artery vasoconstriction. Moreover, CO increases upon 
administration of ephedrine and thereby, as least to some extent, 
affects CBF and in turn ScO2 [23,220]. Maybe ephedrine shows no 
impact on the cerebral autoregulation and thereby ScO2, in con-
trast to phenylephrine [233], but it seems speculative and, so far, 
no clinical study has taken scalp or skin blood flow into account.  

PERSPECTIVE  
NIRS offers an estimate of CBF that is sensitive to changes in 
arterial CO2 tension and hypoxemia and NIRS identifies the limits 
of the cerebral autoregulation. Thus, NIRS offers a possibility to 
evaluate whether CBF is maintained when blood pressure is low, 
as induced by anesthesia, or in response to reperfusion of organs. 
More work is needed to identify which patients would benefit by 
monitoring NIRS on the brain, but a focus on maintained ScO2 
seems beneficial during complex surgery, in older patients and 
when surgery is performed in an upright position.  

Yet, it must be accepted that NIRS does not solely reflect cere-
bral oxygenation but is influenced by oxygenation of the skin and 
scalp, even with use of so-called spatial resolution. An influence 
of skin-scalp blood flow on ScO2 is an obvious problem when the 
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focus is evaluation of CBF, but when monitoring patients in gen-
eral, it may not be a problem. In fact, Bjørn Ibsen [236] used toe 
temperature (and thereby presumably skin blood flow) to target 
therapy of shocked patients. Yet, when selectively monitoring the 
cerebral oxygenation, it is suggested that there is made a sepa-
rate evaluation of skin oxygenation and thereby build an algo-
rithm that more drastically uses “spatial resolution” than provid-
ed with the current apparatus. 
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